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S U M M A R Y
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation
are well suited to quantify parameter and model uncertainty of nonlinear inverse problems.
Yet, application of such methods to CPU-intensive forward models can be a daunting task,
particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based
MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we in-
vestigate how model parameter uncertainty depends on model structure constraints using
different norms of the likelihood function and the model constraints, and study the added
benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results
demonstrate that model structure constraints are necessary to stabilize the MCMC inversion
results of a highly discretized model. These constraints decrease model parameter uncer-
tainty and facilitate model interpretation. A drawback is that these constraints may lead to
posterior distributions that do not fully include the true underlying model, because some of
its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This
problem can be partly mitigated if the plane-wave EM data is augmented with ERT obser-
vations. The hierarchical Bayesian inverse formulation introduced and used herein is able to
successfully recover the probabilistic properties of the measurement data errors and a model
regularization weight. Application of the proposed inversion methodology to field data from an
aquifer demonstrates that the posterior mean model realization is very similar to that derived
from a deterministic inversion with similar model constraints.
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1 I N T RO D U C T I O N

Geophysical measurement methods make it possible to non-
invasively sense the physical properties of the subsurface at different
spatial and temporal resolutions. Inversion methods are required to
interpret these indirect observations and derive a physical descrip-
tion of the subsurface, yet multiple descriptions can be found (also
referred to as models) that fit the observed geophysical data equally
well. This is in large part due to measurement errors, incomplete
data coverage, the underlying physics and/or overparameterization
of the subsurface models. Whereas the probabilistic properties of
observation errors are relatively easy to describe, model structural
errors are difficult to formulate in probabilistic terms. Arbitrary and
subjective regularizations and parameterizations may significantly
decrease model parameter uncertainty but they may also introduce

a ‘bias’, meaning that some features of the true model may not be
resolved.

Bayesian inference can help to explicitly treat input data, param-
eter, and model uncertainty, but successful implementation requires
efficient sampling methods that explore the posterior target distri-
bution. In this probabilistic approach, the inverse problem is stated
as an inference problem where the solution is given by the posterior
probability density function (pdf) of the model parameters. This
distribution quantifies joint and marginal parameter uncertainty.
Unfortunately, in most practical applications, this posterior distri-
bution cannot be derived analytically, and methods are required that
use trial-and-error sampling to approximate the target distribution.
Markov chain Monte Carlo (MCMC) simulation methods are well
suited for this task, but suffer from poor efficiency, particularly when
confronted with significant model nonlinearity, nonuniqueness
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and high-dimensional parameter spaces (Mosegaard & Tarantola
1995).

The basic building block of MCMC sampling is Monte Carlo
(MC) simulation. This approach randomly samples the prior pa-
rameter space, and evaluates the distance of the response of each
candidate model to the respective data. If the parameter space is
low dimensional, MC simulation can provide a reasonable approx-
imation of the posterior distribution pending that the ensemble of
samples is sufficiently large. Yet, for higher dimensional spaces, ex-
haustive random sampling is inefficient, and more intelligent search
methods such as MCMC simulation are required to speed up the ex-
ploration of the target distribution. Monte Carlo methods have been
applied to magnetotelluric (MT) data and other types of frequency-
domain electromagnetic (FDEM) data in a number of studies for
1-D modeling problems (Tarits et al. 1994; Grandis et al. 1999;
Grandis et al. 2002; Hou et al. 2006; Khan et al. 2006; Chen et al.
2007; Guo et al. 2011; Minsley 2011; Buland & Kolbjornsen 2012).
We briefly summarize a few of these studies.

Tarits et al. (1994) used Monte Carlo sampling to estimate the
posterior distribution of the thicknesses and electrical resistivity of
different subsurface layers assuming that the number of layers is
known a priori. Grandis et al. (1999) extended this 1-D approach
by employing MCMC simulation with sampling from a prior distri-
bution that favours smooth variations in the 1-D electrical resistivity
model. Hou et al. (2006) used a quasi-Monte Carlo method (Ueber-
huber 1997, p. 125) for 1-D models of reservoir-fluid saturation and
porosity to jointly invert controlled source electromagnetic (CSEM)
and seismic data. The same types of data were jointly inverted by
Chen et al. (2007) using MCMC simulation to derive 1-D models
of gas saturation.

In a more recent contribution, Guo et al. (2011) compared de-
terministic and Bayesian MT data inversion using 1-D synthetic
and field data. Data errors and regularization weight were treated as
hyperparameters and determined by MCMC simulation (cf. Malin-
verno & Briggs 2004). Results showed that the MT data contained
sufficient information to accurately determine these latent variables.
Minsley (2011) presented a 1-D trans-dimensional MCMC inver-
sion (Malinverno 2000) algorithm for FDEM data, in which the
number of layers was assumed unknown. Their approach favours
model parsimony between models that equally fit the data. This
favouring of simple models is naturally accounted for in the so-
called ‘Ockham factor’, which measures how much of the prior
information is contained in the posterior pdf. With increasing num-
ber of parameters, the probability mass of the prior in the vicinity
of the posterior will typically decrease (and so will the Ockham
factor), while the data fit will typically improve (Malinverno 2002).
Ray & Key (2012) used the same type of method to determine
1-D anisotropic resistivity profiles from marine CSEM data. Most
recently, Buland & Kolbjornsen (2012) jointly inverted synthetic
CSEM and MT data and presented a real-world application for
CSEM data. Khan et al. (2006) used EM data within a MCMC
framework to constrain the composition and thermal state of the
mantle beneath Europe.

The published contributions summarized thus far have demon-
strated the ability of MCMC methods to (1) successfully converge
to the global optimum of the parameter space, (2) treat nonlinear
relationships between model and data and (3) adequately charac-
terize parameter and model uncertainty. Yet, all these studies used
relatively simple 1-D models to minimize the computational costs
of the forward solution, and considered relatively low-dimensional
parameter spaces to facilitate convergence of the MCMC sampler
to the appropriate limiting distribution.

Grandis et al. (2002) presented the first published multidimen-
sional MCMC inversion of MT data using a thin-sheet modelling
code that is CPU-efficient, but only accurate for relatively thin
anomalous bodies. Inversions were presented for a horizontal 2-D
anomaly embedded in a known horizontally layered 1-D model.
Chen et al. (2012) presented a MCMC algorithm to invert 2-D MT
data. They fixed the number of layers in the model, yet allowed
the depths to vary at given offsets. A 2-D resistivity structure was
estimated at a geothermal site using 436 model parameters. This
particular algorithm enables the inversion of 2-D data, but imposes
strict constraints on the model parameterization in that only layered
models with sharp boundaries are allowed.

Other global search methods of stochastic nature, such as sim-
ulated annealing (Kirkpatrick et al. 1984) and genetic algorithms
(Holland 1975), have been used to produce 1-D and 2-D electrical
resistivity models from MT data (Dosso & Oldenburg 1991; Everett
& Schultz 1993; Pérez-Flores & Schultz 2002). These methods fully
account for the nonlinear relation between model and data, but are
only concerned with finding the optimal model, without recourse
to estimating the underlying posterior parameter distribution. Post-
processing of the sampled trajectories can provide some insights
into the remaining parameter uncertainty, but this type of analysis
approach lacks statistical rigor.

More complex and highly parameterized 2-D or 3-D resistiv-
ity models are generally obtained through deterministic inversion
(e.g. deGroot-Hedlin & Constable 1990; Siripunvaraporn & Egbert
2000; Rodi & Mackie 2001; Siripunvaraporn et al. 2005). These
algorithms are much more efficient but provide only a single ‘best’
solution to the inverse problem (e.g. Menke 1989). Approximate
uncertainty estimates can be obtained through linearization in the
vicinity of the final solution (Alumbaugh & Newman 2000). As
an alternative to such approaches, Oldenburg & Li (1999) derived
a set of different deterministic models using the same data set by
running repeated deterministic inversions with different regulariza-
tion constraints. Features that appear in all models are interpreted as
being well resolved by the data. Jackson (1976) and Meju & Hutton
(1992) constructed extremal models that fit the data up to a given
data misfit threshold with a most-squares inversion. This approach
derives the extremal deviations of each model parameter from a
best-fitting model. Kalscheuer & Pedersen (2007) used truncated
singular value decomposition (TSVD) to estimate the model pa-
rameter errors and resolution of models from radio magnetotelluric
(RMT) data. Finally, Kalscheuer et al. (2010) used the same ap-
proach to compare the errors and resolution properties of the RMT
data against those of a joint inversion with electrical resistivity to-
mography data (ERT) and ERT data alone. The aforementioned
methods partly account for model nonlinearity but violate formal
Bayesian principles, first, because the ‘best’ model is found by min-
imizing an objective function rather than analyzing the variables’
marginal pdfs, and secondly because the estimated uncertainties are
dependent on this best model, which in turn depends on the initial
model used to find it (e.g. Chen et al. 2008). This poses questions re-
garding the statistical validity of the estimated model and parameter
uncertainty.

The purpose of the present paper is to investigate MCMC-derived
parameter uncertainty and bias of a finely parameterized 2-D sub-
surface system for an increasing level of model constraints. In par-
ticular, we study how the posterior uncertainty changes when RMT
data is inverted using (1) no constraints on the model structure, (2)
smoothness constraints with different model norms and (3) joint in-
version with ERT data. We also investigate the ability of the MCMC
algorithm to retrieve the ‘true’ measurement data errors and the
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regularization weight that provides appropriate weights to the model
constraints.

The remainder of the paper is organized as follows: Section 2
presents the theoretical background of the proposed inversion ap-
proach. This is followed in Section 3 by the results of a synthetic
model using different levels of model constraints and in Section 4
for a real world application using experimental data from an aquifer
in Sweden. Section 5 discusses the implications of our results and
highlights potential further developments. Finally, Section 6 con-
cludes this paper with a summary of the presented work.

2 M E T H O D

2.1 Bayesian inversion

Let the physical system under investigation be described by a vector
of M model parameters, m = (m1, m2, . . . , mM) and a set of N
observations, d = (d1, d2, . . . , dN) which are theoretically related
to the model via a set of equations,

d = g(m) + e, (1)

where e is a vector of dimension N, which contains measurement
data errors and any discrepancies caused by the model parameteri-
zation, deficiencies in the forward function g(m), etc. The posterior
pdf p(m|d) of the model parameters, conditional on the data, can be
obtained by applying Bayes theorem (Tarantola & Valette 1982):

p( m| d) = p(m)p( d| m)

p(d)
, (2)

where p(d|m) is the pdf of d conditional on m, also called the
likelihood function L(m|d), p(m) is the prior pdf and p(d) signifies
the evidence. The evidence is a normalizing constant that is required
for Bayesian model selection and averaging (e.g. Malinverno 2002),
but because our interests concern a fixed model parameterization,
p(d) can be removed without harm from eq. (2) leaving us with the
following proportionality equality

p(m|d) ∝ p(m)L( m| d). (3)

The prior probability of the model vector, p(m), represents the
information known about the subsurface before collecting the actual
data. It can be based on other types of geophysical measurements,
geological information about the model structure, expected type of
rocks and values of model parameters, etc. In the absence of detailed
prior information about the subsurface properties, we assume a
Jeffreys prior, that is, that the logarithm of each respective property
is uniformly distributed (Jeffreys 1939; Tarantola 2005).

2.2 The likelihood function

The likelihood function summarizes the distance (typically a norm
of a vector of residuals) between the model simulation and observed
data. The larger the value of the likelihood, the closer the model
response typically is to the experimental data. Under the assumption
that the measurement data errors follow a normal distribution with
zero mean, the likelihood function is given by (Tarantola 2005)

L(m |d ) = 1

(2π )N/2 det (�)1/2

× exp

(
−1

2
(g (m) − d)T �−1 (g (m) − d)

)
, (4)

where � is the data covariance matrix and det(�) denotes the deter-
minant of �. If the errors are uncorrelated, then � is a diagonal ma-

trix and det(�) =
N∏

i=1
σ 2

i . The log-likelihood can then be expressed

as

l(m |d ) = − N

2
log(2π ) − 1

2
log

(
N∏

i=1

σ 2
i

)
− 1

2
φd,2, (5)

where φd,2 = ∑N
i=1 ( gi (m)−di

σi
)2 represents the data misfit and σi de-

notes the standard deviation of the i-th measurement error. This
misfit function is a measure of the distance between the forward
response of the proposed model and the measured data, where the
subscript 2 defines the l2 norm. The first term in eq. (5) is a con-
stant, and the measurement data errors can be assumed unknown
and estimated jointly with the model parameters. This approach is
also referred to as hierarchical Bayes (e.g. Malinverno & Briggs
2004; Guo et al. 2011). As the data misfit becomes smaller, the
log-likelihood increases and the proposed model is more likely to
be a realization from the posterior distribution. Given the assump-
tions of the data errors made thus far, the sum of squared errors
should follow a chi-square distribution with expected value of N.
To avoid data over- or underfitting, it is therefore necessary to have
a posterior misfit pdf with the same expected value.

When the data errors deviate from normality, it is common to
use an exponential distribution, which is consistent with an l1 norm
instead of an l2 norm (Menke 1989). Different publications have
demonstrated that the l1 norm is more robust against outliers, and
often more realistic (e.g. Shearer 1997; Farquharson & Oldenburg
1998). When the measurement errors are independent, the corre-
sponding exponential likelihood function is given by (Tarantola
2005):

L(m |d ) = 1

2N
N∏

i=1
σi

exp

(
−

N∑
i=1

∣∣∣∣ gi (m) − di

σd,i

∣∣∣∣
)

, (6)

which corresponds to the following formulation of the log-
likelihood function

l(m |d ) = −N log(2) − log

(
N∏

i=1

σi

)
− φd,1, (7)

where the data misfit is now defined as φd,1 = ∑N
i=1| gi (m)−di

σi
|. This

distribution has much longer tails (e.g. Menke 1989), thereby re-
ducing the importance of outliers during parameter estimation.

2.3 Constraining the model structure

When strong a priori knowledge of a suitable model structure is
lacking, one may invert for the model pdf by only providing each
model parameter’s likely range of variation as a priori information.
An alternative is to also constrain the model structure to favour
smooth spatial transitions. This is a common strategy in deter-
ministic inversion (e.g. Constable et al. 1987; deGroot-Hedlin &
Constable 1990), where these constraints serve as a regularization
term that decreases the ill-posedness of the inverse problem. In the
Bayesian framework, the constraints can be included in the prior
pdf (e.g. Besag et al. 1995; Chen et al. 2012).

To favour models with smoothly varying resistivity structures,
we impose independent normal distributions to the horizontal and
vertical model gradients. This results in the following constraint
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prior pdf (see Appendix A)

cm,2(m) = 1(
2πα2

y

)My

1(
2πα2

z

)Mz

× exp

[
−1

2

(
1

α2
y

mTDT
y Dym + 1

α2
z

mTDT
z Dzm

)]
, (8)

where Dy and Dz signify the difference operators in the horizontal
and vertical directions with rank My and Mz , respectively, (My + 1)
and (Mz + 1) denote the number of horizontal and vertical grid
cells, respectively, and αy and αz are the standard deviations of the
model gradients in each spatial direction. If their expected values
are similar for both directions, the constraint function becomes

log(cm,2(m)) = −(My + Mz) log(2πλ2) − 1

2
φm,2, (9)

where φm,2 = 1
λ2 (mTDT

y Dym + mTDT
z Dzm) and λ = αz = αy is a

hyperparameter to be determined using MCMC simulation. This
latter variable bears much resemblance with model regularization
weights used in deterministic inversions, and hence will be referred
to as such hereafter. Note also that the right-hand side term in eq. (9)
is essentially the model regularization term proposed by deGroot-
Hedlin & Constable (1990). The smaller the value of λ, the higher
the weight given to the regularization term.

Sharper spatial model transitions than those obtained by the least-
squares smoothness constraints may be sought. In classical deter-
ministic inversions, sharp transitions are usually imposed by apply-
ing alternative model norms (e.g. Farquharson 2008; Rosas Carbajal
et al. 2012). Similar to how an exponential pdf was used to obtain
more robust data misfit measures, here we apply it to increase the
likelihood of models whose properties change abruptly from one
cell to the next:

cm,1(m) = 1(
2αy

)My

1

(2αz)
Mz

exp

[
−

(∥∥Dym
∥∥

1

αy
+ ‖Dzm‖1

αz

)]
,

(10)

where a l1 norm is used (subscript) for the smoothness constraints. In
the case that αz = αy = λ, the log-distribution of eq. (10) becomes

log(cm,1(m)) = −(My + Mz) log(2λ) − 1

λ

(∥∥Dym
∥∥

1
+ ‖Dzm‖1

)
.

(11)

The l1 norm linearly weights the differences of the properties
of adjacent cells. This is different from an l2 norm that squares
these differences, and hence an l1 norm is less sensitive to sharp
transitions between neighbouring cells.

2.4 Forward computations

To compute the likelihood functions described in the previous sec-
tion, a numerical solver is needed to simulate the geophysical
response of each proposed model. For both geophysical methods
considered herein, the RMT and ERT responses are described by
Maxwell’s equations. In the general case, the model parameters
and electromagnetic field vary dynamically in a 3-D space. The
higher the resolution of the resolved spatial dimension and the
larger the number of model parameters, the more demanding the for-
ward problem. Despite significant advances in computational power,
3-D MCMC inversion remains a daunting computational task. We
therefore focus our attention on a 2-D model of the subsurface and

compute the 2.5D ERT and RMT forward responses using finite-
difference approximation. A detailed description of the forward
solvers can be found in Kalscheuer et al. (2010), and interested
readers are referred to this publication for additional details about
the numerical setup and solution.

2.5 MCMC strategy for high-dimensional problems

For high-dimensional and non-linear inverse problems, it is prac-
tically impossible to analytically derive the posterior distribution.
We therefore resort to MCMC sampling methods that iteratively
search the space of feasible solutions. In short, MCMC simula-
tion proceeds as follows. An initial starting point, mold is drawn
randomly by sampling from the prior distribution. The posterior
density of this point is calculated by evaluating the product of the
likelihood of the corresponding simulation and prior density. A new
(candidate) point, mnew is subsequently created from a proposal dis-
tribution that is centred around the current point. This proposal is
accepted with probability (Mosegaard & Tarantola 1995):

Paccept = min {1, exp [l(mnew |d ) − l(mold |d )]} . (12)

If the proposal is accepted the Markov chain moves to mnew,
otherwise the chain remains at its old location. After many iterations,
the samples that are generated with this approach are distributed
according to the underlying posterior distribution. The efficiency of
sampling is strongly determined by the scale and orientation of the
proposal distribution. If this distribution is incorrectly chosen, then
the acceptance rate of candidate points might be unacceptably low,
resulting in a very poor efficiency. On the contrary, if the proposal
distribution is chosen accurately, the MCMC sampler will rapidly
explore the posterior target distribution.

In this work, we use the MT-DREAM(ZS) algorithm (Laloy &
Vrugt 2012), which was especially designed to efficiently ex-
plore high-dimensional posterior distributions. This is an adaptive
MCMC algorithm (e.g. Roberts & Rosenthal 2007), which runs
multiple chains in parallel and combines multitry sampling (Liu
et al. 2000) with sampling from an archive of past states (Vrugt
et al. 2009a, see also Vrugt et al. 2008) to accelerate convergence
to a limiting distribution. Furthermore, it is fully parallelized and es-
pecially designed to run on a computer cluster. The MT-DREAM(ZS)

algorithm satisfies detailed balance and ergodicity, and is generally
superior to existing MCMC algorithms (Laloy & Vrugt 2012). To
assess convergence, the Gelman–Rubin statistic (Gelman & Rubin
1992) is periodically computed using the last 50 per cent of the
samples in each of the chains. Convergence to a limiting distribu-
tion is declared if the Gelman–Rubin statistic is less than 1.2 for
all parameters. After convergence, we use the last 25 per cent of the
samples in each chain to summarize the posterior distribution.

2.6 Uncertainty estimation with most-squares inversion

Most-squares inversion (Jackson 1976; Meju & Hutton 1992) is a
deterministic inversion approach where extremal models are sought
that fit the data up to a given threshold. First, a best-fitting model
m0 is calculated. Next, a particular cell of the model is chosen and
the most-squares inversion is used to find the extremal values of
this cell that satisfy a data misfit threshold φt

d,2 = φd,2[m0] + �φ.
All model cells are allowed to vary and two different searches are
initiated to derive the smallest and largest acceptable resistivities. If
we choose �φ = 1 it can be shown that this results in extremal val-
ues that deviate one standard deviation from the best-fitting model
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Figure 1. (a) Synthetic test model with the MCMC model discretization highlighted. Letters A, B, C and D indicate cells for which the inversion results are
evaluated against those of deterministic most-squares inversions. Numbered letters V1, V2 and V3 indicate the offsets at which the resistivity marginal posterior
pdfs are presented. (b) Model obtained by inverting RMT data (3 per cent error on the impedance elements) with a smoothness constrained deterministic
inversion. The mesh in (b) corresponds to the model discretization of the deterministic inversions and the forward modelling mesh. The triangles at the top of
the figures indicate the locations of the RMT stations and the ERT electrodes.

(e.g. Kalscheuer et al. 2010). Most-squares inversion has been used
to test the validity of other non-linear yet deterministic variance
estimates, such as inversion schemes based on singular value de-
composition (Kalscheuer & Pedersen 2007). Furthermore, it can
also be applied with regularization constraints using the same model
regularization weight used to derive the best-fitting model and mod-
ifying the threshold misfit to φt

d,2 = φd,2[m0] + (1
/
λ2)φm,2 + �φ.

The mean and uncertainty of the different cells derived from the
most-squares inversion results are compared against their estimates
from MCMC simulation.

3 S Y N T H E T I C E X A M P L E S

To evaluate the impact of the model constraints and data on the
posterior pdf, we consider a synthetic 2-D resistivity model. This
study is similar to the one presented by Kalscheuer et al. (2010).
Two resistors and two conductors with thicknesses of 10 m (Fig. 1a)
are immersed in a homogeneous medium of 100 	m. A conductor
of 10 	m and 50 m length overlays a 1000 	m and 30-m long re-
sistor at symmetric positions, and a resistor of 1000 	m and 50 m
length overlays a 10 	m and 30-m long conductor, respectively.
The transverse electric (TE) and transverse magnetic (TM) mode
responses of this configuration were computed for the 17 differ-
ent stations shown in Fig. 1(a). A total of 8 frequencies, regularly
spaced on a logarithmic scale in the frequency range of 22–226 kHz
were used, which resulted in a total of 544 data points. These syn-
thetic observations were subsequently corrupted with a Gaussian
measurement data error with standard deviation equal to 3 per cent
of the simulated impedances. To explicitly investigate the effect
of the probabilistic properties of the measurement data errors, we
also created a second data set by perturbing the error-free simulated
forward responses with a zero-mean exponential distribution and a
similar mean deviation of 3 per cent of the modelled impedances.
Unless stated differently, we refer to the RMT data as the data set
contaminated with Gaussian noise in the remainder of this paper. To
generate the synthetic ERT data, forward and reverse pole–dipole
configurations were considered with electrodes placed at the po-
sitions of the 17 different RMT stations. Similarly to Kalscheuer
et al. (2010), four expansion factors (1, 2, 4 and 6) and a basic po-
tential electrode distance of 10 m, and level values of n = 1, . . . , 7
for a fixed potential electrode distance were used. This resulted
in a data set consisting of 306 different artificial observations. To
mimic the effect of measurement data errors, the simulated data

were again perturbed with a Gaussian error using a standard devia-
tion of 3 per cent of the simulated apparent resistivities. The model
discretization used in the MCMC inversions is shown in Fig. 1(a).
Each cell has dimensions of 5 × 10 m, but the cells located at the
left, right and bottom edges of the domain extend until ‘infinity’ (i.e.
to accommodate the imposed boundary conditions). This results in
a total of 228 different resistivity values that need to be estimated
from the experimental data.

Fig. 1(b) plots the final model derived from the RMT data us-
ing a classical deterministic inversion with smoothness constraints
(cf. deGroot-Hedlin & Constable 1990). This model was obtained
after three iterations and has a misfit of φd,2 = 533, assuming a
3 per cent error of the impedance values. A homogenous half-space
of 100 	m was used as the starting model. The inversion success-
fully retrieves the two shallow blocks, and indicates the presence of
the deep conductor. However, it shows no evidence of the deep re-
sistor. The resistivity value of the shallow conductor is well defined,
but the magnitude of the resistor is underdetermined.

We now summarize the results of MCMC simulation using the
different penalties of the model structure described previously in
Section 2. Following recommendations made by Laloy & Vrugt
(2012), we use three different chains and simultaneously create and
evaluate five candidate points in each individual chain. To maximize
computational efficiency, we run MT-DREAM(ZS) in parallel using
16 different processors. Fifteen processors are used to simultane-
ously evaluate the different proposals, and achieve a linear speed
up, whereas the remaining processor serves to execute the main al-
gorithmic tasks of MT-DREAM(ZS). We invert for the log-resistivity
values, and use a Jeffreys prior in the range of 100.5 to 103.5 	m. We
also invert for the hyperparameter r, which represents the standard
deviation of the measurement data errors as a percentage of the
measured impedances. We use a Jeffreys prior for r as well, and
define its upper and lower bound as half and double its true value
(i.e. 1.5–6 per cent). Appendix B details the log-likelihood that is
used to estimate r from the RMT data.

In the first MCMC trial, no constraints on the model structure
(see eq. 5) were specified. Convergence of the chains was reached
after about 100 000 computational time units (CTUs, cf. Laloy &
Vrugt 2012). Note that a single update of each of the parallel chains
requires two CTUs, one for the evaluation of the candidate points,
and one for the calculation of the posterior density of the reference
set. To provide insights into the properties of the posterior resistivity
distribution, Fig. 2 displays four randomly chosen posterior models.
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Figure 2. (a)–(d) Posterior MCMC realizations from the inversion of RMT data with no model constraints other than minimal and maximal parameter bounds
of ρ = 100.5 and 103.5 	m, respectively. It is very difficult to identify a clear correlation between these realizations and the true underlying model in Fig. 1(a).

The corresponding data misfit is also listed. The models exhibit an
extreme variability and the only structure that is clearly persistent
in all four realizations is the shallow conductor. Figs 3(a)–(c) depict
ranges of the marginal posterior pdf of the resistivity of three vertical
profiles. As expected, these results illustrate that model variability
increases with depth. The first 20 m appear rather well constrained
by the data, but the uncertainty of the resistivity significantly in-
creases beyond this depth. The data misfit and marginal posterior
pdfs of the impedance error are represented with histograms in
Figs 3(d) and (e), respectively. The marginal distribution of the data
misfit is centred on its a priori expected value of N, a finding that
inspires confidence in the ability of MT-DREAM(ZS) to converge to
the adequate parameter values. In other words, the proposed models
do not systematically over or under fit the calibration data. Note also
that the standard deviation of the relative data error is well resolved
with mean value of r = 0.03 and standard deviation of 0.001 (see
Fig. 3e).

To determine whether model constraints about the considered
subsurface influence the efficiency and robustness of MCMC simu-
lation, a second inversion was performed in which smoothly varying
resistivity structures were favoured by including eq. (9) in the prior
pdf. The prior distribution in this case is then the same Jeffreys
distribution as before with the same parameter ranges, but multi-
plied by the exponential of eq. (9). The regularization weight, λ

was assumed to follow a Jeffreys prior with range of half and two
times the optimal value derived by fitting a normal distribution
(eq. A2) to the true log-resistivity model. For convenience, we fur-
ther assumed a similar value of λ in both the vertical and horizontal
direction.

Numerical results show that convergence was achieved after ap-
proximately 75 000 CTUs. Fig. 4 illustrates that the posterior re-
alizations exhibit far less spatial variability than those previously
derived for the unconstrained case without smoothness constraints,
although the models are visually quite different. This is further con-
firmed by the vertical resistivity profiles depicted in Figs 5(a)–(c).
Model parameter uncertainty has significantly reduced, but with the
side effect that some features of the true model are no longer accu-

rately represented in the posterior pdf. Indeed, the two conductors
and the shallow resistor are clearly detected, but the deep resis-
tor is not adequately resolved. Yet, the MCMC inferred resistivity
increases with depth, which is consistent with the observations.
The marginal distribution of the data misfit presented in Fig. 5(d)
again nicely centres on the true value, and is quite similar to the
unconstrained inversion trial. The same is true for the data error
estimation (Fig. 5f): the true value is obtained and the variability is
similar to that previously observed in Fig. 3(e). The estimated value
of λ is slightly larger than its previous counterpart derived from the
true log-resistivity model. This finding is to be expected and is a
direct consequence of the influence of the data misfit term in the
estimation (i.e. less weight is put on the model constraints).

We now summarize the MCMC results with an l1 measure (see
eq. 11) for the model constraints. For this inversion, we use a
data set contaminated with exponentially distributed errors and log-
likelihood function given by eq. (7). For consistency, we again use
a Jeffreys prior for all regular model parameters (resistivities) and
hyperparameters (regularization weight and impedance error). The
resistivity and impedance error prior bounds remain the same as in
the past examples, but the prior of the regularization weight ranges
from half (0.055) to four (0.44) times the value found by fitting
eq. (11) to the true resistivity model. We purposely increased the
upper bound of λ so that the posterior pdf was unaffected by the a
priori bounds.

About 67 000 CTUs were needed to declare convergence to a
limiting distribution. The posterior realizations presented in Fig. 6
are rather homogeneous, and display even less variability than their
counterparts previously depicted in Fig. 4 using the least-squares
model constraints. The two shallow features are clearly identified,
and a deep conductor can be seen in three of the four figures. The
deep resistor however is not evident in any of the models. This
becomes more evident if we plot the three depth profiles (Figs 7a–
c). The 95 per cent posterior uncertainty ranges are comparable to
those obtained with the inversion using the l2 model constraints.
The data misfit and the impedance errors are very well recovered.
However, the posterior mean of λ is substantially larger than its
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Figure 3. MCMC inversion of RMT data without model constrains. (a)–(c) Marginal posterior pdf of the vertical profiles V1, V2 and V3 corresponding to
the offsets (a) 55 m, (b) 95 m and (c) 135 m. The red line represents the true values, while the solid and dashed blue lines represent the mean and P2.5 and
P97.5 percentiles, respectively. It is seen that below ∼30 m the posterior models span the full prior range of resistivity. Grey colour-coding indicates the full
posterior pdf range. Histograms of the (d) data misfit and (e) the inferred impedance error marginal posterior pdf. The red crosses at the top of the histograms
depict the values corresponding to (d) the data misfit of the true model and (e) the true error standard deviation.

value derived from fitting the true model structure to an exponential
model (0.11).

Finally, we jointly invert the RMT and ERT data using least-
squares smoothness constraints. In this particular case, the log-
likelihood function is given by the sum of those corresponding to
each data set. A derivation of the ERT likelihood is presented in
Appendix C. This inversion includes the ERT data error, which
constitutes a new hyperparameter to be estimated. We use a Jeffreys
prior for this parameter, with bounds given by half and twice its true
value.

Convergence of the chains was achieved after about 60 000 CTUs.
The posterior realizations shown in Fig. 8 clearly resolve the two
conductors and the two resistors. The vertical resistivity profiles
presented in Figs 9a–c confirm that joint inversion improves param-
eter convergence. Yet, the resistor below the conductor (Fig. 9a) is
not particularly well resolved. However, its magnitude is much bet-
ter estimated than in the previous inversions. The model constraints
enforce smooth transitions from the conductor to the resistor and
vice versa, which complicates estimation of the actual magnitudes
in the vicinity of these transitions (e.g. Fig. 9c below the conduc-
tor). The posterior histograms of the RMT (Fig. 9d) and ERT data
(Fig. 9e) misfits are closely centred on their true values, a desirable
finding that indicates that both data types are equally important in

the fitting of the parameters. The marginal posterior distribution of
the regularization weight (Fig. 9f) demonstrates a tendency towards
somewhat larger values than obtained from the RMT data. This
is not surprising, as new data have been added to the likelihood
function. For completeness, Figs 9(g) and (h) plot histograms of
the impedance and apparent resistivity error. The posterior ranges
encompass the synthetic true values, although the most likely (ex-
pected) values are somewhat smaller. This demonstrates that the
measurement errors of both data types can be successfully retrieved
from the joint inversion presented herein.

To provide more insights into the behaviour of the
MT-DREAM(ZS) algorithm, Fig. 10 presents the evolution of the
sampled model structure in one randomly chosen chain as a func-
tion of the number of MCMC realizations. The true value and those
inferred from the different MCMC trials are given by the l2 norm of
the difference operator applied to the model vector in the horizontal
and vertical directions (i.e. the term enclosed in parentheses in eq.
(9)). We restrict our attention to the posterior samples—thus after
burn-in (cf. Laloy & Vrugt 2012) has been achieved.

The MCMC inversion without model constrains (Fig. 10a) con-
verges to a model structure that overestimates the actual variability
observed in the true model. The true model is not contained in the
sampled posterior pdf. When smoothness constraints are explicitly



2-D MCMC inversion of electromagnetic data 1515

Figure 4. (a)–(d) Posterior MCMC realizations obtained by inverting the RMT data with least-squares smoothness constrains. All the four anomalous bodies
are somewhat indicated, even if it is only the upper left conductive body that is well resolved.

Figure 5. MCMC inversion of RMT data with least-squares smoothness constrains. (a)–(c) Marginal posterior pdfs of the vertical profiles V1, V2 and V3
corresponding to the offsets (a) 55 m, (b) 95 m and (c) 135 m. The red line represents the true values, while the solid and dashed blue lines represent the mean
and P2.5 and P97.5 percentiles, respectively. Grey colour-coding indicates the full posterior pdf range. It is clear that the smoothness constraints have largely
decreased model variability. Histograms of the (d) data misfit, (e) regularization weight and (f) impedance error marginal posterior pdf. The red crosses at the
top of the histograms depict (d) and (f) the true values and (e) the value given by fitting eq. (9) to the true log-resistivity model.
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Figure 6. (a)–(d) Posterior MCMC realizations obtained by inverting the RMT data with l1 smoothness constrains. The upper anomalous bodies are resolved,
but not the lower ones.

Figure 7. MCMC inversion of RMT data with l1 smoothness constrains. (a)–(c) Resistivity marginal posterior pdf of the vertical profiles V1, V2 and V3
corresponding to the offsets (a) 55 m, (b) 95 m and (c) 135 m. The red line represents the true values, while the solid and dashed blue lines represent the mean
and P2.5 and P97.5 percentiles, respectively. Grey colour-coding indicates the full posterior pdf range. The parameters’ uncertainties are comparable to those
of the l2 smoothness constrains. Histograms of the (d) data misfit, (e) regularization weight and (f) impedance error marginal posterior pdf. The red crosses at
the top of the histograms of (d) and (f) depict the true values. (e) The value given by fitting eq. (11) to the true log-resistivity model (0.11) is not comprised in
the marginal posterior pdf.

included in the formulation of the log-likelihood function, the pos-
terior models converge much closer to the true model, but with
insufficient structure. This is particularly true if the l1 norm is used.
The average model structure in this case is 24, which is about half

the true value. The correspondence between the true model and pos-
terior realizations improves somewhat if an l2 norm is used. Indeed,
the sampled chain trajectory moves closer to the dashed black line,
but nevertheless the actual model variability is still underestimated.
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Figure 8. (a)–(d) Posterior MCMC realizations obtained by joint inversion of RMT and ERT data with least-squares smoothness constrains. The anomalous
bodies are better defined compared with the inversions of RMT data alone (see Fig. 4).

Fortunately, a joint inversion of RMT and ERT data provides pos-
terior realizations with properties similar to that of the true model,
especially if an l2 norm is used for the model constraints.

Table 1 lists the centre values and standard deviations estimated
with the MCMC and most-squares inversions for the cells shown
in Fig. 1(a). To enable a comparison between both methods, we
calculate two different standard deviations from the posterior mean
MCMC model: one for resistivity decrease and one for resistivity
increase. We performed three most-squares inversions: one for the
RMT data with smoothness constraints, one for the ERT data with
smoothness constraints, and one for joint inversion with smoothness
constraints. To find the best-fitting models, we locate that sample of
the MCMC chains with largest value of the sum of eqs (5) and (9).
This model was then used to initiate a deterministic inversion with
additional Marquardt–Levenberg damping (cf. Kalscheuer et al.
2010) to attempt to find a model with an even larger summed log-
likelihood. This model was then used by the most-squares inversion
to find the extremal values of each cell. In both inversion steps,
we used the mean model regularization weight determined by the
MCMC inversions. As seen in Fig. 1(b), the model discretization is
finer in the horizontal direction for the most-squares inversion. At
each iteration we therefore averaged the two resistivities involved
in each particular cell to force a single resistivity value and make it
comparable to the MCMC inversion cell.

The standard deviations summarized in Table 1 show that the two
types of inversions provide similar uncertainty estimates. However,
the standard deviations derived with the most-squares inversion are
consistently larger than those derived with MCMC simulation. For
example, in the single inversions of the RMT data, cell B has stan-
dard deviations of 0.18/0.19 for the MCMC inversion, and 0.24/0.24
for the most-squares inversion, respectively. These differences ap-
pear larger for the joint inversion. For instance, cell A has standard
deviations of 0.08/0.08 with the MCMC inversion, but with the
most-squares inversion these values are doubled. Furthermore, we
see that the mean value estimates are quite different for the two
types of inversion. For example, the mean value of cell A for the

ERT data and MCMC inversion is 1.0, whereas its counterpart de-
rived from the most-squares inversion is 1.16. Thus, although the
width of the uncertainty ranges can be quite similar, the mean value
might induce shifts in the posterior distribution.

4 F I E L D DATA E X A M P L E : S K E D I G A
A R E A ( S W E D E N )

We now apply our methodology to real-world RMT data. A ten-
sor RMT survey was conducted in Skediga (Sweden) to deter-
mine the geometry of a glaciofluvial aquifer system composed of a
sand/gravel formation overlying crystalline basement. The aquifer
system is overlain by a formation dominated by clay lenses. We
use the same RMT data as Kalscheuer & Pedersen (2007), that is,
528 data points consisting of apparent resistivities and phases of
the determinant mode (Pedersen & Engels 2005), acquired at 22
different stations using 12 frequencies in the range of 4–181 kHz.
An estimate of the data error was provided by the impedance es-
timation from the electric and magnetic field measurements and
an error floor of 1.5 per cent was used as in the previous stud-
ies (Pedersen et al. 2005; Kalscheuer & Pedersen 2007). The er-
ror floor constitutes a lower bound to the estimated data errors
such that no single data has an error estimate smaller than this
value.

Fig. 11(a) shows the model obtained by Kalscheuer & Peder-
sen (2007) derived from a deterministic inversion with smoothness
constraints using a half-space of 1000 	m as the initial model.
The model was obtained after four iterations and has a data misfit
of φd,2 = 1141. Pedersen et al. (2005) interpret the 30 	m isoline
(i.e. the transition between the two greenish colours) as the lower
bound of the clay lenses. According to boreholes in the vicinity
of the profiles, the transition from the aquifer to the underlying
crystalline basement occurs at about 30 m depth (Kalscheuer &
Pedersen 2007).

We ran the MT-DREAM(ZS) algorithm on a 2-D domain consist-
ing of 288 model parameters using the l2 smoothness constraints.
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Figure 9. MCMC joint inversion of RMT and ERT data with least-squares smoothness constrains. (a)–(c) Resistivity marginal posterior pdfs of the vertical
profiles V1, V2 and V3 corresponding to the offsets (a) 55 m, (b) 95 m and (c) 135 m. The red line represents the true values, while the solid and dashed blue
lines represent the mean and P2.5 and P97.5 percentiles, respectively. Grey colour-coding indicates the full posterior pdf range. The range of the posterior pdf
is rather small, but covers essentially the true model. Histograms of the (d) RMT data misfit, (e) ERT data misfit, (f) regularization weight, (g) RMT impedance
error and (h) ERT apparent resistivity error marginal posterior pdfs. The red crosses at the top of the histograms depict (d), (e), (g) and (h) the true values and
(f) the value given by fitting eq. (9) to the true log-resistivity model.

Each resistivity cell is of size 5 × 10 m, except for the edges that
extend to the end of the forward mesh (1300 m in each direction).
We used Jeffreys priors in the range of 100.5 to 103.5 of ρ(	m).
In addition, we estimated two hyperparameters: the regularization
weight λ and a data error correction factor. The latter represents a
scaling factor of the errors and error floor. We assume a Jeffreys
prior for this scaling factor, with ranges between the logarithms of
0.5 and 4.

Convergence was reached after approximately 150 000 CTUs.
Figs 11(b) and (c) show two realizations from the MCMC derived
posterior pdf. The two models clearly indicate two shallow conduc-
tors at profile offsets of 40 m and between 170 and 220 m. A deep
resistor is also found that is deeper on the left side of the profile
than in the middle and that disappears on the right side. A mean
posterior model was constructed by taking the mean value of the
different realizations of the posterior pdf (Fig. 11d). This model
is largely comparable to the model obtained by the deterministic
inversion; the clay—sand/gravel transitions are located at similar
depths nearly everywhere along the profile and the overall base-

ment geometry of the two different models corresponds well (this
was also noted with the ensemble mean of the synthetic example
using least squares smoothness constraints compared to Fig. 1(b),
not shown here). Some deviations are possibly due to difference in
model discretization, but may more probably be due to differences
in data fitting, as discussed below.

We present four vertical profiles of the posterior pdf in Figs 12(a)–
(d), at offsets (a) y = 50 m, (b) y = 100 m, (c) y = 150 m and (d)
y = 200 m. As expected, the profiles show an increase in model
variability below the conductive clay lenses. Furthermore, we see
how the clay—sand/gravel transitions are much better determined
at places where the aquifer stretches up to the surface (Figs 12b
and c). In these regions there is no overlapping between the two
resistivity intervals, whereas in the other two profiles the transi-
tion happens more smoothly, probably due to the model constraints.
Also the transition to a fixed basement resistivity is smooth because
of the model regularization. Magnitudes are expected to be above
ρ = c000 	m for the crystalline basement (Pedersen et al. 2005).
These values are reached at all profiles except in Fig. 12(d), probably
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Figure 10. Posterior least-squares model structure metric as a function of realization number for the different types of MCMC inversions considered. (a)
MCMC inversion of RMT data without model constrains. This inversion needs many more realizations to converge than all other cases and has a much larger
average model structure. (b) MCMC inversions with model constraints. The dashed black line represents the true value. The joint inversion of RMT and ERT
is the only case that proposes models with the same amount of model structure as the true model.

Table 1. Mean values and standard deviations of the cells highlighted in Fig. 1(a) for individual and joint MCMC and most-squares (MS) inversions with
different types of model constraints. The centre values are the mean values for the MCMC inversions and the parameter derived from the best-fitting MCMC
model for the most-squares inversions (cf. Section 3 for details). The standard deviations (SD) are given in logarithmic units that are calculated individually for
each side of the centre value (–/+).

Type of inversion Model constraint Cell A Cell B Cell C Cell D
Centre SD (–/+) Centre SD (–/+) Centre SD (–/+) Centre SD (–/+)

log10 ρ (	m) log10 ρ (	m) log10 ρ (	m) log10 ρ (	m)

Individual RMT MCMC l2- difference 0.97 0.12/0.11 2.04 0.18/0.19 2.36 0.11/0.15 1.36 0.21/0.21
Individual RMT MS l2- difference 0.98 0.15/0.12 1.90 0.24/0.24 2.36 0.19/0.17 1.09 0.22/0.26
Individual ERT MCMC l2- difference 1.00 0.10/0.09 2.00 0.12/0.10 2.65 0.11/0.11 2.05 0.14/0.14
Individual RMT MS l2- difference 1.16 0.17/0.17 1.63 0.23/0.24 2.64 0.18/0.18 2.12 0.23/0.23
Joint MCMC l2- difference 0.94 0.08/0.08 2.35 0.18/0.18 2.78 0.17/0.15 1.13 0.23/0.25
Joint MS l2- difference 0.99 0.15/0.16 2.18 0.25/0.25 3.11 0.20/0.18 1.05 0.22/0.26
True values – 1.0 N/A 3.0 N/A 3.0 N/A 1.0 N/A

due to the important clay thickness in the shallow part of the model.
Figs 12(e) and (f) show marginal distributions of the posterior data
misfit and the data error correction factor. These two variables are
related. The mean data misfit is 542 and the number of data is com-
prised within the estimated data misfit uncertainty range. The mean
data error correction factor is 1.84, hence data errors are estimated
to be almost twice those initially assumed for the impedances. The
data misfits presented in Fig. 11 are calculated using data errors
corrected with this value, and they show that the model given by the
deterministic inversion appears to be overfitting the data. This, in
turn, could explain the differences in magnitude observed between
the two models. An inversion of the Skediga data set with the same
priors for the error scaling factor and resistivity values but with no
model constraints converged to a similar marginal posterior pdf of
the impedance errors (not shown). In accordance with the synthetic

example, the posterior pdf of the unconstrained inversion contains
models with unrealistically high spatial variability.

5 D I S C U S S I O N

We have presented the first fully 2-D pixel-based MCMC inversion
of plane-wave EM data. While the presented results indicate that
the inversion can be successfully addressed within a probabilistic
framework, notable features and issues arise that are discussed in
more detail below.

A comparison between the most-squares and MCMC inver-
sions showed that while the former tends to provide slightly larger
uncertainty estimates, the results of the two approaches are compa-
rable. A more substantial difference between the methods relates to
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Figure 11. (a) Deterministic inversion model obtained from RMT data acquired at Skediga, Sweden (modified after Kalscheuer & Pedersen 2007). Numbered
letters V1, V2, V3 and V4 indicate the offsets at which the resistivity marginal posterior pdfs are presented in Fig. 12. (b)–(c) Posterior MCMC realizations
obtained by inversion of the same data with least-squares smoothness constrains. (d) Ensemble posterior mean model from MCMC inversion. The data misfits
are calculated with errors inferred from the mean value of Fig. 12(e). Note the strong similarity between the models in (a) and (d).

the centre values from which the uncertainty estimates are derived.
This difference is mainly caused by the fact that the most-squares
inversion starts from a model that minimizes the combined data and
model misfit function, while the MCMC analysis is based on an
ensemble mean model obtained from a combination of the marginal
estimates of individual variables. The minimization approach used
in the most-squares inversion is not rigorously formal, as the best
model should be the one that best represents the statistics of the
posterior pdf rather than the minimization of the combined data and
model misfit function. Calculating maximal and minimal perturba-

tions of specific parameters from this ‘optimal’ model could be the
reason for the ‘shifted’ and slightly larger uncertainty ranges com-
pared to the MCMC estimates that describe the ensemble statistics
of the posterior pdf.

The type of model parameterization and the number of param-
eters have an important impact on the posterior pdfs. Laloy et al.
(2012) and Linde & Vrugt (2013) used model parameterizations
based on Legendre polynomials and the discrete cosine transform,
respectively, to show how improper model truncations may lead to
biased model estimates. To alleviate this problem, we considered
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Figure 12. MCMC inversion of the Skediga data set with least-squares model constraints. (a)–(d) Resistivity marginal posterior pdf of the vertical profiles V1,
V2, V3 and V4 corresponding to the offsets (a) 50 m, (b) 100 m, (c) 150 m and (d) 200 m of the model shown in Fig. 11(d). The solid and dashed blue lines
represent the mean and P2.5 and P97.5 percentiles, respectively. The red line represents the values obtained with the deterministic inversion (see Fig. 11a).
Grey colour-coding indicates the full posterior pdf range. (e)–(f) Histograms of the (e) data misfit and (f) impedance error scaling factor marginal posterior
pdfs. The red cross at the top of (e) depicts the number of data.

a finely discretized model. However, the unconstrained inversions
converge to models that exhibit much more structure than the true
model (see Fig. 10a), which is in agreement with Linde & Vrugt
(2013). When running inversions with coarser grids (i.e. 10 × 10 m
cells, not shown herein), the proposed models and the true model
are in much better agreement and the uncertainty ranges of the
parameters were strongly reduced. This highlights the fundamen-
tal trade-off between model resolution and variability: allowing a
higher spatial resolution by using smaller model cells implies larger
resistivity ranges for each pixel.

To obtain meaningful results for fine model discretizations, it ap-
pears fundamental to add additional constraints regarding the model
structure. As noted by Grandis et al. (1999) for the 1-D MT problem,
the use of least-squares smoothness constraints reduced the pres-
ence of unrealistic oscillations in the models and led to smaller and
more realistic estimates of parameter uncertainty. Unfortunately,
the models provided by the constrained inversions did not contain
all the features of the true model. In regions where the data are not
sensitive enough, the model constraints strongly affect the resulting
parameter values and result in biased estimates.

The problem of biased estimates was partly mitigated through
joint inversion of the plane-wave EM data with ERT. The inversion
of the ERT data alone with l2 smoothness constraints (not shown)

did recover the deep resistor albeit with a smaller magnitude than
the true value, but not the deep conductor that was resolved by the
RMT data. As seen in Fig. 10, when inverting the ERT data and
plane-wave EM data separately, constraining the model structure
led to oversimplified models, whereas the joint inversion led to
the correct amount of model structure for this specific application.
The models obtained from the plane-wave EM data could clearly
be improved by adding lower frequencies, while a larger electrode
spread would improve the ERT models. However, our intention was
not to determine an optimal experimental design, but to evaluate
the implications of the different constraints applied to the inferred
subsurface models. In this sense, we see how the combination of
two complimentary methods helps to better estimate the resistivity
models in terms of structure and magnitude, and effectively reduces
the weight given to the model constraints.

Other strategies can also be applied to tackle the aforementioned
issues. The incorporation of a pre-supposed geostatistical model
or summary statistics derived from training images can easily be
incorporated in the Bayesian framework (e.g. Cordua et al. 2012).
Clearly, the resulting models would be much closer to the true model
if the true model structure was known and we penalized deviations
from this value in eqs (9) and (11), rather than penalizing deviations
from zero variability. Reliable information of this kind is often not
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available and strong assumptions about the model structure will to a
certain degree promulgate biased model estimates. Nevertheless, it
might be favourable to test the resulting models under such restric-
tive assumptions, rather than to obtain models that are too variable
to be meaningful.

Alternatively, one may consider a set of possible model param-
eterizations, model discretizations and/or model constraints that
may seem equally suitable for a specific problem. In the spirit of
Oldenburg & Li (1999), one may test the different hypotheses of the
model structure and compare the results. More quantitatively, a 2-D
trans-dimensional inversion algorithm could be implemented. The
trans-dimenional algorithm would, for a chosen parameterization,
estimate the appropriate degree of discretization, while inherently
favouring models with fewer parameters (see Bodin & Sambridge
2009 for a 2-D application to seismic tomography). The implemen-
tation of such a method is beyond the scope of the present work.
Possibly more interesting than determining appropriate model dis-
cretizations would be to determine preferred model parameteriza-
tions. In fact, a formal theory based on Bayes factors (e.g. Kass
& Raftery 1995) could be used to evaluate evidence in favour of a
null hypothesis (see Khan & Mosegaard 2002 and Khan et al. 2004
for applications of Bayes factors to study the physical properties
of the moon). Bayes factors could be used within a model selec-
tion strategy to evaluate the a posteriori probability of different
model parameterizations and discretizations. We leave such a study
of Bayesian hypothesis testing for future work.

6 C O N C LU S I O N S

We presented the first pixel-based and fully 2-D MCMC inversion of
plane-wave EM and ERT data. The results of the inversion include
the posterior mean and uncertainty of the model parameter esti-
mates. Numerical findings demonstrated a necessity to add explicit
constraints on the model structure to obtain meaningful results.
These constraints were designed such that they favour model par-
simony, and consequently the posterior ensemble mean was shifted
closer to that of its true value. However, model interpretation should
be done with some care, acknowledging that models may be biased
in regions with insufficient data sensitivity, and uncertainty esti-
mates are determined by the imposed model constraints.

The MCMC inversion not only appropriately converged to the
posterior mean model, the posterior realizations adequately esti-
mated the actual data errors, including a regularization weight that
favours the appropriate model structure. Joint inversion of the ERT
and plane-wave EM data provided the best model estimates. The
inversion methodology was applied to real RMT aquifer data from
Sweden. The MCMC derived posterior mean model was very sim-
ilar to that of the model geometry obtained from a deterministic
inversion. On top of this, the MT-DREAM(ZS) algorithm also re-
trieved a correction of the impedance errors, which suggested that
the deterministic inversion might have overfitted the experimental
data. The differences among the resistivity magnitudes of the two
different models may hence be explained by a difference in data
fitting. Future work should involve diagnostic criteria and method-
ologies that help favour model selection. In this regard, Bayes factors
may be of particular interest.
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A P P E N D I X A : 2 - D S M O O T H N E S S
C O N S T R A I N T S

To obtain smoothly varying model property variations in the
2-D models, we impose zero-mean normal prior distributions with
respect to the vertical and horizontal log-resistivity gradients:⎧⎪⎨
⎪⎩

cy
m,2(m) = 1

(2πα2
y)My exp

[
− 1

2α2
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y Dym
)]

cz
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z

(
mTDT

z Dzm
)] , (A1)

where Dy and Dz are the difference operators in the horizontal and
vertical directions with rank My and Mz , respectively, and αy and αz

are the standard deviations of the log-resistivity gradients in each
direction. Assuming that the two pdfs are uncorrelated, the joint
pdf of the horizontal and vertical resistivity gradients is given by
multiplication of each pdf (eq. 8). When the standard deviations are
the same, eq. (8) can be expressed as
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where λ = αz = αy . Taking the logarithm of eq. (A2) results in
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or, equivalently
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A P P E N D I X B : L O G - L I K E L I H O O D
F U N C T I O N F O R P L A N E - WAV E
E M DATA

Equation (5) represents the log-likelihood function of a set of
normally distributed errors that have zero mean and are uncor-
related. These errors may, however, have different standard devia-
tions. Indeed, RMT data often comprise apparent resistivities and
phases. Let the first N

/
2 data points be the apparent resistivi-

ties di = ρ
app
i , i = 1, . . . , N/2, and the last N

/
2 data points the

phases di = φi , i = N/2 + 1, . . . , N . The data standard deviations
can then be expressed as (Fischer & LeQuang 1981)

σi =
{

rdi , if i = 1, . . . , N/2

r
2 , if i = N/2 + 1, . . . , N

, (B1)

where r is the standard deviation of the relative error of the apparent
resistivities, which is assumed to be the same for all measurements.
Using eq. (B1), the middle term in eq. (5) can be expressed as
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which leads to
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Expanding the logarithm and replacing this expression in eq. (5)
gives
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which is equivalent to
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A P P E N D I X C : L O G - L I K E L I H O O D
F U N C T I O N S F O R E RT DATA

In the case of ERT, we consider a single type of data. The apparent
resistivities are assumed to comprise relative errors. Therefore, we
follow the same derivation as in Appendix B, but with standard
deviations given by σi = rdi ,i = 1, . . . , N . Then, the middle term
of eq. (5) can be expressed as
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which leads to a log-likelihood of the form
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