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Abstract

Optical imaging techniques reflect different biochemical processes in the brain,
which is closely related with neural activity. Scientists and clinicians employ a variety
of optical imaging technologies to visualize and study the relationship between
neurons, glial cells and blood vessels. In this paper, we present an overview of the
current optical approaches used for the in vivo imaging of neurovascular coupling
events in small animal models. These techniques include 2-photon microscopy, laser
speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional
photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging
(fNIRS) and multimodal imaging techniques. The basic principles of each technique
are described in detail, followed by examples of current applications from cutting-
edge studies of cerebral neurovascular coupling functions and metabolic. Moreover,
we provide a glimpse of the possible ways in which these techniques might be
translated to human studies for clinical investigations of pathophysiology and
disease. In vivo optical imaging techniques continue to expand and evolve, allowing
us to discover fundamental basis of neurovascular coupling roles in cerebral
physiology and pathophysiology.
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Introduction
Cerebral blood flow (CBF) is vital to the normal brain. The average CBF in humans is

approximately 55 ml per 100 g of brain tissue per minute [1]. Between 700 and 800 ml

of the normal cardiac output of 5 l/min is used to maintain membrane potentials and

reverse ion fluxes from action potentials in the brain [2]. More blood flow is needed

when active neural processes increase energy requirements. Blood flow correlates pre-

cisely with the regional energy utilization in the brain matter [3]. That is, the cerebral

circulation must maintain a constant and adequate blood flow for the brain to function

[1]. The cerebrovascular system has several mechanisms to ensure the correct blood

circulation to meet specific energy demands and prevent harmful fluctuations due to

changes in arterial pressure. This autoregulation of the cerebrovascular system involves

several different blood vessels with contractile elements, such as layers of smooth

muscle cells, which may control the diameter of the vessel and the CBF. In contrast to
© 2013 Liao et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0


Liao et al. BioMedical Engineering OnLine 2013, 12:38 Page 2 of 20
http://www.biomedical-engineering-online.com/content/12/1/38
other organs, the parenchymal flow in the brain is controlled entirely outside of the

organ. Two-thirds of the vascular resistance in the brain is due to large cerebral arteries

and pial vessels [4]; non-pial vessels are responsible for the remaining one-third of vas-

cular resistance [4].

Furthermore, the brain capillary system is highly heterogeneous. The brain uses an

additional mechanism, hyperaemia, to increase the flow of blood to the regions in

which neurons are active. According to this mechanism, neurons and astrocytes dir-

ectly regulate the local blood flow within the capillaries, resulting in local neurovascular

coupling. Initially, it was proposed that the local increase in blood flow upon neuronal

activation was caused by a metabolic signal, such as a decrease in either the O2 or glu-

cose concentration or accumulation of CO2. However, recent experiments have shown

that a neurotransmitter-mediated mechanism that involves astrocytes is responsible for

local flow regulation [5]. According to this, upon glutamate activation, nitric oxide

(NO) and arachidonic acid derivatives are released from neurons and astrocytes, re-

spectively, upon glutamate activation. Although this hypothesis was initially debated,

there are extensive studies showing that the final effect of these substances depends on

the local O2 concentration and differs between brain regions [6,7]. Furthermore, this

mechanism of local vascular flow regulation may affect not only smooth-muscle-

dependent arteriole contraction but also the intrinsic contraction of the pericytes,

which are supporting cells of capillaries, playing a key role in both neurovascular coup-

ling and the maintenance of the blood–brain-barrier (BBB) [6,7].

Neurovascular coupling and the correlation between neural activity and the CBF can

be exploited to examine both normal brain function and the pathophysiology of the

cerebrovascular system. Optical imaging techniques provide the necessary tools to ac-

curately detect and analyze regional hyperemic changes. This review will present sev-

eral important optical imaging techniques that are used for in vivo measurement of

functional hyperemia, including 2-photon laser scanning microscopy (TPLSM), laser

speckle contrast imaging (LCSI), voltage-sensitive dye imaging (VSDi), functional near-

infrared spectroscopy (fNIRS) and functional photoacoustic microscopy (fPAM). Due

to space constrictions, we refer to other reviews addressing functional magnetic reson-

ance imaging (fMRI) [8], intrinsic signal optical imaging (IOS) [9,10] and other tech-

niques [11,12]. In the conclusion of this review, we discuss the possible applications of

these in vivo techniques in basic and clinical human studies, especially in techniques

that can be administered intraoperatively.
Examination of cerebral neurovascular and neurometabolic functions using
optical imaging techniques
The question of how to examine the relationship between neural, vascular, hemodynamic

and metabolic responses using optical imaging techniques has not been answered com-

prehensively. The relationship between optical signals of cerebral blood oxygenation

(SO2) and neuronal activity is complex. The response depends on the coupling of

neurovascular functions to the corresponding cerebral neurometabolic functions of tis-

sues and cells. Optical techniques to probe functional brain activity are known to produce

reliable results. Furthermore, the specific characteristics of these optical signals are sensi-

tive to the corresponding cerebral vascular physiology and structure.
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Different kinds of optical signals reflect different neuronal activity in different parts

of the brain: changes in blood oxygenation, local blood circulation, tissue concentration

of oxy- and deoxyhemoglobin. Neural and glial [13-15] cell volume changes are fre-

quently associated with alterations in different components of the optical signals. Since

brain metabolism, local blood circulation and cell volume (swelling) reflect neural activ-

ity, we can reasonably assume that the different kinds of brain optical imaging can be

applied to help understand the localization of neural activity.

Figure 1 provides a schematic representation of the neurovascular coupling model

[16,17] most commonly used to characterize the vasomotion and metabolic responses

in the brain. This model assumes that the optical signals directly correspond to changes

in the cerebral metabolic rate of oxygen (CMRO2). Several researchers have proposed a

set of equations to describe the response of the arteries and capillaries in neurovascular

coupling [18-20]. Neurons can be triggered by unique stimulation events to produce

corresponding evoked potential signals (EPSs). These EPSs are directly correlated with

the responses of the vascular and oxygen transport models [21].

The response of the vascular model also affects the CBF response, which drives

changes in cerebral blood volume (CBV) and total of hemoglobin (HbT) (includes oxy-

hemoglobin (HbO) and deoxyhemoglobin (HbR)). Existing optical imaging techniques

for probing hemodynamic changes are based on either the absorption model (i.e.,

TPLSM, fNIRS and fPAM), the speckle model (i.e., LCSI) or activity-dependent fluores-

cence model (VSDi) (Table 1). The optical absorption model can be applied to experi-

mental measurements to predict HbR and HbO directly via the oxygen transport

model because of the unique contrast witnessed in optical signals. In addition, the oxy-

gen level in the blood vessels can be modeled using the principles of mass balance

based on the CBF changes predicted from the vascular model for oxygen consumption

metabolic coupling. On the other hand, the speckle model is directly related to changes

in CBF because speckles are the result of interaction of coherent light with the scatters

(mainly red blood cells (RBCs)) in the blood vessels. In this section, we will describe
Figure 1 An overview of the complete neurovascular model which assumes that the optical signals
directly correspond to changes in the CMRO2. Normally neural activity is accompanying by changes in
the local oxygenation. The relationship between neural activity, oxygen metabolism, and hemodynamic can
be studied by variable imaging techniques (including VSDi, LSCI, fPAM, TPLSM and fNIR) in combination
with local field potential recordings.



Table 1 Comparison of spatial and temporal resolution, penetration depth and limitations of different optical imaging techniques

Depth Temporal and spatial resolutions Optical source Contrast agent Limitations

2-Photons
microscopy
[12,22-25]

Up to 1 mm Spatial resolution is up to 1 μm.
The temporal resolution is variable
and determined by beam-scanning
methods. In specially developed
high-speed 2-photon imaging
systems temporal resolution can
reach a few μs.

Two-photon excitation wavelengths are
typically around twice the usual
fluorescent excitation wave- lengths.
Most fluorescent probes have excitation
in the 350–650 nm range, whereas the
excitation laser is in the ~700–1300 nm
range.

Delivered from outside or
genetically encoded fluorescent
probes. Since a fluorescence probe
can be treated with voltage- or
calcium- sensitive dye, fluorescence
antibodies or any kind of
fluorescence biomarkers

The temporal resolution of the
technique is defined by the property
of the imaging setup. High power
laser causes photo-bleaching and
even destroys cells. The method is
invasive and applicable only for
relatively small regions.

Laser speckle
contrast imaging
[26-34]

0.5 - 1.0 mm Up to 10 μm, no axial/depth
resolution. The temporal resolution
is limited by laser scanning
methods and imaging of small
areas can reach few tens μs. The
temporal resolution is determined
by the setup and can reach up to 1 μs.

Laser wavelength usually ranging from
400 to 1200 nm but very variable and is
determined by the experimental goal

No requirement for a chemical
agent

Invasive. The temporal resolution is
mainly defined by the parameters of
the CCD camera

Photoacoustic
microscopy
[35-42]

Up to a few
centimeters, but
high resolution
can be reached
only up to a few
mm in depth.

Up to 1 μm, but depends on
imaging depth, acoustic
transducer and optical focusing.
Temporal resolution is from
milliseconds to sub-milliseconds.

Laser wavelength, depending on the
target. For example: 570 nm is sensitive
to HbT.

Usually doesn’t need any contrast
agents but can be combined with
different biomarkers.

The temporal resolution is restricted
by the technical characteristics of the
laser scanning system. Without the
use of contrast agents it is applicable
for the monitoring of the cerebral
blood flow and oxygenation, but not
for neural and metabolic activity.

Near-infrared
spectroscopy
[9,10,43-46]

Up to few
centimeters
transcranially;
1–2 mm in an
open brain

From 2–3 cm in case of human
transcranial research to ~0.1 mm
in open brain animal experiments.
The temporal resolution can be
as high as 1 ms.

Monochromatic near-infrared light
source, usually 700–1700 nm.

Based on the difference in the light
absorption of HbO and HbR and
doesn’t need any contrast agents.

Applicable trans-cranially as well as in
open brain imaging, human research,
clinical practice and animal
experiments.

Voltage-sensitive
dye imaging
[10,23,24,47,48]

Up to ~ 1 mm The spatial resolution is determined by
the optical system and usually limited to
50 microns. However, in combination
with 2-photon imaging it can reach 1–2
microns. The temporal resolution is
limited by VSD properties and imaging
rate and can reach milliseconds or even
submillisecond resolution.

Monochromatic light in case of
conventional imaging and long
wavelength laser in 2-photon imaging

Voltage-sensitive dye – the
chemical compounds which
change their optic properties in
response to the changes in the
neural membrane potential.

Invasive, application is limited due to
toxicity and photo-bleaching. The
temporal resolution is defined by the
CCD camera and can reach 1 ms or
less.
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how each of these imaging techniques works, as shown in Table 1, and as well as elab-

orate upon their applications.
2-photon laser scanning microscopy

Several advances in microscopy techniques have allowed examination of capillary flow

based on the gaps between RBCs during their movement along the blood vessel. These

techniques initially involved the use of a CCD detector [49], then fluorescence micros-

copy [9] and, finally, confocal laser scanning microscopy [50,51]. However, the strong

light-scattering associated with brain tissue that occurs when using these techniques

prevented cellular and subcellular resolution in the intact brain. High-resolution

imaging of brain cell morphology and function in vivo was not possible until TPLSM

(Figure 2A) was developed by Denk et al. [22]. The description of the physical proper-

ties of the two-photon absorption phenomenon is beyond the scope of this review. We

thus refer to previous literature for a detailed description [52,53].

TPLSM has been employed to measure vascular changes in single vessels in vitro

[54-59] and in vivo [60-64]. Neuronal activity can be imaged simultaneously using cal-

cium indicators [65]. The ability to image both neuronal and glial calcium transients is

important for neurovascular researches because both neurons and glia have been impli-

cated in vasculature communication [54,56,57,63,66]. Furthermore, functional changes

in calcium levels can also be detected in arteriolar smooth muscle, and these changes

appear to coincide with active changes in vascular diameter [67]. Therefore, TPLSM

can be used to observe neurons, glia and the vessels which control blood flow through

a combination of calcium imaging and direct blood flow measurements (Figure 2B).

This approach is expected to aid in the identification of cellular elements which control

vascular responses under normal conditions and, possibly, the mechanisms which lead

to failure under pathological conditions.

As well known, the essence is that a fluorophore – Ca2+ − or voltage-sensitive dye,

fluorescent proteins, or other sort of fluorescence markers is excited by the absorption

of two photons at the same time, each of which brings only part of the energy required

for fluorophore excitation. Different fluorophores may have different emission wave-

length that is allow to generate separated 2D and 3D images for the different sorts

of cells.

Two of the main advantages of TPLSM over single-photon microscopy techniques

are its higher resolution and ability to image greater depths (up to 600 μm) below the

cortical surface [62,68]. In the 2-photon absorption process, the fluorescence signal de-

pends nonlinearly on the amount of excitation by light. Therefore, fluorescence gener-

ation is localized to the focal spot. In contrast to confocal microscopy, resolution is

achieved by limiting the excitation volume at the focal point, instead of limiting the de-

tection of a photon with a pinhole. This technique minimizes tissue damage caused by

photochemical interactions. Furthermore, the excitation light required to combine two

photons to excite a fluorophore has a longer wavelength (700–1,000 nm) compared

with the light used in single-photon microscopes. Therefore, the resulting scattering is

significantly reduced, and greater depths can be reached. However, because the reso-

lution scales inversely with the wavelength, the resolution decreases progressively as

depth increases [69].



Figure 2 (A) Main parts of the TPLSM [22]. 2-photon excitation can have advantages for 3D imaging of
the relatively thick, up to 1 mm and more objects in vitro as well as in vivo. (B) Three-dimensional TPLSM
high-resolution image [25]. (C) Intravascular oxygen could be measured over various depths of cortex by
TPLSM. The color bar shows the calculated partial pressure of oxygen at the measured location [25].
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Recent advances in TPLSM have allowed simultaneous measurement of the activity

of single, visually identified blood vessels and visualization of neuronal and glial activity

using calcium indicators [11,12,23]. TPLSM can be employed to calculate vascular dy-

namics at the single-vessel level by measuring the diameter of the vascular lumen and

RBC speed (Figure 2C). A common technique to visualize blood vessels utilizes space-

occupying high-contrast molecules, such as fluorescent dye-dextran conjugates (e.g.,

fluorescein isothiocyanate, FITC) [70]. Continuous line scans perpendicular to the ves-

sel axis can be conducted to measure changes in vessel diameter over time, and RBC

speed can be calculated from repeated line scans along the axis of the vessel lumen.

The movement of RBCs over the background fluorescence of dextran-containing fluid

generates streaks in the space-time stack image. The blood flow can then be calculated

as a product of the vessel cross-section area and RBC speed [71].
Laser speckle contrast imaging (LSCI): a powerful tool for probing cerebral blood flow

LSCI is a very practical and economic imaging tool used to visualize fine microvascula-

ture and perfusion dynamics (Figure 3A). Physically, LSCI is a powerful imaging

method based on light absorption and scattering and focuses on interpreting the

speckle pattern phenomenon - intensity patterns produced by the interference of a set

of light waves.

LSCI is a non-scanning imaging modality that is capable of monitoring a wide field of

view with a high temporal resolution. LSCI utilizes RBCs to induce speckle contrast of

laser light, which is inversely related to CBF [26]. The details of the theory and method-

ology [27] underlying the LSCI technique can be found in previous reports [26,28,29].

However, LSCI can only be used to generate information from single vessels that are
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located on or close to the cortical surface due to its limited penetration depth and poor

depth resolution [26,28,29]. Nevertheless, LSCI is a popular imaging tool because of its

ability to directly assess cerebral flow velocities with an excellent resolution, without

the need for an exogenous contrast agent.

The LSCI technique has been applied by many researchers to study the spatiotempo-

ral evolution of cortical hemodynamic patterns in response to functional stimulation. Li

et al. developed an LSCI system with a high resolution (6.7 μm× 6.7 μm) to

characterize the CBF and corresponding vasomotor response that occurred in response

to electrical stimulation of the rat peripheral trigeminal nerve [28] (Figure 3B). The tri-

geminal neural system is an important factor in the pathogenesis of migraines [74], and

understanding the relationship between this system and migraine via the LSCI tech-

nique will be useful for further examining disorders of the neurovascular system, espe-

cially for exploring their underlying cellular and molecular basis. Moreover, Bouchard

et al. proposed an LSCI system with a lower overall cost compared with the LSCI sys-

tem currently employed in laboratory settings. This low-cost LSCI system enables sim-

ultaneous visualization of HbT, HbO2 and Hb dynamics within single vessels in

response to forepaw stimulation [75]. LSCI has proven to be an important tool for

neuroscience research, presenting excellent spatial and temporal resolutions and cap-

abilities that extend beyond the visualization of cerebral functional and structural

hemodynamic patterns.

There is great interest in studying neurovascular responses of animals in an awake

state because recent studies have shown that anesthesia may alter the responses of
Figure 3 (A) Setup of the experimental LSCI [72]. (B) Images displaying the vascular responses during
and after electrical stimulation of peripheral trigeminal nerve fibers [28]. (C) A schematic drawing of the
integrated imaging microscope shown that the incident and reflected light paths in blue and green,
respectively; and a photograph of the assembled device [73]. (D) This integrated imaging microscope can
be used for untethered cortical imaging in freely-moving animals [73].
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neural circuits. Most of the LSCI systems that have been developed to monitor CBF

can be used only on anesthetized animals. Therefore, a novel LSCI device that can

examine CBF changes in small anesthetized animals is needed. However, in designing

such a device for use in freely moving animals, there are several major challenges:

1) the imaging device must be lightweight, and the equipment response must be

rapid; 2) anti-motion artifacts need to be considered in freely moving animals; and

3) the wireless charge and signal transmission must be robust, especially for behavioral

studies. How to overcome the above-mentioned issues using technology to minimize

LSCI systems into a reliable device for use in freely moving animals is an issue of great

interest and importance. Recently, Miao et al. proposed a miniature LSCI imager that

weighs approximately 20 g and can image CBF changes in freely moving animals [30].

This miniature LSCI imager includes an image sensor, a light source, an optical lens and

a data acquisition board and can generate real-time CBF images with a high spatiotem-

poral resolution in freely moving animals.

Murari et al. proposed an integrated miniature LSCI microscope that allows several

optical techniques to be applied (i.e., reflectance, spectroscopy, speckle and fluores-

cence imaging) [73] (Figure 3C-3D). This novel lightweight LSCI microscope can image

cortical CBF changes in mobile rats. In the future, widespread use of the LSCI tech-

nique to image awake and active animals will provide critical information about cur-

rently unknown cerebral neuroscience issues in these animals (Figure 3D). Moreover,

this technique will offer the advantage of allowing physiological processes and struc-

tures to be studied in freely moving animals.
In vivo VSDi: direct imaging of neural activity and neurovascular coupling

Over the past several decades, various imaging approaches have been developed to in-

vestigate both individual and network neuronal properties in living organisms. Imaging

techniques such as fMRI and IOS are used to detect changes in brain tissue oxygen-

ation levels in response to neural activity. VSDi (Figure 4A) can achieve a much higher

spatial and temporal resolution compared with these techniques. This approach is par-

ticularly useful for generating functional images of neural circuit dynamics in superfi-

cially located brain structures such as the neocortex [76]. VSDi is based on the

electrochemical properties of the neural membrane. Voltage-sensitive dye molecules

change the level of light absorbance or fluorescence in proportion to the membrane po-

tential. Therefore, they allow visualization of neural activity with a high temporal (less

than 1 millisecond) resolution [77].

In VSDi, the optical signal is determined by two components: 1) the amplitude of the

changes in the membrane potential and 2) the size of the membrane surface stained

with the voltage-sensitive dye. In the neocortex, the dendrites cover a larger area than

the neuronal soma; therefore, the fluorescence signal mostly reflects postsynaptic po-

tentials, rather than action potentials [76]. The response time of the voltage-sensitive

dye molecules is quite short but is longer than the time over which a membrane poten-

tial changes. For some probes, the response time is in the microseconds and shows a

linear correlation with the membrane voltage. The two main classes of voltage-sensitive

dyes can be differentiated based on their chemistry: the first class of dyes undergoes

changes in absorbance and the second class changes in fluorescence [79].
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The excitation and emission wavelengths of the two main classes of voltage-sensitive

dyes are also different. For in vivo research, these wavelengths should show minimal

overlap with hemoglobin absorption; however, this consideration is not critical for

in vitro imaging. During in vitro imaging, the sample is illuminated by a monochro-

matic excitation light, and the fluorescent signal is recorded by a CCD camera or a

photodiode array through appropriate optic filters. The temporal resolution of VSDi is

limited by the technical properties of the imaging setup, whereas the spatial resolution

is determined by the optical scattering of the brain tissue and usually cannot exceed a
Figure 4 (A) Main principle of the VSDi system. Commonly used voltage sensitive dye di-4-ANEPPS, or
other dyes, are able to provide measurements of membrane potential of single neurons or large neuronal
populations. Dye molecules are localized in membranes with their hydrophobic tails and transduce
membrane potentials changes into the optic features. (B) A VSD optical images showing mouse whisker
stimulation fluorescence changes [78]. The stimulus onset was at the beginning of first frame number one,
the time after stimulus onset is indicated at the bottom left corner of each image.
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few tens of microns [79]. Spatial resolution can be improved by applying VSDi in com-

bination with either confocal laser scanning microscopy for in vitro experiments or

multiphoton microscopy for both in vivo and in vitro experiments [24].

Due to chemical toxicity, VSDi is not suitable for use in clinical practice. However,

VSDi is a powerful technique for animal experiments, including visual [47], auditory

[80] and somatosensory [48,81] research (Figure 4B). This field of brain imaging will

undoubtedly benefit from the development of genetically encoded fluorescent voltage-

sensitive probes, such as voltage-sensitive dye proteins (VSDP) [82]. These genetically

engineered proteins allow the analysis of rapid electrical signals in neural populations

in vitro as well as in vivo. Encoded fluorescent probes can also be targeted to selected

neurons in different parts of the brain.
Neurovascular photoacoustic microscopy

Photoacoustic (PA) imaging is an optical absorption-based hybrid imaging technique

that combines the advantages of optical and ultrasound techniques to provide a high

optical absorption contrast and ultrasonic spatial resolution at a penetration depth of

up to several centimeters (Figure 5A). This technique visualizes the high optical ab-

sorption contrast of biological tissues, instead of the low acoustic scattering contrast.

The spatial resolution of PA imaging is determined primarily by the characteristics of

the ultrasound transducer, such as center frequency, bandwidth, and numerical aper-

ture, rather than by optical diffusion (as in optical imaging) [83]. Ultrasonic detection

improves the spatial resolution of PA imaging up to few microns [83] and can also im-

prove it up to even one micron [84]. Moreover, PA imaging is uniquely sensitive to

blood in vivo due to the high intrinsic optical absorption of blood relative to other bio-

logical tissues [40]. PA imaging of in vitro and in vivo blood samples has shown that

this technique can assess relative changes in the concentrations of both oxyhemoglobin

and deoxyhemoglobin [40]. Using appropriate and distinct PA excitation wavelengths,

it has been demonstrated that changes in HbT, CBV and SO2 can be probed independ-

ently. For example, photoacoustic signals generated at 560 or 600 nm are sensitive to

SO2 changes, whereas the signals at 570 nm, an isosbestic point of the molar extinction

spectra of oxy- and deoxy-hemoglobin, are instead insensitive to SO2 but on the other

hand can be used to image changes in HbT and CBV[40].

A reflection-mode PA microscopy (PAM) technique involving dark-field illumination

has been proposed by Maslov, et al. [84] (Figure 5A). PAM can be further divided into

optical- (OR-PAM) and acoustic-resolution PAM (AR-PAM), depending on the reso-

lution and penetration preference for an optical or ultrasonic focus in experiments, re-

spectively. OR-PAM provides an imaging resolution at the cellular level (i.e., ranging

from a few hundred nanometers to a few micrometers). At depths beyond the optical

diffusion limit and up to a few millimeters, AR-PAM has achieved a lateral resolution

of 45 μm and an imaging depth of 3 mm [41]. Dark-field PAM is able to monitor brain

activity through the intrinsic blood hemodynamic response and can distinguish be-

tween increased blood oxygenation and a decreased blood volume via spectroscopic

techniques. The ability of PAM to track blood oxygenation in the mouse brain was

shown using a technique that controls hypoxic and hyperoxic changes [88]. Recently,

the PAM technique has been applied to subcutaneous vasculature imaging [35], breast



Figure 5 (A) AR-PAM system [85]. PA imaging to probe changes in cortical blood volume (B) and
oxygenation (C) without a labeling agent [40]. (D) In vivo transcranial imaging of changes in HbT in single
cerebral cortex vessels in small animals [37]. (E) Cerebral hemodynamic responses to neuronal activities
induced by direct cortical electrical stimulation in rats; V1, V2 – observed blood vessels [86]. (F-G) A method
to measure transverse blood flow was employed PA Doppler, showing the (F) speed and (G) velocity with
directions [87].
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tumor detection [89], drug delivery [90,91], tissue temperature monitoring [92] and

oxygenation monitoring in blood vessels [36,85].

Based on the advantages of PAM and excitation wavelength optimization, Liao et al.

have successfully applied acoustic-resolution functional photoacoustic microscopy sys-

tem (fPAM) to probe changes in CBV (Figure 5B) and SO2 (Figure 5C) without a label-

ing agent under electrically stimulation. This technique is ideal for in vivo imaging of

changes in HbT, CBV and SO2 in single cerebral cortex vessels in small animals [37]

(Figure 5D). The fPAM technique has a high resolution and can achieve a satisfactory

imaging quality in small animals with good penetration depth. fPAM can be used

visualize dynamic and functional activities in the brain because of the intrinsic optical

absorption contrast of blood in brain tissues and the ability to distinguish between
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increased blood oxygenation and a decreased blood volume via spectroscopic tech-

niques. Details of the method for selecting the proper wavelength for the intrinsic con-

trasting of optical absorptions have been described and discussed in a previous report

[40]. This technique has been used to visualize 1) cerebral hemodynamic responses to

neuronal activities induced by electrical stimulation in rats [40,86] (Figure 5E), 2) cerebral

functions based on changes in HbT, CBV and SO2 in the rat brain [38] and 3) transcranial

(through the cranium, through the skull) functional cerebral hemodynamic changes in

single blood vessels [37,39]. In addition, Yao et al. proposed a method to measure

transverse blood flow speed (Figure 5F) and velocity (Figure 5G) with directions that

employs PA Doppler broadening of the signal bandwidth [87].

These authors confirmed that their method reliably measures the blood flow in the

microvasculature of the mouse ear. These results suggest that all of the parameters

which are needed for CMRO2 estimation (i.e., the functional changes in cerebral HbT,

CBV, SO2 and blood flow) are measurable via the current fPAM technique in one sin-

gle setup. One future challenge is the exact quantification CMRO2 via fPAM, as this

will be very useful in clinical applications. Thus, transcranial monitoring of cerebral

blood oxygenation by multi-wavelength PA system was reported recently. It was dem-

onstrated that the oxygenation-related PA signal is detectable through the sheep’s intact

scalp and skull, so the same technology can be performed in humans [93]. The skull

strongly absorbs and scatters light, but the photon recycler increases the light transmit-

tance through the bone. This promising technology had demonstrated the feasibility of

photoacoustic tomography through the adult human skull [94].

Another future challenge is to design a “portable real-time fPAM system” for freely

moving animals. Such a technique would be safe and would provide both a high con-

trast and high spatial resolution. Zemp’s group recently designed a portable PAM with

an optical-level resolution and demonstrated the performance of this device in both

in vitro and in vivo studies [95]. This handheld PAM retains the original merits of the

previous OR-PAM system and allows real-time imaging to be performed. This fiber

based handheld PAM design has the potential to be used in applications of freely mov-

ing animals.
Functional near-infrared spectroscopy

The fNIRS technique relies on specific laser wavelengths (usually in the range of 700 –

1,700 nm) penetrating through the scalp to enable non-invasive measurement of

changes in brain activity [43,44]. Although the spatial resolution of fNIRS is lower than

that of other optical imaging techniques, fNIRS offers distinct advantages over fMRI,

such as much lower cost, portability, ability to make continuous and long term mea-

surements, and the ability to separate the relative concentrations of SO2, Hb and HbT

when several proper wavelengths are simultaneously used. Previous studies have ap-

plied NIRS in functional imaging and cortical brain mapping based on the observation

that regional CBF increases in response to a stimulus event. A variety of methods have

been developed for fNIRS instruments, including the 1) continuous wave (CW), 2) time

domain (TD) and 3) frequency domain (FD) methods, which have been applied in func-

tional imaging to map motor [96], visual [8] and resting-state connectivity [43] in small

animal models.
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The CW method is used to measure changes in the incident light amplitude [44].

The laser light source is emitted and illuminates a selected scalp surface position. After

the light has passed through the skull near the brain surface, highly scattered and atten-

uated light can be observed. Therefore, light intensity changes can be measured from a

few centimeters below the skull. The intensity changes at the selected light wavelengths

can be used to calculate the concentrations of HbO and HbR based on the Beer-

Lambert Law (BLL) [44]. Because a CW system can only detect the amplitude decay of

light, the exact volume of tissue that the light has illuminated is unknown; therefore,

the absolute values of the hemodynamic concentrations cannot be provided [44]. In

contrast, TD- and FD-fNIRS systems can estimate the path length of the NIR light from

multi-distance sensors to derive the absolute values of hemodynamic concentrations

[45]. For example, time-resolved near-infrared spectroscopy (TR-NIRS) systems employ

short, picosecond, laser pulses and a fast photon-counting detector to detect the flight

time of photons as light is attenuated through various cerebral tissue layers (i.e., the

skull) [97]. In addition, the TR-NIRS technique is comparable to IOS because of its’

ability to distinguish changes in absorption from changes in scattering [97].

A future challenge is to improve the fNIRS technique for use in clinical settings and

studies, such as for rehabilitation or for brief evaluations before and after a trial of a

particular therapy [98,99]. For example, although examining an individual stroke survi-

vor’s unique brain response might be one method to determine the appropriate re-

habilitation program, the use of fNIRS may provide a better understanding of the brain

reorganization and motor recovery that have occurred and could provide a new avenue

for designing therapeutic rehabilitation strategies that are tailored to the individual. We

expect many unique and significant discoveries to be made in the area of brain-based

rehabilitation research. Due to its many advantages, including cost, convenience of

noninvasive and real-time imaging, etc., clinical studies applying fNIRS are likely to find

use and applications in the very near future.

Multimodal imaging techniques
The use of only one imaging technique to study cerebral functions provides a descrip-

tive view of a single aspect of the underlying multi-faceted physiological processes.

Multimodal imaging techniques provide a better way to study complex cerebral func-

tions by allowing simultaneous measurement of multiple relevant physiological and

biophysical parameters. Several multimodal fPAM techniques for neuroimaging have

been proposed recently. For example, Wang et al. described a dual-modality micro-

scope that combines PAM and fluorescence confocal microscopy (PA-FCM), designed

for use in in vivo SO2 imaging [100]. Tan et al. proposed a multimodal imaging system

that combines laser-scanning optical-resolution photoacoustic microscopy (LSOR-

PAM) with spectral-domain optical coherence tomography (SD-OCT) to obtain better

structural information along with that of blood vessels [101]. They demonstrated the

feasibility of measuring in vivo metabolic changes in small animals. To achieve molecular-

specific imaging with a high spatial resolution in deep tissue, Yakovlev, et al. combined

molecularly specific stimulated Raman excitation with photoacoustic detection [102].

They found that unique stimulated Raman photoacoustic waves can be triggered and

detected using a traditional ultrasonic transducer to form an image, which follows the de-

sign of the established PAM technique.
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The combination of different imaging techniques in the same session seems

very promising. For example, PA that is agent–free imaging method, was success-

fully indicates glucose metabolism level [103]. Fluorescently-labeled deoxyglucose

analog, called 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG),

which penetrates across the BBB, provided significant contrast for the photoacoustic

imaging [103].

VSDi was successfully used for a neurovascular coupling studies in the epileptic re-

search. Thus, simultaneous monitoring of the cerebral blood volume and VSDi demon-

strated that an epileptic seizure consist of multiple dynamic multidirectional waves of

membrane potential change that spread through a widespread network [104]. It seems

extremely promising that VSDi recently has been used in combination with LSCI to

directly visualize cortical spread depression. LSCI was employed for the monitoring of

the CBF changes while VSD was used for direct recording of the neural activity [105].

Another powerful imaging method is the combination of VSDi with 2-photon excita-

tion effect. This combination allows depth-resolved optical recordings with high tem-

poral resolution not only from anesthetized but also from awake animals [24].

Theoretically, 2-photon excitation can be combined with many types of fluorescence

probes, but it is possible to use such combination only in animal experiments due to

the effects of fluorescence agents such as bleaching and cytotoxicity.

The fluorescent optical biomarker, indocyanine green (ICG), has been employed in

combination with fNIRS [106]. This method not only brings new data about

neurovascular coupling but also may be of wide clinical interest, since ICG is non-toxic

as and generally considered safe (and approved for human use by the Food and Drug

Administration). ICG is already used in clinical applications, such as retinal imaging,

and hence in combination with various imaging modalities, it may prove to be valuable

in performing imaging studies at the bedside in patients.
Translation to human studies
Transcranial optical imaging remains challenging since optical scattering and absorp-

tion degrade the spatial resolution as well as the signal-to-noise ratio [103]. Brain im-

aging based on fluorescence probes was first conducted in 1948 [107] but was not

considered an established method until recently. Fluorescence angiography provides a

method to visualize perfusion during neurovascular operations, such as the treatment

of angioma and the clipping of aneurysms. The fluorescent dye employed in this tech-

nique; usually ICG binds to plasma proteins and remains intravascular. It was success-

fully employed during neurosurgery [108] for the vascular imaging. However, this dye

fails to reveal relative microcirculatory flows or tissue perfusion. Other dyes, such as

aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX), bind selectively to tumor

cells to facilitate the resection of brain tumors. Angiogenesis is essential for brain

tumor development therefore the changes in the local neurovascular coupling play im-

portant role in the tumor localization and anticancer therapy. Brain glucose metabol-

ism, one of the most important factors in the neurovascular coupling, can be studied

using specific fluorescent glucose substitutes [109]. In clinical practice, 2-deoxy-2-[(7-

nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) has been used frequently

due to its strong fluorescence and low toxicity [103].
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Advances in brain imaging can also contribute to the understanding of cognitive phe-

nomena and neurological diseases [78], as these may correlate well with the changes in

the neurovascular –coupling. Cerebral blood measurements are of great importance in

the clinical setting especially in identification of progressive hypoperfusion before the

onset of permanent brain damage [110]. But the imaging of the CBF as well as local

blood and tissue oxygenation did not exist in the clinical practice twenty years ago. Re-

gional changes in CBF, local oxygenation and metabolism have been reported in epi-

lepsy, depression, bipolar disorder, brain trauma and other types of the brain pathology.

These measurements are not only useful in a variety of surgical procedures, such as

during clipping of aneurysms or vessel bypasses to assess baseline blood flow but also

during neural or glial tumor resection to assess postsurgical tissue viability. Such mea-

surements provide information allowing the identification of motor, sensory and speech

activation centers in the cortex in procedures that require functional localization. How-

ever, the application of optical imaging techniques in humans presents several difficulties.

Due to the spatial resolution limitations imposed by the thickness of the human skull

and the dura mater, beyond the first few years of life, the use of transcranial optical im-

aging can be performed only on the exposed brain during the course of therapeutic

neurosurgical interventions. Because calcium- and voltage-sensitive dyes are not ap-

proved for use in humans, most studies have relied on intrinsic signals. The IOS is

based on the light absorption and reflection property changes that occur in neural tis-

sue when activated [111]. Although the spatial resolution (up to ~50 μm) of the IOS is

pretty good for the human studies, IOS lucks the depth resolution in contrast with

fMRI. Anyway, it is suitable for many functional studies that can utilize functional op-

tical changes arising at the cortical surface. The temporal resolution of the IOS is better

than that of fMRI in many cases. Furthermore, the affordable IOS setup is more afford-

able as it requires no additional modification of the operating room (OR). It may also

be safe as no physical contact with tissue is required, thus avoiding potential risk of in-

fection. Because light scattering and absorption are determined by the wavelength of

the photon involved, the use of infrared and near-infrared light allows imaging at

greater depths. For this reason, NIRS has been utilized extensively in clinical situations,

including in non-invasive studies in infants with thin skulls [81]. Because the NIRS ap-

paratus is portable and tolerable to movement by the subject during image acquisition,

this technique has proven to be successful for many applications, such as the

localization of epileptic seizures with increasing local cortical blood circulation [112]

and in cognitive neuroscience research [113]. Based on the light-scattering pattern pro-

duced upon neural activation, which is likely due to optical changes caused by ionic

movements across the neuronal membrane [10], a similar imaging technique referred

to as the event-related optical signal (EROS) has been used in numerous functional

studies [114]. Intraoperative imaging using EROS in awake patients during brain sur-

gery has allowed characterization of stimulation-evoked epileptiform activity and the

activation of Wernicke’s and Broca’s areas during language tasks [112,115]. Based on

initial reports as well as its high temporal resolution and real-time capabilities, LSCI

might be an efficient method to image CBF intraoperatively, with minimal interference

to the ongoing surgery.

Although PA imaging presents many advantages [116,117] application of this tech-

nique is also faces several difficulties. For example, because physical contact is needed
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for efficient ultrasound transmission, use of a sterile sleeve to cover the transducer and

sterile saline solution as a coupling medium are imperative. Nevertheless, because of its

high resolution and ability to carry out multifunctional analysis of brain structure and

metabolism, PAM appears to be a promising tool for measuring cerebral hemodynamic

responses during neurovascular procedures.

It may take a while before a definitive technique for intraoperative neurovascular im-

aging is developed. Ideally, a suitable neurovascular imaging technique should have

both high spatial and temporal resolution and should allow itself to be incorporated

harmoniously within surgical techniques. The alternatives presently available allow

compatible integration within the OR setting, precise anatomical resolution, or real-

time accuracy, but not all three simultaneously. However, several technological ad-

vances suggest that an ideal system is possible in the future. Features such as

fiber-optic and microscope miniaturization allow imaging techniques, previously exclusive

to the bench top, to be made portable [118]. The use of a single optical fiber as both the

illumination point source and detection pinhole, in combination with tissue-specific

fluorophores and handheld confocal systems, is currently being tested in neuroimaging

and brain tumor surgery [119]. A synergy between these high-resolution optical systems

and the other systems reviewed above may provide definitive surgical imaging tools in

the near future.

Electroencephalography (EEG) is often considered the "golden standard" in neurology.

However, EEG monitoring is inadequate for questions regarding co-localization of elec-

trical activity and changes in oxygenation and blood flow resulting from metabolic ac-

tivity [120-122]. Thus, for such applications and measurements optical recordings may

actually be more adequate and also applicable to monitoring or localizing foci of par-

ticular neurological disorders. The goal of the current brain optical imaging studies will

be to translate recent findings into clinical practice.

Conclusions
We have reviewed a wide range of in vivo optical imaging techniques and explored

their many important applications in studying the cerebral neurovascular functions.

We have further provided insight into the fundamental basis of many in vivo optical

imaging techniques and highlighted important considerations for their practical imple-

mentation. We hope that this detailed review will aid researchers who are interested in

either using or developing in vivo optical imaging techniques to understand the key as-

pects that should be considered when acquiring measurements or analyzing data. We

have surveyed the huge body of literature that discusses studies in which in vivo optical

imaging technologies and systems have been used successfully in ground-breaking and

fundamentally important research and applications in cerebral neuroscience. The devel-

opment of in vivo optical imaging techniques represents a rapidly expanding field that

is continually evolving to embrace new technologies and clinical applications.
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