137 research outputs found

    Congenital Disorders of Glycosylation in Portugal—Two Decades of Experience

    Get PDF
    Objective: To describe the clinical, biochemical, and genetic features of both new and previously reported patients with congenital disorders of glycosylation (CDGs) diagnosed in Portugal over the last 20 years. Study design: The cohort includes patients with an unexplained multisystem or single organ involvement, with or without psychomotor disability. Serum sialotransferrin isoforms and, whenever necessary, apolipoprotein CIII isoforms and glycan structures were analyzed. Additional studies included measurement of phosphomannomutase (PMM) activity and analysis of lipid-linked oligosaccharides in fibroblasts. Sanger sequencing and massive parallel sequencing were used to identify causal variants or the affected gene, respectively. Results: Sixty-three individuals were diagnosed covering 14 distinct CDGs; 43 patients diagnosed postnatally revealed a type 1, 14 a type 2, and 2 a normal pattern on serum transferrin isoelectrofocusing. The latter patients were identified by whole exome sequencing. Nine of them presented also a hypoglycosylation pattern on apolipoprotein CIII isoelectrofocusing, pointing to an associated O-glycosylation defect. Most of the patients (62%) are PMM2-CDG and the remaining carry pathogenic variants in ALG1, ATP6AP1, ATP6AP2, ATP6V0A2, CCDC115, COG1, COG4, DPAGT1, MAN1B1, SLC35A2, SRD5A3, RFT1, or PGM1. Conclusions: Portuguese patients with CDGs are presented in this report, some of them showing unique clinical phenotypes. Among the 14 genes mutated in Portuguese individuals, 8 are shared with a previously reported Spanish cohort. However, regarding the mutational spectrum of PMM2-CDG, the most frequent CDG, a striking similarity between the 2 populations was found, as only 1 mutated allele found in the Portuguese group has not been reported in Spain.info:eu-repo/semantics/publishedVersio

    The Benefits of Using a Consistent Tangent Operator for Viscoelastoplastic Computations in Geodynamics

    Get PDF
    Strain localization is ubiquitous in geodynamics and occurs at all scales within the lithosphere. How the lithosphere accommodates deformation controls, for example, the structure of orogenic belts and the architecture of rifted margins. Understanding and predicting strain localization is therefore of major importance in geodynamics. While the deeper parts of the lithosphere effectively deform in a viscous manner, shallower levels are characterized by an elastoplastic rheological behavior. Herein we propose a fast and accurate way of solving problems that involve elastoplastic deformations based on the consistent linearization of the time-discretized elastoplastic relation and the finite difference method. The models currently account for the pressure-insensitive Von Mises and the pressure-dependent Drucker-Prager yield criteria. Consistent linearization allows for resolving strain localization at kilometer scale while providing optimal, that is, quadratic convergence of the force residual. We have validated our approach by a qualitative and quantitative comparison with results obtained using an independent code based on the finite element method. We also provide a consistent linearization for a viscoelastoplastic framework, and we demonstrate its ability to deliver exact partitioning between the viscous, the elastic, and the plastic strain components. The results of the study are fully reproducible, and the codes are available as a subset of M2Di MATLAB routines

    Density functional theory calculations of the carbon ELNES of small diameter armchair and zigzag nanotubes: core-hole, curvature and momentum transfer orientation effects

    Full text link
    We perform density functional theory calculations on a series of armchair and zigzag nanotubes of diameters less than 1nm using the all-electron Full-Potential(-Linearised)-Augmented-Plane-Wave (FPLAPW) method. Emphasis is laid on the effects of curvature, the electron beam orientation and the inclusion of the core-hole on the carbon electron energy loss K-edge. The electron energy loss near-edge spectra of all the studied tubes show strong curvature effects compared to that of flat graphene. The curvature induced πσ\pi-\sigma hybridisation is shown to have a more drastic effect on the electronic properties of zigzag tubes than on those of armchair tubes. We show that the core-hole effect must be accounted for in order to correctly reproduce electron energy loss measurements. We also find that, the energy loss near edge spectra of these carbon systems are dominantly dipole selected and that they can be expressed simply as a proportionality with the local momentum projected density of states, thus portraying the weak energy dependence of the transition matrix elements. Compared to graphite, the ELNES of carbon nanotubes show a reduced anisotropy.Comment: 25 pages, 15 figures, revtex4 submitted for publication to Phys. Rev.

    Tradable Credits Scheme on Urban Travel Demand: A Linear Expenditure System Approach and Simulation in Beijing

    Get PDF
    Using a linear expenditure system (LES) approach, we investigate the influences of a new mobility management measure, a tradable credits scheme (TCS), on the pattern of daily trips measured in kilometres. Generally, we assume that an individuals’ travel consists of a car mode and a non-car mode. The effects of the TCS are discussed from a microeconomic perspective and using a scenario simulation study for the municipality of Beijing. Whilst other research has shown that travellers trade their credits and are generally inclined to non-car mode, the implementation of the tradable credits scheme demonstrated here is that travellers are likely to restrain their use of both car and non-car travel modes. Furthermore, both car and non-car mode trips are shown to be price inelastic, whilst the cross-price elasticity for different districts demonstrates a complementary relationship between car and bus modes

    Learning Curves of Minimally Invasive Distal Pancreatectomy in Experienced Pancreatic Centers

    Get PDF
    IMPORTANCE Understanding the learning curve of a new complex surgical technique helps to reduce potential patient harm. Current series on the learning curve of minimally invasive distal pancreatectomy (MIDP) are mostly small, single-center series, thus providing limited data.OBJECTIVE To evaluate the length of pooled learning curves of MIDP in experienced centers.DESIGN, SETTING, AND PARTICIPANTS This international, multicenter, retrospective cohort study included MIDP procedures performed from January 1, 2006, through June 30, 2019, in 26 European centers from 8 countries that each performed more than 15 distal pancreatectomies annually, with an overall experience exceeding 50 MIDP procedures. Consecutive patients who underwent elective laparoscopic or robotic distal pancreatectomy for all indications were included. Data were analyzed between September 1, 2021, and May 1, 2022.EXPOSURES The learning curve for MIDP was estimated by pooling data from all centers.MAIN OUTCOMES AND MEASURES The learning curvewas assessed for the primary textbook outcome (TBO), which is a composite measure that reflects optimal outcome, and for surgical mastery. Generalized additive models and a 2-piece linear model with a break point were used to estimate the learning curve length of MIDP. Case mix-expected probabilities were plotted and compared with observed outcomes to assess the association of changing case mix with outcomes. The learning curve also was assessed for the secondary outcomes of operation time, intraoperative blood loss, conversion to open rate, and postoperative pancreatic fistula grade B/C.RESULTS From a total of 2610 MIDP procedures, the learning curve analysis was conducted on 2041 procedures (mean [SD] patient age, 58 [15.3] years; among 2040 with reported sex, 1249 were female [61.2%] and 791 male [38.8%]). The 2-piece model showed an increase and eventually a break point for TBO at 85 procedures (95% CI, 13-157 procedures), with a plateau TBO rate at 70%. The learning-associated loss of TBO rate was estimated at 3.3%. For conversion, a break point was estimated at 40 procedures (95% CI, 11-68 procedures); for operation time, at 56 procedures (95% CI, 35-77 procedures); and for intraoperative blood loss, at 71 procedures (95% CI, 28-114 procedures). For postoperative pancreatic fistula, no break point could be estimated.CONCLUSION AND RELEVANCE In experienced international centers, the learning curve length of MIDP for TBO was considerable with 85 procedures. These findings suggest that although learning curves for conversion, operation time, and intraoperative blood loss are completed earlier, extensive experience may be needed to master the learning curve of MIDP

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF
    corecore