389 research outputs found

    The Many Faces of Information Disclosure

    Get PDF
    We examine the effects of a variety of mandatory information disclosure regimes on the expected revenues of issuing firms and on their endogenously-arising incentives for financial innovation. The main question we ask is: what kind of information and how much of it should firms be asked to disclose? The analysis uses a noisy rational expectations model in which some investors can choose to become informed at their own expense. Information disclosure then potentially affects the information-advantage of these investors vis-a-vis uninformed (liquidity) investors in the market, and hence their information-acquisition incentives. Thus, asking managers to disclose more information is not obviously desirable for the shareholders of issuing firms. Our main results are as follows. Mandating the disclosure of information about total firm value that would otherwise not have become available to any investor is always good for issuing firms. It increases their expected revenues and also strengthens financial innovation incentives. Mandating the disclosure of information about total firm value that would have been acquired anyway by informed investors but improves the quality of the information that uninformed investors have will benefit firms in emerging capital markets but hurt those in developed capital markets. In developed markets, the attention devoted to disclosure should thus shift from information that concerns total firm value to that which concerns the distribution of this value among claimants. Our conclusion is that disclosure requirements should be more stringent in less-developed capital markets, and that greater stringency in disclosure requirements on securities exchanges leads to a worsening of the borrower pool faced by banks. Our analysis also implies that competition among exchanges or securities regulators will not necessarily lead to a weakening of disclosure requirements.

    Microwave Dielectric Relaxation Spectroscopy of Nano Filler Loaded Epoxy Composite

    Get PDF
    Present work reports the result of spectroscopic dielectric relaxation study of (Bisphenol A-(epichlorhydrin): epoxy) and hardener (N(3-dimethylaminopropyl)-1,3-propylenediamine: hardener) doped with a range of concentrations of inorganic nano-fillers (SiO2, Al2O3, TiO2 and ZnO) and their mixtures. Measurements of complex permittivity of neat epoxy (epoxy + hardener), nano-epoxy composite (nano filler + neat epoxy) and mixed-nano epoxy composites (mixed nano filler + neat epoxy) are carried out using vector network analyzer along with SPEAG dielectric assessment kit over the frequency range of 200 MHz to 20 GHz at a constant temperature of 300.15 K. Obtained results are analyzed in order to attain the structural information and polarization mechanisms exhibited in these composites. Influence of varying concentrations of inorganic nano-fillers on the dielectric behavior of neat epoxy is explicitly conferred. From the obtained dielectric properties; other microwave energy parameters like power reflected (Pr), power transmitted (Pt) and penetration depth (dp) are also determined at a spot frequency of 2.45 GHz and examined to gain additive information in view of their specific industrial and medical applications

    Ventricular beat detection in single channel electrocardiograms

    Get PDF
    BACKGROUND: Detection of QRS complexes and other types of ventricular beats is a basic component of ECG analysis. Many algorithms have been proposed and used because of the waves' shape diversity. Detection in a single channel ECG is important for several applications, such as in defibrillators and specialized monitors. METHODS: The developed heuristic algorithm for ventricular beat detection includes two main criteria. The first of them is based on steep edges and sharp peaks evaluation and classifies normal QRS complexes in real time. The second criterion identifies ectopic beats by occurrence of biphasic wave. It is modified to work with a delay of one RR interval in case of long RR intervals. Other algorithm branches classify already detected QRS complexes as ectopic beats if a set of wave parameters is encountered or the ratio of latest two RR intervals RR(i-1)/RR(i )is less than 1:2.5. RESULTS: The algorithm was tested with the AHA and MIT-BIH databases. A sensitivity of 99.04% and a specificity of 99.62% were obtained in detection of 542014 beats. CONCLUSION: The algorithm copes successfully with different complicated cases of single channel ventricular beat detection. It is aimed to simulate to some extent the experience of the cardiologist, rather than to rely on mathematical approaches adopted from the theory of signal analysis. The algorithm is open to improvement, especially in the part concerning the discrimination between normal QRS complexes and ectopic beats

    P and R Wave Detection in Complete Congenital Atrioventricular Block

    Get PDF
    Complete atrioventricular block (type III AVB) is characterized by an absence of P wave transmission to ventricles. This implies that QRS complexes are generated in an autonomous way and are not coordinated with P waves. This work introduces a new algorithm for the detection of P waves for this type of pathology using non-invasive electrocardiographic surface leads. The proposed algorithm is divided into three stages. In the first stage, the R waves located by a QRS detector are used to generate the RR series and time references for the other stages of the algorithm. In the second stage, the ventricular activity (QT segment) is removed by using an adaptive filter that obtains an averaged pattern of the QT segment. In the third stage, a new P wave detector is applied to the residual signal obtained after QT cancellation in order to detect P wave locations and get the PP time series. Eight Holter records from patients with congenital type III AVB were used to verify the proposed algorithm. Although further improvements should be made to improve the algorithm¿s performance, the results obtained show high average values of sensitivity (90.52 %) and positive prediction (90.98%)

    Guiding Brain Tumor Resection Using Surface-Enhanced Raman Scattering Nanoparticles and a Hand-Held Raman Scanner

    Get PDF
    The current difficulty in visualizing the true extent of malignant brain tumors during surgical resection represents one of the major reasons for the poor prognosis of brain tumor patients. Here, we evaluated the ability of a hand-held Raman scanner, guided by surface-enhanced Raman scattering (SERS) nanoparticles, to identify the microscopic tumor extent in a genetically engineered RCAS/tv-a glioblastoma mouse model. In a simulated intraoperative scenario, we tested both a static Raman imaging device and a mobile, hand-held Raman scanner. We show that SERS image-guided resection is more accurate than resection using white light visualization alone. Both methods complemented each other, and correlation with histology showed that SERS nanoparticles accurately outlined the extent of the tumors. Importantly, the hand-held Raman probe not only allowed near real-time scanning, but also detected additional microscopic foci of cancer in the resection bed that were not seen on static SERS images and would otherwise have been missed. This technology has a strong potential for clinical translation because it uses inert gold-silica SERS nanoparticles and a hand-held Raman scanner that can guide brain tumor resection in the operating room

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    A brain-computer interface with vibrotactile biofeedback for haptic information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that Brain-Computer Interfaces (BCI) may one day be suitable for controlling a neuroprosthesis. For closed-loop operation of BCI, a tactile feedback channel that is compatible with neuroprosthetic applications is desired. Operation of an EEG-based BCI using only <it>vibrotactile feedback</it>, a commonly used method to convey haptic senses of contact and pressure, is demonstrated with a high level of accuracy.</p> <p>Methods</p> <p>A Mu-rhythm based BCI using a motor imagery paradigm was used to control the position of a virtual cursor. The cursor position was shown visually as well as transmitted haptically by modulating the intensity of a vibrotactile stimulus to the upper limb. A total of six subjects operated the BCI in a two-stage targeting task, receiving only vibrotactile biofeedback of performance. The location of the vibration was also systematically varied between the left and right arms to investigate location-dependent effects on performance.</p> <p>Results and Conclusion</p> <p>Subjects are able to control the BCI using only vibrotactile feedback with an average accuracy of 56% and as high as 72%. These accuracies are significantly higher than the 15% predicted by random chance if the subject had no voluntary control of their Mu-rhythm. The results of this study demonstrate that vibrotactile feedback is an effective biofeedback modality to operate a BCI using motor imagery. In addition, the study shows that placement of the vibrotactile stimulation on the biceps ipsilateral or contralateral to the motor imagery introduces a significant bias in the BCI accuracy. This bias is consistent with a drop in performance generated by stimulation of the contralateral limb. Users demonstrated the capability to overcome this bias with training.</p

    Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators

    Get PDF
    Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survivalof out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrilla-tors (AED). AED algorithms for VF-detection are customarily assessed using Holter record-ings from public electrocardiogram (ECG) databases, which may be different from the ECGseen during OHCA events. This study evaluates VF-detection using data from both OHCApatients and public Holter recordings. ECG-segments of 4-s and 8-s duration were ana-lyzed. For each segment 30 features were computed and fed to state of the art machinelearning (ML) algorithms. ML-algorithms with built-in feature selection capabilities wereused to determine the optimal feature subsets for both databases. Patient-wise bootstraptechniques were used to evaluate algorithm performance in terms of sensitivity (Se), speci-ficity (Sp) and balanced error rate (BER). Performance was significantly better for publicdata with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times morefeatures than the data from public databases for an accurate detection (6 vs 3). No signifi-cant differences in performance were found for different segment lengths, the BER differ-ences were below 0.5-points in all cases. Our results show that VF-detection is morechallenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s
    corecore