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Abstract

Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such
as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that
can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat
cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG
signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an
implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1)
robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector.
Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals,
within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the
context of a comparison with the most conventional algorithms, followed by future recommendations for developing
reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.
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Introduction

According to the World Health Organization, cardiovascular

diseases (CVDs) are the number one cause of death worldwide [1].

An estimated 17.3 million people died from CVDs in 2008,

representing 30% of all global deaths [1]. Moreover, it is expected

that the number of mortalities due to CVDs, mainly from heart

disease and stroke, will reach 23.3 million by 2030 and are

projected to remain the single leading cause of death for several

decades [2].

In 2010, the global direct and indirect cost of CVD was

approximately $863 billion and is estimated to rise by 22% to

$1,044 billion by 2030. Overall, the cost for CVD alone is

projected to be as high as $20 trillion over the next 20 year period

[3].

As a consequence of direct and indirect costs of CVD, medical

researchers have placed significant importance on cardiac health

research. This has led to a strong focus on technological advances

with respect to cardiac function assessment. One such research

pathway is the improvement of conventional cardiovascular-

diagnosis technologies used in hospitals/clinics.

The most common clinical cardiac test is electrocardiogram

(ECG) analysis. It represents a useful screening tool for a variety of

cardiac abnormalities because it is simple, risk-free, and inexpen-

sive [4]. Advances in technology have led to much change in the

way we collect, store and diagnose ECG signals, especially the use

of mobile phones to implement the clinical routine of ECG

analysis into everyday life [5–9]. Thus, in the near future, it is

expected that Holter devices, which are traditionally used for ECG

analysis in the clinic, will be replaced by portable, battery-operated

devices such as mobile phones in the near future [10]. The reason

is that Holter devices do not detect arrhythmias automatically in

real-time, and do not provide real-time information to the

hospital/doctor/patient when a critical heart condition occurs.

Moreover, the advances in memory/storage technology have

enabled us to store more ECG signals than ever before. Therefore,

researchers are collecting more information in order to understand

the mechanisms underlying CVDs, which is expected to ultimately

lead to effective treatments. The trend towards using mobile smart

phones for ECG assessment further speeds up this process, as the

conveniently collected data can potentially be added to databases

via the existing internet.

The analysis of ECG signals collected by a mobile phone needs

to be fast and feasible in real-time, despite the existing limitations

in terms of phone memory and processor capability. The same

holds for the ability to analyse large ECG recordings collected over

one or more days.

Recently, researchers have put an increased effort into

developing efficient ECG analysis algorithms to run within mobile

phones, including algorithms for determining the quality of

collected ECG signals [11]. This increased effort is also evidenced

in the 2011 PhysioNet/Computing in Cardiology Challenge [12],

which has been established to encourage the development of ECG

software that can run on a mobile phone, recording an ECG and

providing useful feedback about its quality.
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PhysioNet provided a large set of ECG records for use in their

Cardiology Challenge, along with an open-source sample appli-

cation for an Android phone (Google Inc., USA), and that can

classify ECGs as acceptable or unacceptable. Therefore, the next

step is to analyse the acceptable ECG signal for diagnosis, without

relying on an expert for interpretation. If this possibility becomes a

reality, it will help developing nations and rural populations, by

benefitting from otherwise inaccessible expertise.

Note that ECG signals contain features that reflect the

underlying operation of the heart. These features represent

electrophysiological events that coincide with the sequence of

depolarisation and repolarisation of the atria and ventricles. The

signal of each heartbeat contains three main events: the P wave,

the QRS complex, and the T wave (as shown in Figure 1). Each

event (wave) has its corresponding peak. The analysis of ECG

signals for monitoring or diagnosis requires the detection of these

events. Once an event has been detected, the corresponding signal

can be extracted and analysed in terms of its amplitude (peak),

morphology, energy and entropy distribution, frequency content,

intervals between events and other more complex parameters. The

automatic detection of the P, QRS and T events is critical for

reliable cardiovascular assessment, such as diagnosing cardiac

arrhythmias [13–17], understanding autonomic regulation of the

cardiovascular system during sleep and hypertension [18,19],

detecting breathing disorders such as obstructive sleep apnea

syndrome [20,21], and monitoring other structural or functional

cardiac disorders. Once the QRS, P and T events are detected

accurately, a more detailed analysis of ECG signals can be

performed.

The detection of QRS complexes has been extensively

investigated over the past two decades. Many attempts have been

made to find a satisfying universal solution for QRS complex

detection. Difficulties arise mainly because of the diversity of the

QRS waveforms, abnormalities, low signal-to-noise ratio (SNR)

and as well as artefacts accompanying ECG signals. Conversely, P

and T event detection has not been investigated as much as QRS

detection, and the P and T event detection problem is still far from

being solved [22]. Reliable P and T wave detection is more

difficult than QRS complex detection for several reasons,

including low amplitudes, low SNR, amplitude and morphology

variability, and possible overlapping of the P wave and the T wave.

Any cardiac dysfunction associated with excitation from ectopic

centres in the myocardium may lead to premature complexes

(atrial or ventricular), which change the morphology of the

waveform and the duration of the RR interval. The occurrence of

multiple premature complexes is considered clinically important,

as it indicates disorders in the depolarisation process preceding the

critical cardiac arrhythmia. For all the above-mentioned reasons,

the accurate detection of QRS complexes is clinically important.

Prior to developing a fast-robust QRS detector that suits battery-

driven applications and continuous 24/7 ECG monitoring, it is

Figure 1. Main Events in ECG signals. A typical ECG trace of the cardiac cycle (heartbeat) consists of a P wave, a QRS complex, and a T wave.
doi:10.1371/journal.pone.0084018.g001
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necessary to evaluate the performance of the current algorithms

against the following three assessment criteria:

1. Robustness to noise: there are several sources of noise (e.g.

power line interference, muscle noise and motion artefacts).

Therefore, the developed algorithms should be robust to these

noise sources.

2. Parameter choice: The choice of parameters must lead to

accurate detection. Parameters must not have to be manually

adjusted for different recordings.

3. Numerical efficiency: The developed algorithm may have a

large number of iterations, parameters to adjust, features

extracted, or classification steps. It is desirable to provide

numerically efficient (simple, fast, and fewer calculations)

algorithms. Of course, computers have become very fast, and

therefore numerical efficiency is less important than it used to

be. However, if a simple and fast algorithm can achieve good

results, there is no need for more complex algorithms. In

particular, when the algorithm is used online (in a slightly

modified form from the offline version) in a mobile phone

embedded system, numerical efficiency is still relevant.

In the remainder of this review article, these proposed

assessment criteria will be used to evaluate several well-known

QRS algorithms in two important stages: QRS enhancement and

QRS detection. The QRS enhancement stage is used to enlarge

the QRS complex relative to the other ECG features (P, T, and

noise). This stage is occasionally referred to as pre-processing or

feature extraction. The QRS detection stage is used to demarcate

the QRS complex by providing the onset and offset points of the

QRS complex, and especially the location of the prominent R

peak. The remainder of this paper is structured as follows: the next

section delineates several types of QRS enhancements techniques,

whilst Section 3 compares different QRS detection methods.

Finally a discussion and concluding remarks are presented in

Section 4.

In describing the algorithms for QRS enhancement and

detection in this article, note that X ½n� refers to the raw ECG

signal collected from any ECG monitoring system, including

battery-operated devices; while Y ½n� refers to the filtered X ½n�
signal.

QRS Enhancement

This section presents several signal processing techniques [23–

26] that have been used to emphasise the QRS segment in time,

frequency and time-frequency series, as shown in Table 1. Figure 2

demonstrates the importance of the QRS enhancement stage as a

prerequisite for detecting the QRS complex.

Amplitude
This algorithm is considered the oldest for detecting R peaks in

ECG signals; however, for the last 30 years it is still useful and in

common use. Recently, Sufi et al. [63] used the algorithm for

detecting heart rate using mobile phone. In older algorithms,

amplitude threshold was not used alone as in the case of Sufi et al.

[63]; it was usually followed by a differentiation step to reduce the

P and T wave influence relative to the R wave. The first derivative

is applied after the amplitude threshold to accentuate the slope of

the QRS complex. The amplitude threshold is calculated as a

fraction of the measured ECG signal

Xth~b maxfX ½n�g, ð1Þ

where b is the percentage of the ECG signal required to be

removed and 1wbw0. Different amplitude thresholds have also

been used. Moriet-Mahoudeaux et al. [23] developed a QRS

detector using Xth~0:3 maxfX ½n�g, which means that X ½n�
values below 30% of the maximum positive signal amplitude is

truncated from the signal, while Fraden and Neuman [24] used

Xth~0:4 maxfX ½n�g.

First Derivative Only
In this class of QRS enhancement algorithms, a first-order

differentiator is commonly used as a high-pass filter, to enhance

base-line wander and eliminate any undesired high frequency

noise, modify the phase of the ECG signals, and to create zero

crossings in the location of the R peaks. Many first derivative QRS

detection algorithms, introduced in literature [31] calculate the

first derivative of the measured ECG signal according to:

Y ½n�~{2X ½n{2�{X ½n{1�zX ½nz1�z2X ½nz2�: ð2Þ

In contrast, Holsinger [32] used a central finite-difference

approach as:

Y ½n�~X ½nz1�{X ½n{1�, ð3Þ

whilst Okada [30] used a backward difference scheme:

Y ½n�~X ½n�{X ½n{1�: ð4Þ

In these algorithms, a threshold criterion was subsequently

applied to Y ½n� for QRS detection, as summarized in Table 1.

Figure 2. QRS enhancement stage in ECG signals. (a) ECG signal
(top: from record 100 of the MIT-BIH Arrhythmia Database [62]), (b)
amplitude from Eq.1 where b~0:3, (c) first derivative from Eq.4, (d) first
derivative and second derivative from Eq.7, and (e) digital filter from
Ref. [33]. Signal amplitudes have been manipulated to fit all signals in
one figure. Here, a red asterisk represents the annotated R peak.
doi:10.1371/journal.pone.0084018.g002
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Table 1. Comparison of QRS enhancement techniques based on algorithm usage and assessment criteria.

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency

Amplitude Amplitude threshold is applied to
the ECG signal, usually followed by
the first derivative of the ECG
signal [23,24] with a second threshold.

The signal noise is not
removed properly and
is not considered by
the first- derivative-only
class of algorithms for
feature extraction.

The processed segments have equally fixed
lengths [23,24,25,26,27,28].
The value of the b ratio must be adjusted
once before ECG signal analysis takes place.
The threshold remains fixed throughout the
entire ECG signal analysis [23,24,25,26,27,28].
Investigators have introduced several
differentiators without noting the reason
behind their choices [23,24,25,26,27,28].
The length of the processed ECG segment is
determined experimentally [23,24,25,26,27,28].
Friesen et al. [29] used ECG data with a fixed
length of 33 seconds. Their algorithm scored
a high accuracy because they processed
small segments. It is expected that the
performance
of this algorithm on longer ECG trace will be
poor unless the long ECG signals are
separated into smaller segments. In this case,
the performance will likely improve, however
there is a possibility of losing beats at the
beginning and end of each processed ECG
segment

Amplitude and first derivative
class of algorithms is simple and
usually contain a threshold and
first derivative equation for
feature extraction. The
complexity mainly depends on
the threshold used and
segmentation if applied.

First
Derivative
Only

First derivative of ECG signal followed
by threshold [30–32]. (thresholding
will be discussed in Section 3)
Amplitude threshold applied to ECG
signal followed by first derivative of
ECG signal [23,24] (see Section 2.2),
followed by another threshold
First derivative combined with second
derivative of ECG signal [26,27]
(see section 2.3), followed by threshold
First derivative of ECG signal followed
by digital filtering [28] (see section 2.4),
followed by threshold
Digital filter applied to ECG signal
followed by first derivative [33],
followed by threshold
Mathematical morphology filtering
applied to ECG signal followed by first
derivative [34] (see section 2.5),
followed by threshold
First derivative can be used before
applying Hilbert transform [35,36,37]
(see Section 3.1), followed by threshold
First derivative can be used before
applying Wavelet transform [38] (see
section 4.2), followed by threshold

The first derivative does
not remove high-
frequency noise;
however, it helps to
reduce motion
artifacts and base
line drifts [38].

The processed ECG segments have equally
fixed lengths and thresholds [30,31,32].
As mentioned above, researchers have
introduced several differentiators without
mentioning the reason behind their choices
[30,31,32].

First derivative class of
algorithms is simple and contains
one equation for feature
extraction. Most cases used
Okada’s equation [30]. The
complexity of this class will
increase if segmentation is
applied. The order of complexity
depends on the number of
processed segments for each
record.

First and
Second
derivative

First derivative combined with second
derivative of ECG signal [26,27],
followed by threshold.
Second derivative can be used before
applying Hilbert transform [35,37] (see
Section 3.1), followed by threshold.

The signal noise is not
removed properly and
is not considered by
the first- derivative-only
class of algorithms for
feature extraction.

The processed segments have equal and
fixed lengths [23–28].
The parameters used are fixed.
The choice of the first and second derivative
equations is experimentally determined
[26,27]. Moreover, authors do not justify their
combination of first and second derivatives.
As mentioned above, investigators have
introduced various differentiators without
noting the reason behind their choices
[26,27].

First- and second-derivative
classes of algorithms are simple
and contain only up to four
equations for feature extraction.
The complexity of this class
derives from the number of
equations used and
segmentation, if applied.

Digital Filter First derivative of ECG signal followed
by digital filters followed by threshold
[28].
Bandpass filter applied to ECG signal
followed by first derivative, followed
by threshold [33].
Bandpass filter applied before Hilbert
transform, followed by threshold [39].
Bandpass filter can be followed by first
derivative before applying Wavelet
transform, followed by threshold [38].
Bandpass filter applied to ECG signal
followed by matching filter (see Section
4.3), followed by threshold [40].

The digital filter can
increase the SNR ratio
depending on the
nature of the filter
and its order

The processed segments have equal and
fixed lengths [23–28].
The parameters used are fixed.
The choice of differentiator in the digital
filters functions as a notch filter.
In the digital filter algorithms, the low-pass
filter is usually a symmetrical amplification.
The amplification values are determined
experimentally.
The mathematical operations (e.g. squaring,
difference, multiplication) used are not
justified by the authors.

The digital filters class of
algorithms is simple and contains
up to only four equations for
feature extraction. The
complexity of this class will
increase if segmentation is
applied. The order of complexity
depends on the number of
processed segments for each
record.
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Table 1. Cont.

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency

Mathematical
Morphology

Mathematical morphology filtering
applied to ECG signal, followed by
threshold [41].
Mathematical morphology filtering
applied to ECG signal, followed by first
derivative, followed by threshold [34].

The signal noise is
partially addressed
by the mathematical
morphology class of
algorithms. The use of a
low-pass filter improves
the SNR.

The processed segments have equal and
fixed lengths [23,24,25,26,27,28].
The structuring element is fixed during
the ECG analysis.
The length of the structuring element
used is 3, which remains a fixed value.
The length of the structuring element is
determined experimentally. The length of the
operating structure element must be shorter
than the product of the length of the signal
wave and the sampling frequency [41].
Therefore, the length of the structuring
element can be different to 3.
The authors do not justify the multiplication
operations used [23,24,25,26,27,28].

The mathematical morphology
class of algorithms is simple and
contains at least 15 equations for
feature extraction. The
complexity increases with the
number of processed ECG
segments. The order of
complexity is higher than the
derivative-based algorithms and
digital filter algorithms.

Empirical
Mode
Decomposition
(EMD)

EMD filtering applied to ECG signal
followed by threshold [42].
EMD filtering applied to ECG signal
followed by singularity and threshold
[43],[44].
High-pass filter applied to ECG signal,
followed by EMD filtering, followed by
threshold [44].

The first several IMFs
can filter out the noise
and preserve the QRS
content compared to
the other ECG features
[43].
Therefore the first
several IMFs are mainly
caused by the QRS
complex and improve
the SNR.

The processed segments have equally fixed
lengths [43].
The number of IMFs depends on the length
of the ECG segment. If the segment length
is increased, the number of IMFs will increase.
The length of the ECG segment is not
determined experimentally.
The choice of IMFs is determined by
trial-and-error.

The EMD class of algorithms is
simple and contains at least nine
steps with several equations for
feature extraction. The
complexity increases with the
number of processed ECG
segments. Certainly, the order of
complexity is higher than the
derivative-based algorithms and
digital filter algorithms.

Hilbert
Transform

First derivative can be used before
applying Hilbert transform followed by
threshold [35,36,37].
Bandpass filter applied before Hilbert
transform, followed by threshold [39].
Wavelet transform (WT), see Section 4.2,
applied before Hilbert transform,
followed by threshold [45].

The Hilbert transform
does not improve the
SNR itself. Therefore,
some investigators filter
the signal before
applying the Hilbert
transform. Benitez et al.
[36] used a bandpass
filter 8–20 Hz to remove
muscular noise and
maximise the QRS.

The processed segments have equally fixed
lengths [36,46].
When the FFT approach was implemented
in calculating the Hilbert transform, no
dependence of the envelope on the frame
width was detected for frames comprised of
512–2,048 data points.
The length of the ECG segment is not
determined experimentally.
The choice digital filters and moving average
are determined experimentally.

The Hilbert transform algorithm
contains at least nine steps with
several equations for features
extraction. However, the primary
disadvantage of this method is
the increased computational
burden required for FFT
calculations compared to the
time domain approaches. Hilbert
transform techniques generally
have a large computation
overhead [46]. Moreover, the
complexity increases with the
number of processed ECG
segments.

Filter Banks Filter banks applied to ECG signal
followed by threshold [47,48].
WT (see Section 4.2) applied to ECG
signal, followed by filter banks,
followed by correlation [49].

The filter banks
significantly improve
the SNR for Gaussian
noise compared to the
mean and median
averaging methods [50].
For muscle noise, the
filter banks improve the
SNR more than the
mean and median
averaging methods [50].

The length of the filter, number of
sub-bands, transition-band width and
stop-band attenuation have fixed values [51].
For example, the length of each of the finite
impulse response (FIR) filters used by Afonso
et al. [50] was 32. The input noisy ECG is
decomposed by the analysis filters into eight
uniform sub-band frequencies. The sub-band
signal in the (0–12.5 Hz) range is not
modified. The sub-band signal in the (12.5–
25 Hz) range is attenuated in the period
outside the QRS complex. Any
high-frequency components outside the QRS
complex are modelled as noise. Thus, in the
remaining six sub-bands (25–100 Hz), the
signal is nulled in periods outside the QRS
complex.
The filter bank complexity depends on four
parameters [51]: length of filter, number
of sub- bands, transition-band width and
stop-band attenuation. Theses parameters
are determined experimentally.
The main difficulty is choosing the optimal
bank filters and their optimal combination
in order to emphasise the QRS complexes.

The drawback of using filter
banks is a relatively high
computational cost due to the
involvement of a large amount of
multipliers in the FIR filters [48].

Revisiting QRS Detection Methodologies
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First and Second Derivative
Note that, QRS enhancement algorithms compute the first and

second derivatives of the measured ECG signal independently. A

linear combination of the magnitudes of these derivatives then

used to emphasise the QRS complex area relative to the other

ECG features. In a seminal paper, Balda et al. [26] calculated the

first and second derivatives of the measured ECG signals

according to:

Y0½n�~jX ½nz1�{X ½n{1�j, ð5Þ

Y1½n�~jX ½nz2�{2X ½n�zX ½n{2�j: ð6Þ

They then formed a linear combination of both derivatives as

follows:

Y2½n�~1:3Y0½n�z1:1Y1½n�: ð7Þ

Ahlstrom and Tompkins [27] calculated the rectified first

derivative of the ECG as:

Y0½n�~jX ½nz1�{X ½n{1�j: ð8Þ

The rectified first derivative was then smoothed:

Y1½n�~
1

4
(Y0½n{1�z2Y0½n�zY0½nz1�): ð9Þ

A rectified second derivative was then calculated:

Y2½n�~jX ½nz2�{2X ½n�zX ½n{2�j: ð10Þ

Finally, the rectified smoothed first derivative was added to the

rectified second derivative:

Y3½n�~Y1½n�zY2½n�: ð11Þ

For all these algorithms, a threshold criterion for QRS detection

was applied to the linear combination of derivatives. A summary

of these threshold criteria is given in Table 1.

Digital Filters
There have been many sophisticated digital filters for QRS

enhancement published in the literature [28,33,64–71], as

described briefly below. Algorithms utilizing more complex digital

filters [28–30,72–76] include Engelse and Zeelenberg [28], who

first passed the ECG signal through a differentiator:

Y0½n�~X ½n�{X ½n{4�: ð12Þ

This signal was then passed through a digital low-pass filter:

Y1½n�~

(Y0½n�z4Y0½n{1�z6Y0½n{2�z4Y0½n{3�zY0½n{4�):
ð13Þ

A different digital filter algorithm was introduced by Okada

[30], who first smoothed using a three-point moving-average filter:

Table 1. Cont.

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency

Wavelet
Transform
(WT)

WT applied to ECG signal, followed by
threshold [52,53].
first derivative can be used before
applying Wavelet transform followed by
zero crossing (see section 5.6),
followed by threshold [54].
WT applied first before Hilbert transform,
followed by threshold [55].
WT applied to ECG signal, followed
by filter banks, followed by correlation
[56].
WT applied to ECG signal, followed by
neural networks (see Section 5.2) [54].
Wavelet transform applied to ECG
signal, followed by singularity (see 5.7)
and zero crossing (see Section 5.6),
followed by threshold [55].

WT does not increase
the SNR, but the SNR
can be improved by
selecting the
coefficients with the
largest amplitude [56].

Choosing the mother wavelet is usually
determined by the shape of the wavelet,
which should be closer to the QRS complex
shape, and it depends on the investigator’s
methodology for detecting the QRS complex.
One mother wavelet (i.e. Haar, Daubechies,
Biorthogonal, Mexican hat must be chosen
once during the entire ECG analysis.
Choosing the length of the processed ECG
segment does vary in literature. Ahmed et al.
[57] split the ECG signals into 2.4-seconds
segments while Xiuyu et al. [55] split the
signals into 11 seconds.
Choosing the wavelet scale varies
throughout the literature. Szilagyi and
Szilagyi [58] used scales 23 and 24, which
reflect the QRS complex, while Xu et al. [59]
used scales from 22 to 24 to detect QRS
complexes.
In regards to the sampling frequency of the
processed ECG signal, Martinez et al. [60]
recommended to resample the signal at
250 Hz.

If the ECG is segmented (this is
usually the case), the length of
the segment reflects the tradeoff
between accuracy and
computational time-
consumption of the algorithm
[52]. In general, WT, similar to
filter banks, is relatively high in
computational cost [61].

doi:10.1371/journal.pone.0084018.t001
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Y0½n�~
1

4
(X ½n{1�z2X ½n�zX ½nz1�): ð14Þ

The output of this filter was then passed through a low-pass

filter:

Y1½n�~
1

2mz1

Xnzm

k~n{m

Y0½k�: ð15Þ

The difference between the input and output of this low-pass

filter was then squared, in order to suppress low amplitude waves

relative to the R peak:

Y2½n�~(Y0½n�{Y1½n�)2: ð16Þ

This square difference was then filtered, in order to enlarge the

QRS area compared to the other ECG features:

Y3½n�~Y2½n�f
Xnzm

k~n{m

Y2½k�g2: ð17Þ

In addition to the above filters, a multiplication of backward

difference (MOBD) algorithm has also been proposed [77,78] for

QRS detection. In brief, this approach consists of an AND-

combination of adjacent magnitude values of the derivative. The

MOBD of order N is defined by

Z½n�~ P
N{1

k~0
(X ½n{k�{X ½n{k{1�), ð18Þ

where Z½n� contains the extracted QRS features, which can

subsequently be detected using an appropriate threshold. Another

algorithm proposed by Dokur et al. [65] uses two different

bandpass filters, subsequently multiplying the filter outputs W ½n�
and F ½n� to form:

Z½n�~W ½n�:F ½n�, ð19Þ

where Z½n� contains the extracted QRS features. This procedure is

based on the assumption that each QRS complex is characterised

by simultaneously occurring frequency components within the

passbands of each filter. The multiplication operation performs the

AND-combination. In other words, the output of the AND-

combination (the feature output) is ‘true’, and therefore indicates a

QRS complex, only if both filter outputs are ‘high’. The location

of the maximum amplitude is taken as the location of the R wave.

Conversely, Pan and Tompkins [33] used a derivative after

applying a bandpass digital filter to the ECG signals. The

bandpass filter consisted of a low-pass filter (Y1½n�) followed by a

high-pass filter (Y2½n�) as:

Y1½n�~2Y1½n{1�{Y1½n{2�zX ½n�{2X ½n{6�zX ½n{12�,ð20Þ

Y2½n�~32Y1½n{16�{(Y2½n{1�zY1½n�{Y1½n{32�): ð21Þ

The first derivative (Y3½n�) used after the bandpass filter was

specified as:

Y3½n�~
1

8
({Y2½n{3�{2Y2½n{1�z2Y2½nz1�zY2½nz2�), ð22Þ

The bandpass filtered signal (Y2½n�) was differentiated to

emphasise high signal slopes, suppressing smooth ECG waves

and baseline wander.

Mathematical Morphology
The use of mathematical morphology operators for QRS

detection was described by Trahanias [79]. The mathematical

morphology approach originates from image processing and was

first proposed for ECG signal enhancement by Chu and Delp

[80], who reported the successful removal of noise from the ECG

using the approach. Mathematical morphology is based on the

concept of erosion and dilation. Let f : F?I and k : K?I denote

discrete functions, where the sets F and K are given by

F~0,1 . . . N{1 and K~0,1 . . . M{1. Here, I is the set of

integer numbers. The erosion of the function f by the function k is

defined as [80]:

(f7k)½m�~ min
n~0,...,M{1

(f ½mzn�{k½n�) ð23Þ

where k is also referred to as the structuring element, and

m~0, . . . ,N{M. The values of (f7k) are always less than

those of f . The dilation of the function f by the function k is defined

as [80]

(f+k)½m�~ min
n~0,...,M{1

(f ½n�{k½m{n�) ð24Þ

where in this case m~M{1,M . . . ,N{1. The (f+k) values of

are always greater than those of f . Erosion and dilation may be

combined for additional operations. Opening, denoted by 0, is

defined as erosion followed by dilation. Closing, denoted by ., is

defined as dilation followed by erosion. Both operators manipulate

signals in a comparable way. That is, to open a sequence f with a

flat structuring element k will remove all peaks. To close the

Figure 3. Filter bank schematic. A filter bank contains a set of
analysis filters that decompose the input signal into sub-bands ui with
uniform bandwidths in order to extract ECG features. Here, ;M is a
downsampling process producing down-sampled signals wi .
doi:10.1371/journal.pone.0084018.g003
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Table 2. Comparison of QRS detection techniques based on algorithm usage and assessment criteria.

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency

Threshold The threshold step has been
used in the literature as the
last stage for most QRS
detection algorithms
[23,24,26,27,30,31,32,
34,35,36,37,38].

The performance of the
threshold approach
will be affected by low
SNR signals [29,33].

–The threshold is a fixed value
[26,28,31,33].
–The threshold is experimentally defined
[26,28,31,33]. The real difficulty is in
choosing the optimal threshold.

The threshold approach is simple. It is an IF-
THEN-ELSE statement. Therefore, it is
considered computationally efficient by
researchers [26,28,31,33].

Neural
Networks
(NN)

–WT applied to ECG signal,
followed by NNs [54]
– Wavelet applied first to ECG
signal, followed by Hidden
Markov Model [90].
– NNs (used as a filter)
applied to ECG signal,
followed by a matched
filter [91].

NN are highly sensitive
to noise [92]. The
performance of the
classifier can be
significantly reduced
if the NN is constructed
with a proper
architecture and
trained with
appropriate data.

– The type of the NNs must be chosen
and adjusted before the analysis.
–Number N of inputs to NNs: to have just
one single NN with a fixed number N of
inputs, with each one receiving one of
the samples from the window. The
number of samples per window
must then be fixed [93].
– There is a range of samples to be
selected as the number of NN inputs, for
example, Garcı́a-Berdonés et al. [93]
used 20 samples as the number of inputs.
– Choosing the number of neurons in
the NN hidden layer still remains a
challenge. There is no definite way of
determining the right number of neurons
in hidden layer.

–The training phase can be numerically
inefficient as it is an iterative process for
adjusting the NN weights [94]. If the number
of hidden neurons is large, the
computational load for training is high.
– Even while the NN is implemented only in
the trained version on the mobile device, it
often needs a considerable amount of
memory to store the neuron weights.
Moreover, a nonlinear (most often sigmoid)
function needs to be evaluated in the
operating phase, which is computationally
inefficient.

Hidden
Markov
Models
(HMM)

–Bandpass filter applied
to ECG signal, followed
by HMM [95,96].
–Wavelet applied to ECG
signal, followed by HMM [90].

–HMM is sensitive to
noise, baseline wander
and heart rate
variation [97].

– Determining the number of states,
transition probabilities and output
function has been done experimentally.
–The parameters of a HMM cannot be
directly estimated from training data
using maximum likelihood estimation
formulas, since the underlying state
sequence that produced the data is
unknown [95].
–HMM parameters are to be fixed.

–The problems of the method include a
necessary manual segmentation for training
prior to the analysis of a record, its patient
dependence, and its considerable
computational complexity, even when the
computationally efficient Viterbi algorithm
[98] is applied.
–The number of parameters that need to be
set in a HMM is large-there are usually 15 to
50 parameters that need to be evaluated
[95,96].

Matched
Filters

– Matched filters applied to
ECG signal [99].
– Digital filter applied to ECG
signal, followed by matched
filters [100,101].
–NNs (used as a filter) applied
to ECG signal, followed
matched Filter [91].

The matched filter
improves SNR [102].

– Fixed template length.
–The template length and filter are
determined experimentally.

Efficient implementations are available [103].
In general, however, it is computationally
expensive because of the sample-by-sample
moving comparison with the template along
the ECG signals.

Syntactic
Method

The syntactic method is applied
to an ECG signal to detect a
QRS complex by itself
[104–106].

The syntactic method
is sensitive to noise
[106].

–The length of the segment is fixed.
Belforte et al. [104] used 30-seconds
duration per segment.
– Four fixed attributes used the syntactic
method [105]: degree of curvature, arc
length, chord length and arc symmetry,
which are determined experimentally.

The syntactic method has a high
computational cost compared to other
approaches. Measurements of various
parameters have to be performed; powerful
grammars capable of describing syntax as
well as semantics are needed to model the
formulation of a pattern grammar.

Zero-
Crossing

The zero-crossing technique has
been used in the literature to
detect QRS complexes as
follows:
– Bandpass filter applied to
ECG signal, followed by zero
crossing [107].
– WT applied to ECG signal,
followed by zero crossing,
followed by threshold [107].
– WT applied to ECG signal,
followed by singularity and
zero crossing, followed by
threshold [55].

The zero crossing is
sensitive to noise
[107].

–The threshold used for counting the
number of zero crossings per segment is
fixed [107] and determined
experimentally.
–Choosing the wavelet scales to
search for zero-crossing varies in literature
[107,108].

The zero-crossing approach is simple but
computationally inefficient. This is because
of the time consuming stages in the
maximum/minimum search for temporal
localization of the R wave [107].
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sequence with the same structuring element will remove all pits

(negative peaks). In Trahanias [79], opening and closing

operations are used for noise suppression as proposed by Chu

and Delp [80]; that is:

~xx~
½(x0k).k�z½(x.k)0k�

2
ð25Þ

where k is a flat structuring element (zero line). The generation of

a feature signal for the QRS complexes is accomplished by the

operation

z~~xx{(
½(~xx0k).k�z½(~xx.k)0k�

2
): ð26Þ

Zhang and Lian [34] used the first derivative after multiscale

mathematical morphology filtering to the ECG signal in order to

remove motion artifacts and base line drifts. They used Okada’s

first-order differential equation, as shown in Equation 4.

Empirical Mode Decomposition
Empirical mode decomposition (EMD) was introduced by

Huang et al. [81] for nonlinear and non-stationary signal analysis.

The key part of this method is that any complex data set can be

decomposed into a finite and often small number of intrinsic mode

functions (IMFs), which admit well-behaved Hilbert transforms.

Usually, when the raw ECG signals are decomposed into number

of IMFs, the combination of IMFs produces a resulting signal

where the QRS complex is more pronounced. This process can be

considered as adaptive filtering, similar to the use of wavelet

transform. The EMD is defined by a process called sifting. It

decomposes a given signal into a set of components, the IMFs. K
modes dk½n� and a residual term r½n� [82,83] are obtained and

expressed by:

X ½n�~
XK

k~1

dkzr½n�: ð27Þ

The EMD algorithm is summarised by the following steps:

1. Start with the signal dk~1½n�~x½n�; followed by the sifting

process hj ½n�~dk½n�, j~0.

2. Identify all local extrema of hj ½n�.
3. Compute the upper (EnvMax) and lower envelopes (EnvMin)

by cubic spline interpolation of the maxima and minima.

4. Calculate the mean of the lower and upper envelopes,

m½n�~ 1
2

(EnvMax½n�zEnvMin½n�).

5. Extract the detail hjz1½n�~hj ½n�{m½n�.
6. If hjz1½n� is an IMF, go to step 7; otherwise, iterate steps 2 to 5

on the signal hjz1½n�, j~jz1. (The definition of an IMF,

although somewhat vague, consists of two parts: (a) the number

of the extrema equals the number of zeros and (b) the upper

and lower envelopes should have the same bsolute value).

7. Extract the mode dk½n�~hjz1½n�.
8. Calculate the residual rk½n�~x½n�{dk½n�.
9. If rk½n� has less than two extrema, the extraction is finished

r½n�~rk½n�; otherwise, iterate the algorithm from step 1 on the

residual rk½n�, k~kz1.

Hilbert Transform
The use of the Hilbert transform for QRS detection is proposed

by Zhou et al. [84] and Nygards and Srnmo [85]. In the time

domain, the Hilbert transform of the ECG signal X is defined as:

XH(t)~HfXg~ 1

p

ð?

{?

X (t)

t{t
dt ð28Þ

~
1

p
6X (t), ð29Þ

where 6 denotes the convolution operator. In the frequency

domain, the ECG signal can be transformed with a filter of

response:

XH(jv)~X (jv)6H(jv), ð30Þ

where the transfer function of the Hilbert transform H(jv) is given

by:

H(jv)~
{j 0ƒvvp

j {pƒvv0

�
: ð31Þ

Using the numerically efficient Fast Fourier Transform (FFT),

the Hilbert transform can easily be computed. The Hilbert

transform XH½n� of the ECG signal X ½n� is used for the

computation of the signal envelope [85], which is given for

band-limited signals by

Table 2. Cont.

Technique Algorithm Robustness to noise Parameter choice Numerical efficiency

Singularity –EMD filtering applied to ECG
signal, followed by singularity
and threshold [43].
– WT applied to ECG signal
followed by singularity and
zero crossing, followed by
threshold [55].

The singularity
approach is sensitive
to noise [109].

–Choosing the wavelet scales to search
for singular points is performed
experimentally [109,110].
–The threshold used for detecting R
peaks per segment is fixed [109].
–The threshold used for detecting R
peak counts per segment is determined
experimentally.

The singularity approach load is more
complex than the zero- crossing approach. It
is computationally inefficient because of the
consuming stages in the search and
optimization for detecting R waves in ECG
segments [55,109].

doi:10.1371/journal.pone.0084018.t002
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Ye½n�&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2½n�zX 2

H½n�
q

: ð32Þ

A computationally less expensive approximation to the envelope

can be made by [85]

Ye½n�&jX ½n�jzjXH½n�j: ð33Þ

To remove ripples from the envelope and to avoid ambiguities

in the peak level detection, the envelope is low-pass filtered in

Nygards and Srnmo [85]. Additionally, they propose a waveform

adaptive scheme for the removal of low-frequency ECG compo-

nents is proposed. The method of Zhou et al. [84] is related to the

algorithms based on the Hilbert transform. In their study, the

envelope of the signal is approximated using

Ye½n�&jY1½n�jzjY2½n�j, ð34Þ

where and are the outputs of two orthogonal digital filters, namely:

Y1½n�~X ½n�{X ½n{6�, and ð35Þ

Y2½n�~X ½n�{X ½n{2�{X ½n{6�{X ½n{8�: ð36Þ

In order to remove noise, the envelope signal Ye½n� is smoothed

by a four-tap moving average filter. Some investigators use a first

derivative before applying the Hilbert transform [35–37]. Differ-

entiating the ECG modifies its phase, creating zero crossings at the

presumed location of the R peaks. Thus, a transformation is

required to rectify the phase in order to create a signal with

marked peaks at the true location of the R peaks.

Table 3. Comparison of ECG beat detection algorithms based on techniques for QRS enhancement and detection on the MIT-BIH
arrhythmia database [62].

Publication QRS Enhancement QRS detection Number of beats Numerical Efficiency SE (%) +P (%)

Chiarugi et al. [136] Bandpass Filter + first Derivative Multiple thresholds 109494 High 99.76 99.81

Christov [124] Multiple moving averages + first
derivative

Multiple thresholds 109494 High 99.76 99.81

Elgendi [137] Bandpass filter + first derivative
+ squaring

Thresholding using two
moving averages

109985 High 99.78 99.87

Zidelmal [138] WT + coefficients multiplication Two thresholds 109494 Medium 99.64 99.82

Choukri [139] WT + histogram +moving average Two thresholds 109488 Low 98.68 97.24

Li et al. [127] WT + digital filter Singularity + multiple
thresholds

104182 Low 98.89 99.94

Pan and Tompkins [33] Bandpass filter+first derivative
+ squaring + moving average

Multiple thresholds 116137 Medium 99.76 99.56

Arzeno et al. [35] and
Benitez et al. [36]

First derivative + Hilbert transform Threshold 109257 Medium 99.13 99.31

Arzeno et al. [35] First derivative + Hilbert transform Two thresholds 109517 Medium 99.29 99.24

Arzeno et al. [35] First derivative + squaring
+ bandpass filter

Multiple thresholds 109504 Medium 99.68 99.63

Arzeno et al. [35] First derivative + squaring +
bandpass filter

Variable thresholds
comparison

109436 Medium 99.57 99.58

Arzeno et al. [35] Second derivative + squaring +
bandpass filter

Variable thresholds
comparison

108228 Medium 98.08 99.18

Moraes et al. [110] Low pass filter + First derivative
+ modified spatial velocity

Threshold 109481 Medium 99.69 99.88

Chouhan and Mehta [111] Digital filters Threshold 102654 Medium 99.55 99.49

Elgendi et al. [125] Digital filters Multiple thresholds 44677 Medium 97.5 99.9

Martinez et al. [60] WT Multiple thresholds + zero
Crossing

109428 Medium 99.8 99.86

Afonso et al. [141] Filter banks Multiple thresholds 90909 Low 99.59 99.56

Ghaffari et al. [121] Continuous WT Threshold 109837 Medium 99.91 99.72

Zheng and Wu [122] Discrete WT + Cubic Spline
Interpolation + moving average

Threshold N/R Low 98.68 99.59

Ghaffari et al. [121] Hybrid Complex WT Threshold 24000 Low 99.79 99.89

Ghaffari et al. [121] Complex Frequency B-Spline WT Threshold 24000 Low 99.29 99.89

Ghaffari et al. [121] Complex Morlet WT Threshold 24000 Medium 99.49 99.29

SE and +P stand for sensitivity and positive productivity respectively, while N/R denotes not reported.
doi:10.1371/journal.pone.0084018.t003
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Filter Banks
Filter banks decompose the bandwidth of the input ECG signal

into sub-band signals with uniform frequency bands. The sub-

bands can be downsampled, since the sub-band bandwidth is

much lower than the input signal. The sub-bands provide

information from various frequency ranges; thus, it is possible to

perform time- and frequency-dependent processing of the input

signal.

As shown in Figure 3, a filter bank contains analysis filters,

which decompose the input signal into sub-band signals with

uniform frequency bandwidths, each of constant length. The

analysis filters bandpass the input ECG signal to produce the sub-

band signals:

ui(z)~Hi(z)X (z): ð37Þ

The effective bandwidth of ui(z) is p=M and i~0,1, . . . ,M{1;

thus, they can be downsampled to reduce the total rate. The

downsampling process ;M (Fig. 3), keeps one sample out of all

samples. The downsampled signal wi(z) is

wi(z)~
1

M

XM{1

k~0

ui(z
(1=M)W k), ð38Þ

where W~e{j(2p=M). The sub-bands ui(z) and wi(z) are

bandpassed versions of the input, and wi(z) has a lower sample

rate than ui(z). The filtering process can be efficiently conducted

at 1=M the input rate by taking advantage of the downsampling.

This process is referred to as polyphase implementation and it

contributes to the computational efficiency of filter bank

algorithms [47]. A variety of features indicative of the QRS

complex can be designed by combining sub-bands of interest

reported in Afonso et al. [47]. For example, a sum-of-absolute

values feature can be computed using sub-bands, i~1:::4. From

these sub-bands six features (p1, p2, p3, p4, p5, and p6) can be

derived as follows:

p1½n�~
X3

i~1

jwi(z)j, p2½n�~
X4

i~1

jwi(z)j, p3½n�~
X4

i~2

jwi(z)j, ð39Þ

p4½n�~
X3

i~1

(wi(z))2, p5½n�~
X4

i~1

(wi(z))2, p6½n�~
X4

i~2

(wi(z))2:ð40Þ

These features have values that are proportional to the energy of

the QRS complex. Finally, heuristic beat-detection logic can be

used to incorporate some of the above features that are indicative

of the QRS complex.

Wavelet Transform
Wavelets are closely related to filter banks. The wavelet

transform (WT) [86] of a function f (t) is an integral transform

defined by

Wf (a,b)~

ð?

{?

f (t)y�a,b(t) dt, ð41Þ

where y�(t) denotes the complex conjugate of the wavelet function

y(t). The transform yields a time-scale representation similar to the

time-frequency representation of the short-time Fourier transform

(STFT). In contrast to the STFT, the WT uses a set of analysing

functions that allow a variable time and frequency resolution for

different frequency bands. The set of analysing functions—the

wavelet family ya,b(t)—is deduced from a mother wavelet y(t) by:

ya,b(t)~
1ffiffiffi
2
p y(

t{b

a
), ð42Þ

where a and b are the dilation (scale) and translation parameters

respectively. The scale parameter a of the WT is comparable to

the frequency parameter of the STFT. The mother wavelet is a

short oscillation with zero mean. The discrete wavelet transform

(DWT) results from discretised scale and translation parameters;

for example, a~2j and b~n(2j), where j and n are integers. This

choice of a and b leads to the dyadic WT (DyWT):

Wf (2j ,b)~

ð?

{?

f (t)y�
2j ,b

(t) dt, ð43Þ

y
2j ,b

(t)~
1

2j=2
y(

t{b

2j
), ð44Þ

y
2j ,b

(t)~
1

2j=2
y(

t

2j
{n): ð45Þ

Although defined as an integral transform, the DyWT is usually

implemented using a dyadic filter bank where the filter coefficients

are directly derived from the wavelet function used in the analysis

[87–89].

QRS Detection

After enhancing the QRS features using the previous algo-

rithms, the next step is to detect the QRS complexes. Through the

previous enhancement step, QRS complexes are filtered and

magnified relative to other ECG features and noise. There are

many detection techniques used in the literature, as shown in

Table 2. This include thresholding, neural networks [91,112–114],

hidden Markov model [95], matched filters [115,116], syntactic

methods [104–106], zero-crossing [107], and singularity tech-

niques [117–119]. In the summary of Table 3, all these algorithms

are numerically inefficient except thresholding. As the main

purpose of this article is to highlight suitable algorithms for ECG

monitoring using battery-operated, portable devices, only thresh-

olding will be considered for the detection phase for simplicity and

efficiency. In this context, it has to be emphasised that threshold-

ing can be applied to time-domain [23,24,120] as well as time-

frequency [121–123] ECG signals. However, the use of a fixed

threshold to detect QRS complexes is simple and only efficient for

stationary ECG signals with similar beat-to-beat morphology. Due

to severe baseline drift and movement of patients, an ECG

waveform may vary drastically from one heartbeat to the next in

mobile applications. Therefore, the probability of not accurately

detecting QRS complexes is high. Using adaptive thresholding

[59,124–126], the probability of missing QRS complexes

decreases. However, the main drawback of these adaptive-

thresholding based algorithms is the setting of multiple thresholds
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empirically. Therefore, currently, these algorithms cannot provide

a universal solution to the QRS detection problem, since they may

work perfectly on some clean signals, but not those containing

arrhythmias or noisy QRS complexes.

Discussion

The performance of QRS detection algorithms are typically

assessed using two statistical measures: sensitivity SE~TP=
(TPzFN) and positive predictivity zP~TP=(TPzFP), where

TP is the number of true positives (QRS complexes detected as

QRS complexes), FN is the number of false negatives (QRS

complexes which have not been detected), and FP is the number

of false positives (non-QRS complexes detected as QRS complex-

es). The sensitivity reports the percentage of true beats that were

correctly detected by the algorithm, whilst the positive predictivity

reports the percentage of beat detections that were true beats.

The performance of current QRS detection algorithms

described in the literature has not been completely assessed in

terms of robustness to noise, parameter choice, and numerical

efficiency. Moreover, many of the QRS algorithms have not been

tested against a standard database, or any database at all making

the results difficult to compare and evaluate. Furthermore, many

algorithms scored a high detection performance using the overall

number of detected beats (i.e. QRS complexes), as shown in

Table 3. It is worth noting that the algorithm of Li et al. [127]

scored high overall performance with a sensitivity of 99.89% and a

specificity of 99.94%. However, Li et al. excluded files 214 and

215 from the MIT-BIH arrhythmia database [62], and therefore

their algorithm may not superior in terms of performance. In

addition, their algorithm was based on wavelet feature extraction

and singularity for classification, which is considered numerically

inefficient.

As noted, some investigators have excluded records from the

MIT-BIH arrhythmia database [62] for the sake of reducing noise

in the processed ECG signals; consequently their algorithms

appeared to achieve improved performance. Other researchers

excluded segments with ventricular flutter [60] and signals from

patients with paced beats [110] from their investigations.

Therefore, a robust algorithm is required to analyse ECG signals

without excluding any records or particular segments, especially if

the main goal is to provide a robust algorithm for long-term ECG

signals recorded over a few days.

Robustness to Noise
Robustness to noise is effectively tested as we use signals from

the widely used MIT-BIH Arrhythmia Database [62] that

contains signals with different noise sources and non-sinus beats.

The MIT-BIH database is widely used to evaluate QRS detection

algorithms. As demonstrated in Table 1, there are many

algorithms used for denoising and enhancing the QRS complex

in ECG signals.

Usually, denoising ECG signal requires a bandpass filter, which

can be implemented on battery-driven devices and while

reasonably preserving the clinical features of ECG signals (P,

QRS, and T waves) at the same time. Perhaps, a more

sophisticated algorithm may filter the ECG more effectively, for

example Sameni et al. [128] proposed a Bayesian framework that

filters ECG better than the conventional bandpass filtering [129–

131], adaptive filtering [132], and wavelet denoising [133,134]

over different types of noise using highly realistic synthetic ECG.

Recently, Sharma et al. [135] proposed a wavelet-based denoising

method tested on real ECG data and synthetic ECG signals.

However, both algorithms are numerically inefficient.

Table 3 shows that the Chiarugi et al. [136] as well as Christov

[124], and Elgendi [137] algorithms are highly-numerically

efficient, and the use of a first derivative with or without moving

average in the QRS enhancement phase is promising, especially

when it is followed by a proper QRS detection phase such as

moving average and/or dynamic threshold. However, the only use

of derivative in the QRS enhancement phase without a proper

QRS detection phase is extremely sensitive to noise [29].

It is worth noting that Elgendi’s algorithm [137] tested on the

MIT-BIH Noise Stress Test Database and scored higher accuracy

in detecting R peaks compared to Pan-Tompkins [33] and Benitez

et al. [36].

Battery-Driven ECG Devices
Many QRS detection algorithms have been published, and a

comparison between them needs to be conducted. An algorithmic

comparison regarding numerical efficiency has been carried out

Figure 4. Screenshot showing the main interface of the ‘Hearty’ application implemented by Gradl et al. (2012) [8]. From top to
bottom: Panel showing various clinically relevant parameters that are automatically detected including heart rate (HR) and RR interval; Panel showing
the detected ECG signal, which is wirelessly streamed to the application; Panel showing the QRS detection with filled circle markers for the Q, R and S
waves; Panel showing the detected beat-to-beat heart rate.
doi:10.1371/journal.pone.0084018.g004
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empirically. As shown in Table 3, each algorithm has been

categorised as low, medium or high in terms of its numerical

efficiency, based on the number of iterations and the number of

equations (e.g. multiplications, additions, differentiations) em-

ployed. The better the numerical efficiency, the faster the

algorithm, and vice-versa. Consequently, the faster the algorithm,

the more suitable it is for real-time monitoring.

With advances in computational power, the demand for

numerical efficiency has decreased. However, this is still more

the case when the ECG signals are collected and analysed in

hospitals, but not for the case of portable ECG devices, which are

battery driven. This leads to especially high demands on

algorithms for use within a mobile phone for monitoring ECG

signals of patients in a mobile, unobtrusive at home setting.

Therefore, there is a need for developing numerically efficient

algorithms to accommodate the new trend towards mobile ECG

devices and to analyse long-term recorded signals in a time-

efficient manner.

Typically, processing large databases is carried out on PC

workstations with high-speed, multi-core processors and efficient

memory. This advantage is still not available for battery-operated

devices: even the current smartphone platforms have limited RAM

and processing power [8,10,142]. In general, battery-driven ECG

devices follow one of these schemes: 1) collect data for offline

analysis; 2) collect data for real-time analysis within the device

itself; or 3) collect data for real-time analysis via a remote

connection to a separate server. Certainly, each scheme has its

own advantage and disadvantage in terms of processing time and

power consumption.

The Holter device is the most commonly-used ECG battery-

operated platform, especially for monitoring and recording ECG

signals to be processed offline. With the advancement of

smartphones in terms of memory and processors, investigators

are trying to replace the Holter devices by smartphones [8].

Furthermore, the use of a smartphone has extra advantages from

the patient perspective such as mobility, familiarity and guaran-

teed usage [143]. Thus, recently, there have been some

contributions in phone applications that analyse ECG signals

collected wirelessly via Bluetooth [8,10,144] and Zigbee radio

protocols [142].

The current advances in battery-driven devices such as

smartphones and tablet computers have made these technologies

invariably part of daily life, even in developing countries [12]. It

has also increased the possibility of implementing more sophisti-

cated algorithms such as the Pan-Tompkins method [33] on

smartphones as shown in Figure 4. However, there is a significant

trade-off as there will always be a power-consumption limitation in

processing ECG signals on battery-operated devices. Therefore,

prior to deploying any algorithm on modern mobile devices,

comprehensive evaluation of the algorithm based on robustness to

noise, parameter choice, and numerical efficiency is required to

improve the quality of diagnosis with respect to processing time or

power consumption. One of the recent studies that confirms this

recommendation is done by Hyejung et al. [145] who developed a

simple algorithm to detect QRS complexes for Holter devices.

Their simple algorithm, which consists of bandpass filter followed

by multiple thresholds, was faster and more efficient compared to

relatively more complex methods [35,146].

Mobile Telemedicine Systems
Mobile telemedicine systems often use mobile phones/PDAs to

just collect the ECG data–wirelessly or wired–and send them to a

central monitoring station using GSM or internet for further

analysis [147,148]. In such cases, some analysis can be done locally

on the smartphone before transmission; however, it is not always

Figure 5. A showcase of realtime factors for three outdated mobile phones. Three QRS detection algorithms were tested, as reported by
Sufi et al. [63]. The QRS enhancement phase was based on amplitude, first-derivative, and second-derivative techniques, whilst the QRS detection
phase employed thresholding. Realtime factor is the processing time needed to run the QRS detection algorithm for an individual ECG entry within
one measurement window size of 60 seconds.
doi:10.1371/journal.pone.0084018.g005

Figure 6. QRS enhancement stage in ECG signals. (a) ECG signal
(top: from record 107, bottom: from record 108 of the MIT-BIH
Arrhythmia Database [62]), (b) amplitude from Eq.1 where b~0:3, (c)
first derivative from Eq.4, (d) first derivative and second derivative from
Eq.7, and (e) digital filter from Ref. [33]. Signal amplitudes have been
manipulated to fit all signals in one figure. Here, a red asterisk
represents the annotated R peak.
doi:10.1371/journal.pone.0084018.g006
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recommended as the transmission can consume more power than

the ECG analysis itself [149]. There is no doubt that the essential

quality for any algorithm used for real-time analysis is its simplicity

(numerical efficiency), provided this does not decrease accuracy.

The simpler the algorithm (while retaining accuracy), the faster it

will be in processing large databases [35,150], and it will consume

less power for battery-operated devices [63,142,151]. Moreover, a

simple algorithm also offers low cost of hardware implementation

in both power and size for body sensor networks [152]. Sufi et al.

[163] investigated three simple QRS algorithms suitable for

mobile phones. The QRS enhancement phase of these algorithms

consisted of amplitude, first-derivative, and second-derivative

methods, while the QRS detection phase was threshold-based.

They used simple methodologies for QRS enhancement and

detection for implementation over mobile phones. This simplicity

has been confirmed in Table 3 where it is evident that the first

derivative and threshold are an efficient combination for detecting

QRS if developed properly.

Mobile Phone Applications
To demonstrate the importance of processing time on a mobile

phone, a showcase is demonstrated in Figure 5 for three outdated

mobile phones [63]. It can be seen that the Nokia 6280 consumes

the least processing time, as shown in Fig. 5(c). As expected, the

amplitude-based QRS enhancement technique was faster than the

first-derivative and second derivative based techniques. In this

study [63], the quality of ECG signals was discussed and the data

used was relatively noise-free, as the ECG signal shown in Figure 2

illustrates. However, this does not mean that a simple (or faster)

algorithm will be more accurate. For example, Figure 6 shows that

a simple amplitude threshold or first derivative method does not

emphasize the QRS complex for the case of paced beats (record

107) and inverted QRS complexes (record 108). Nevertheless, the

Sufi et al. result is considered a foundational step for monitoring

ECG signals using mobile phones, but their algorithm exhibited

some limitations in terms of memory and processing time.

Nowadays, smartphones possess advanced processing and

storage capabilities, including a powerful CPU, more memory

and GPUs with high-speed data access via Wi-Fi or mobile

broadband [153]. Therefore, implementing a sophisticated QRS

detection algorithm on a smartphone is becoming more feasible.

Gradl et al. [8] implemented the Pan-Tompkins algorithm [33] on

three smartphones: Samsung GT-I9000, SamsungTM GT-N7000,

and HTCTM Wildfire S A510e. The authors showed that

processing of the wirelessly streamed ECG signal is feasible in

real-time on the mentioned devices; however, they stated that

battery lifetime was affected negatively by running the monitoring

application.

Certainly, the implementation of the Pan-Tompkins algorithm

is more resource-demanding, and therefore consumes more time

and power, than the three simple algorithms investigated by Sufi

et al. [63]. Nevertheless, recent wearable devices can easily fulfil

the real-time requirement. For example, the real-time factor for

processing record 100 of the MIT-BIH Arrhythmia Database [62]

using the Pan-Tompkins algorithm over three recent tablet

computers/smartphones: the Asus Transformer Prime, the

Samsung Galaxy S III, as well as the Samsung Galaxy S II was

0.14|, 0.13|, and 0.2|, respectively. In contrast, the real-time

factors for processing the same record using the first-derivative

algorithm on the outdated phones: the Nokia N91, the Siemens

C75, and the Nokia 6280 were 0.13|, 0.1|, 0.016|,

respectively.

Another aspect that has been ignored in the literature is the

clinical utility of the ECG algorithms. It is rare to find a study that

addresses the usefulness of the developed algorithm in a clinical

setting. As far as we are aware, there is no evidence that shows

whether the discussed algorithms are currently implemented and

tested in clinical settings.

Conclusions

In conclusion, we provide a summary of the required algorithms

for ECG detection based on the literature together with our own

investigations. The use of the first-derivative of the filtered ECG

with or without a moving-average filter is recommended, as this

approach is highly numerically efficient for the QRS enhancement

phase, but is sensitive to noise and arrhythmia; therefore, an

adaptive thresholding or integration-based approach is needed in

the detection phase. Both of these suggested methodologies are

simple and computationally efficient for the detection of QRS

complexes in mobile-phone applications. If more processing power

is available, as is the case on modern tablet computers and

smartphones, implementation of the classical Pan-Tompkins

algorithm [33] is also a feasible choice. Overall, simplicity and

efficiency are required in developing QRS detection algorithms for

processing long-term recordings and large databases, as well as for

expanding our telemedicine capabilities in the near future.
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