489 research outputs found

    Multiobjective inverse parameter estimation for modelling vadose zone water movement

    Get PDF
    Inverse modelling techniques for estimating unsaturated soil hydraulic parameters have become increasingly common in the past two decades. In contrast to single-objective parameter estimation which yields a single set of "best fit" parameters, multiobjective parameter estimation results in a number of Pareto optimal solutions which allow the analysis of the trade-off between different, sometimes conflicting, model objectives. In this study, modelling tools for identification of Pareto optimal sets of vadose zone water transport parameters are presented utilizing the numerical water and solute transport model HYDRUS-1D. Root-mean-square error (RMSE) values are calculated to measure the fit of the simulated and observed pressure head data at three different depths at a vadose zone of volcanic origin in New Zealand

    Generic dialogue modeling for multi-application dialogue systems

    Get PDF
    We present a novel approach to developing interfaces for multi-application dialogue systems. The targeted interfaces allow transparent switching between a large number of applications within one system. The approach, based on the Rapid Dialogue Prototyping Methodology (RDPM) and the Vector Space model techniques from Information Retrieval, is composed of three main steps: (1) producing finalized dia logue models for applications using the RDPM, (2) designing an application interaction hierarchy, and (3) navigating between the applications based on the user's application of interest

    Improving Simulation Efficiency of MCMC for Inverse Modeling of Hydrologic Systems with a Kalman-Inspired Proposal Distribution

    Full text link
    Bayesian analysis is widely used in science and engineering for real-time forecasting, decision making, and to help unravel the processes that explain the observed data. These data are some deterministic and/or stochastic transformations of the underlying parameters. A key task is then to summarize the posterior distribution of these parameters. When models become too difficult to analyze analytically, Monte Carlo methods can be used to approximate the target distribution. Of these, Markov chain Monte Carlo (MCMC) methods are particularly powerful. Such methods generate a random walk through the parameter space and, under strict conditions of reversibility and ergodicity, will successively visit solutions with frequency proportional to the underlying target density. This requires a proposal distribution that generates candidate solutions starting from an arbitrary initial state. The speed of the sampled chains converging to the target distribution deteriorates rapidly, however, with increasing parameter dimensionality. In this paper, we introduce a new proposal distribution that enhances significantly the efficiency of MCMC simulation for highly parameterized models. This proposal distribution exploits the cross-covariance of model parameters, measurements and model outputs, and generates candidate states much alike the analysis step in the Kalman filter. We embed the Kalman-inspired proposal distribution in the DREAM algorithm during burn-in, and present several numerical experiments with complex, high-dimensional or multi-modal target distributions. Results demonstrate that this new proposal distribution can greatly improve simulation efficiency of MCMC. Specifically, we observe a speed-up on the order of 10-30 times for groundwater models with more than one-hundred parameters

    Ensemble evaluation of hydrological model hypotheses

    Get PDF
    It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a “leaking” of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error

    Summary statistics from training images as prior information in probabilistic inversion

    Get PDF
    A strategy is presented to incorporate prior information from conceptual geological models in probabilistic inversion of geophysical data. The conceptual geological models are represented by multiple-point statistics training images (TIs) featuring the expected lithological units and structural patterns. Information from an ensemble of TI realizations is used in two different ways. First, dominant modes are identified by analysis of the frequency content in the realizations, which drastically reduces the model parameter space in the frequency-amplitude domain. Second, the distributions of global, summary metrics (e.g. model roughness) are used to formulate a prior probability density function. The inverse problem is formulated in a Bayesian framework and the posterior pdf is sampled using Markov chain Monte Carlo simulation. The usefulness and applicability of this method is demonstrated on two case studies in which synthetic crosshole ground-penetrating radar traveltime data are inverted to recover 2-D porosity fields. The use of prior information from TIs significantly enhances the reliability of the posterior models by removing inversion artefacts and improving individual parameter estimates. The proposed methodology reduces the ambiguity inherent in the inversion of high-dimensional parameter spaces, accommodates a wide range of summary statistics and geophysical forward problem

    Towards reduced uncertainty in catchment nitrogen modelling: quantifying the effect of field observation uncertainty on model calibration

    Get PDF
    International audienceThe value of nitrogen (N) field measurements for the calibration of parameters of the INCA nitrogen in catchment model is explored and quantified. A virtual catchment was designed by running INCA with a known set of parameters, and field "measurements" were selected from the model run output. Then, using these measurements and the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), four of the INCA model parameters describing N transformations in the soil were optimised, while the measurement uncertainty was increased in subsequent steps. Considering measurement uncertainty typical for N field studies, none of the synthesised datasets contained sufficient information to identify the model parameters with a reasonable degree of confidence. Parameter equifinality occurred, leading to considerable uncertainty in model parameter values and in modelled N concentrations and fluxes. Fortunately, combining the datasets in a multi-objective calibration was found to be effective in dealing with these equifinality problems. With the right choice of calibration measurements, multi-objective calibrations resulted in lower parameter uncertainty. The methodology applied in this study, using a virtual catchment free of model errors, is proposed as a useful tool foregoing the application of a N model or the design of a N monitoring program. For an already gauged catchment, a virtual study can provide a point of reference for the minimum uncertainty associated with a model application. When setting up a monitoring program, it can help to decide what and when to measure. Numerical experiments indicate that for a forested, N-saturated catchment, a fortnightly sampling of NO3 and NH4 concentrations in stream water may be the most cost-effective monitoring strategy. Keywords: INCA, nitrogen model, parameter uncertainty, multi-objective calibration, virtual catchment, experimental desig

    Two-dimensional probabilistic inversion of plane-wave electromagnetic data: methodology, model constraints and joint inversion with electrical resistivity data

    Get PDF
    Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraint

    Uncertainty Quantification of GEOS-5 L-band Radiative Transfer Model Parameters Using Bayesian Inference and SMOS Observations

    Get PDF
    Uncertainties in L-band (1.4 GHz) radiative transfer modeling (RTM) affect the simulation of brightness temperatures (Tb) over land and the inversion of satellite-observed Tb into soil moisture retrievals. In particular, accurate estimates of the microwave soil roughness, vegetation opacity and scattering albedo for large-scale applications are difficult to obtain from field studies and often lack an uncertainty estimate. Here, a Markov Chain Monte Carlo (MCMC) simulation method is used to determine satellite-scale estimates of RTM parameters and their posterior uncertainty by minimizing the misfit between long-term averages and standard deviations of simulated and observed Tb at a range of incidence angles, at horizontal and vertical polarization, and for morning and evening overpasses. Tb simulations are generated with the Goddard Earth Observing System (GEOS-5) and confronted with Tb observations from the Soil Moisture Ocean Salinity (SMOS) mission. The MCMC algorithm suggests that the relative uncertainty of the RTM parameter estimates is typically less than 25 of the maximum a posteriori density (MAP) parameter value. Furthermore, the actual root-mean-square-differences in long-term Tb averages and standard deviations are found consistent with the respective estimated total simulation and observation error standard deviations of m3.1K and s2.4K. It is also shown that the MAP parameter values estimated through MCMC simulation are in close agreement with those obtained with Particle Swarm Optimization (PSO)
    corecore