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Abstract Strain localization is ubiquitous in geodynamics and occurs at all scales within the lithosphere.

How the lithosphere accommodates deformation controls, for example, the structure of orogenic belts and

the architecture of rifted margins. Understanding and predicting strain localization is therefore of major

importance in geodynamics. While the deeper parts of the lithosphere effectively deform in a viscous

manner, shallower levels are characterized by an elastoplastic rheological behavior. Herein we propose a

fast and accurate way of solving problems that involve elastoplastic deformations based on the consistent

linearization of the time-discretized elastoplastic relation and the finite difference method. The models

currently account for the pressure-insensitive Von Mises and the pressure-dependent Drucker-Prager yield

criteria. Consistent linearization allows for resolving strain localization at kilometer scale while providing

optimal, that is, quadratic convergence of the force residual. We have validated our approach by a qualitative

and quantitative comparison with results obtained using an independent code based on the finite element

method. We also provide a consistent linearization for a viscoelastoplastic framework, and we demonstrate

its ability to deliver exact partitioning between the viscous, the elastic, and the plastic strain components.

The results of the study are fully reproducible, and the codes are available as a subset of M2Di MATLAB

routines.

1. Introduction

The deformation of the lithosphere is classically divided into brittle and ductile regimes (Fossen, 2016). The

brittle regime describes processes that are best modeled by frictional slip along discrete slip planes (disloca-

tions or faults) in an elastic medium, while in the ductile regime, processes are best described by distributed

strains within the framework of continuummechanics. The emergence of localized deformations at the scale

of the lithosphere can ultimately lead to the fragmentation of continents, the individualization of tectonic

plates, and the formation of plate boundaries. Such a process lasts typically for millions of years and results in

hundreds of kilometers of displacements. At that scale, faults are not planes anymore but rather shear zones,

involving many slip planes, which are better approximated by continuum mechanics rather than fractured

mechanics.

At the scale of thin sections, rock deformation is typically accommodated bymechanisms such as crystal plas-

ticity and brittle fracturing (Passchier & Trouw, 1996). Crystal plasticity is typical of the so-called ductile regime

and results in macroscopic viscous creep, which implies a rate dependence with often a non-Newtonian

behavior. Brittle fracturing induces the formation of gouges or damaged zones and results in macroscopic

frictional plastic behavior, which implies pressure dependence. The transition from viscous creep to frictional

plastic behavior is primarily controlled by the confining pressure and the temperature (Evans et al., 1990).

Temperature and pressure have competing effects on the strength of rocks, and as both increase with depth

in the lithosphere, so-called brittle-ductile transition zones arise. Elastic deformations in the lithosphere are

small and are often neglected in the study of long-term tectonic processes.

Quantification of tectonic processes relies on establishing quantitative models in an analytical, experimen-

tal (analog), or numerical form. While analytical modeling can provide first-order insights into the physics of

tectonic processes, it is often limited to small deformations. Experimental modeling enables to study large
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displacements in three dimensions and can account for both frictional plastic (using sand) and linear viscous

rheologies (using, e.g., silicon putty and honey). Yet plate formation and deformation involve processes that

are beyond the scope of this approach (e.g., thermomechanical coupling, non-Newtonian creep, and multi-

physics couplings). For these reasons numerical simulations are slowly taking over the lead for simulating the

formation and the evolution of tectonic plates.

In numerical geodynamic modeling, the treatment of linear and non-Newtonian viscous creep can be con-

sidered as part of the state of the art. However, the implementation of plastic frictional laws to simulate faults

and enhance strain localization can be problematic for numerical codes aimed atmodeling long-term tecton-

ics processes. Numerical modeling of frictional plastic deformation has therefore recently received significant

attention within the long-term tectonic community (Buiter et al., 2006; Buiter et al., 2016; Choi & Petersen,

2015; Olive et al., 2016).

Numericalmodelingbasedon anengineering solidmechanics approach, assuming small displacement gradi-

ents, has beenwidely used in geosciences since the early 1990s when Fast Lagrangian Analysis of Continuum

(FLAC) (Cundall, 1989) was reimplemented into a noncommercial code, in two-dimensional (2-D) (Poliakov

& Podladchikov, 1992), and, later, in 3-D (Choi et al., 2008). The explicit time-stepping strategy was, at the

time, not competitive with the large time steps that could be achieved using implicit approaches based on

incompressible viscous flow or Stokes equations (Fullsack, 1995; Gerya & Yuen, 2003; Kaus, 2010; Moresi et al.,

2007).

Within incompressible viscous flow formulations, plasticity is generally implemented in a viscoplasticity fash-

ion, following the original work ofWillett (1992). The value of viscosity is adapted in order to locally satisfy the

yield condition in the regionswhereplastic yieldingoccurs. In order to satisfy global equilibrium (i.e., force bal-

ance), this approach needs to be complemented with global nonlinear iterations. The viscoplastic approach

is often used together with Picard-type iterations (Kaus, 2010; Moresi et al., 2007) which results in rather

low (at most linear) convergence rates. It is therefore a common practice to accept nonconverged solutions

(Kaus, 2010; Lemiale et al., 2008; Pourhiet et al., 2017) rather than trying to fulfill the force equilibrium require-

ment at each time step. Although Newton-Raphson solvers can overcome the issue of low convergence rates,

Spiegelman et al. (2016) have demonstrated that such viscoplastic formulation is generally unreliable as it

often fails to satisfy the force balance.

Different from viscoplastic formulations which predict instantaneous shear banding, Le Pourhiet (2013)

showed that an elastoplastic formulation allows for elastic unloading after a finite transient phase of elastic

strain. It therefore possesses a physically meaningful elastoplastic tangent operator that can be exploited in

the framework of Newton-Raphson methods. Yet at the time, a reliable quadratic convergence could not be

obtained when using such an approach.

It has been recognized in the computational mechanics literature that the classical way of deriving the con-

tinuum elastoplastic tangent operator is not consistent with the algorithm that is used to compute the

stress increment from the strain increment in plasticity. This deficiency manifests itself when observing the

convergence characteristics of the Newton-Raphson process. Instead of a quadratic convergence behavior,

superlinear convergence is observed, resulting in higher computational costs and a lower accuracy. The cru-

cial observation is that, when integrating the differential expression between strain rates and stress rates

over a time step, a relation between a strain increment and a stress increment ensues. Upon differentiation

of this incremental relation an algorithmic tangent stiffness tensor results, which has additional terms com-

pared to the classical tangential stiffness expression between the rates of the stress and strain tensors. When

using the algorithmic tangent operator, which is consistentwith the algorithm to integrate the strain rate ten-

sor over time, a quadratic convergence of the Newton-Raphson method is recovered (de Borst et al., 2012;

Runesson et al., 1986; Simo & Taylor, 1985; Simo & Hughes, 1998). So far, to our knowledge, this approach

has only received a limited attention in the geodynamic community (Popov & Sobolev, 2008; Quinteros et al.,

2009; Yarushina et al., 2010).

In this contribution the consistent linearization of plasticity models such as Von Mises and (pressure-

dependent) Drucker-Prager is recalled to the geodynamics community. Moreover, consistent linearization is

also presented for viscoelastoplasticity, which allows to capture frictional plastic as well as viscous behavior

of rocks throughout the lithosphere and across the brittle-ductile transitions. While consistent linearization

is independent of the method of discretization, implementations are usually done in the context of the finite
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element method (FEM). Here we present an implementation in the context of the finite difference method

(FDM), and we use results computed with a conventional finite element implementation for benchmarking.

We show, for bothmethods, the ability of the consistent tangent operator todeliver numerical solutionswhich

have converged quadratically, even with a pressure-dependent (Drucker-Prager) plasticity model, up to and

including the emergence of shear localization.

2. Equilibrium and Boundary Conditions

In Cartesian coordinates the equilibrium equations take the following form:

��xx

�x
+

��xy

�y
+

��xz

�z
= 0,

��yx

�x
+

��yy

�y
+

��yz

�z
= 0,

��zx

�x
+

��zy

�y
+

��zz

�z
= 0,

(1)

with x, y, z the spatial coordinates, and �xx , �yy , �zz , �xy = �yx , �yz = �zy and �zx = �xz the components of the

Cauchy stress tensor. In this contribution we limit ourselves to plane-strain conditions, so that the derivatives

with respect to z vanish, and �yz = �zy = 0 and �zx = �xz = 0. The equilibrium equations are complemented

with the following set of boundary conditions:

ui = uBC
i
onΓDirichlet

�ijnj = TBC
i
onΓNeumann,

(2)

where nj is the unit outward normal vector to the domain boundary and the Einstein summation conven-

tion is implied. The uBC
i

and TBC
i

stand for the displacement and traction vectors, applied at complementary,

nonintersecting parts of the domain boundary (ΓDirichlet, ΓNeumann). In the following we will not apply a con-

straint regarding incompressibility, and the pressure field will be fully determined by the rheological model

and the applied displacements at the boundary. The above equations are solved for the displacement vector,

u =
[
uxuyuz

]T
, as the primitive variable.

3. Rheological Models

Rheological models provide the relation between the deformations in the material and the state of stress. In

what follows we use a Maxwell chain and combine the viscous, elastic, and plastic deformations in a series

arrangement. Hence, the strain rate tensor �̇ is decomposed in an additive manner:

�̇ = �̇
v + �̇

e + �̇
p, (3)

where the superscripts v, e, and p stand for the viscous, the elastic, and the plastic components of the strain

rate tensor.

3.1. Viscosity

We consider the viscous deformations to be purely deviatoric and assume that the deviatoric stress � =[
�xx �yy �zz �xy

]T
relates to the deviatoric part of the strain rate �̇′ =

[
�̇′
xx
�̇′
yy
�̇′
zz
�̇ ′
xy

]T
as follows:

� = Dv
(
�̇
v
)′
. (4)

Dv then takes the simple form

Dv = 2�

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
1

2

⎤
⎥⎥⎥⎥⎦
, (5)

where � is the dynamic shear viscosity. The deviatoric viscous strain rates are then simply obtained as

(
�̇
v
)′

=
�

2�
. (6)

In the following we limit ourselves to the case of temperature-independent, linear viscous creep.
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3.2. Elasticity

The total stress relates to the elastic strain according to

� = De
�
e, (7)

where � =
[
�xx �yy �zz �xy

]T
corresponds to the stress tensor (in Voigt notation), � =

[
�xx �yy �zz �xy

]T
is the

strain vector (also in Voigt notation), and De is the isotropic elastic stiffness relation:

De =

⎡
⎢⎢⎢⎢⎣

K +
4

3
G K −

2

3
G K −

2

3
G 0

K −
2

3
G K +

4

3
G K −

2

3
G 0

K −
2

3
G K −

2

3
G K +

4

3
G 0

0 0 0 G

⎤
⎥⎥⎥⎥⎦
, (8)

where K andG are the bulk and shearmodulus, respectively. The deviatoric elastic strains are computed from

(
�
e
)′

=
�

2G
, (9)

while the volumetric elastic strain is obtained as

�e
vol

= −
P

K
. (10)

In this expression P is the negative mean stress: P = −
1

3

(
�xx + �yy + �zz

)
. This study is limited to small

displacement gradients and hence small elastic and plastic strains.

3.3. Plasticity

In the plastic regime the stress is bounded by a yield criterion. In this contribution we use the Von Mises and

Drucker-Prager yield criteria. The yield function, F, then takes the form

F =
√
�J2 − C cos(�) − sin(�)P, (11)

where C and � are the cohesion and the angle of internal friction, respectively, and � = 1 for Drucker-Prager

and � = 3 for Von Mises. J2 is the second stress invariant, conventionally defined as (for plane-strain

conditions) J2 =
1

2

(
�2
xx
+ �2

yy
+ �2

zz

)
+ �2

xy
.

For nonassociated plasticity the plastic flow potentialQ differs from the yield function F. Herein we adopt the

following, common assumption for the plastic flow potential:

Q =
√
�J2 − sin(�)P, (12)

where� is the dilation or dilatancy angle. From the plastic potential, the plastic strain rate tensor is computed

as

�̇
p = �̇

�Q

��
, (13)

where �̇ is the rate of the plastic multiplier. For the Drucker-Prager yield function C ≥ 0, and �> 0, while the

VonMises yield function � = 0. Herein we limit ourselves to ideal plasticity and do not consider hardening or

softening.

4. Numerical Implementation

In actual computations, finite time (or load) increments are taken, and we have to recast the above rate

equations into an incremental format. For finite increments, the additive decomposition of the strain rate

tensor, equation (3), can be expressed as

Δ� = Δ�v + Δ�e + Δ�p = Δ�ve + Δ�p, (14)
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4.1. Viscoelasticity

In the absence of plastic flow, the integration of the Maxwell relationship, equation (3), allows us to express

the viscoelastic shear modulus Gve and the stress update fraction � as

Gve =

(
1

G
+

Δt

�

)−1

� =
Gve

G
, (15)

such that the following update rule for the total stress tensor is obtained:

�
t+1 = �

0 + DveΔ�ve , (16)

where the superscript t + 1 corresponds to the quantity at the end of the current time step and

�
0 = −Pti + �� t , (17)

with for plane-strain conditions iT = [1, 1, 1, 0]. The viscoelastic tangent operator reads

Dve =

⎡
⎢⎢⎢⎢⎣

K +
4

3
Gve K −

2

3
Gve K −

2

3
Gve 0

K −
2

3
Gve K +

4

3
Gve K −

2

3
Gve 0

K −
2

3
Gve K −

2

3
Gve K +

4

3
Gve 0

0 0 0 Gve

⎤
⎥⎥⎥⎥⎦
. (18)

It is noted that the elastic tangent operator,De, is recovered by letting � → ∞ orΔt → 0. A detailed derivation

of this expression and its verification is given in Appendix A.

4.2. Plasticity

In case of plastic deformation, we first determine the plastic strain increment and subsequently linearize the

incremental stress-strain relation in order to obtain the tangent stiffness matrix for the next iteration.

The elastoplastic integration is carried out when the yield condition is positivewhen inserting the viscoelastic

trial stress, that is,

�
trial = �

0 + DveΔ� , (19)

into the yield function. If F(�trial)> 0, a correction, usually named the return map, is applied to compute

Δ�, the (finite) incremental plastic multiplier, and with that, the corresponding plastic strain increment

according to

Δ�p = Δ�
�Q

��
. (20)

This process is typically carried out using an (implicit) Euler backward procedure (e.g., de Borst et al., 2012).

The implicit nature of the algorithm usually entails local iterations. For the yield functions considered here

(Von Mises or Drucker-Prager) and assuming linear hardening or softening—please note that ideal plasticity

as considered here is a special case—a closed-form expression forΔ� can be obtained.

The point of departure is the standard requirement of the Euler backward algorithm that the updated stress,

�
t+1, satisfies the yield function, which, for ideal plasticity reduces to

F(�t+1) = 0 . (21)

Since the updated stress equals the difference of the trial stress �trial and the projection Δ� onto the yield

surface,

�
t+1 = �

trial − Δ� , (22)

or, using equation (20),

�
t+1 = �

trial − Δ�Dve �Q

��
. (23)

We next substitute this expression into equation (21):

F
(
�
trial − Δ�Dve �Q

��

)
= 0 (24)
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Figure 1. Finite difference stencils which were employed for discretizing the

momentum equations in the x, y plane. (a) stencil corresponding to the x

momentum equation. (b) stencil corresponding to the y component. The

red bars correspond to the displacement degrees of freedom involved for

linear elastic or viscoelastic rheological models. The blue bars indicate the

additional degrees of freedom required for the Newton/consistent tangent

linearization (i.e., stencil growth).

and develop this in a Taylor series:

F(�trial) − Δ�
(
�F

��

)T

Dve �Q

��
+ (Δ�2) = 0 . (25)

For the Von Mises and Drucker-Prager yield functions, the higher-order

terms vanish (de Borst & Feenstra, 1990), and the closed-form expression

Δ� =
F(�trial)(

�F

��

)T

Dve �Q

��

(26)

ensues. Substituting equation (11) for the Von Mises and Drucker-Prager

yield functions then yields

Δ� =
F(�trial)

�Gve + K sin(�) sin(�)
. (27)

After bringing the stress back to the yield surface in all centers and vertices

(FDM) or in all integration points (FEM), the new internal force vector is

calculated, and from the difference between this quantity and the external

forces a correction to the displacement field can be computed. When using a Newton-Raphson procedure,

the tangent operator that is exploited must be consistent with the stress update algorithm of equations (21)

and (23). It is therefore derived by linearizing these equations, bearing in mind thatΔ� is a finite but variable

quantity. This results in the viscoelastoplastic consistent tangent operator:

Dvep ≡ ��

��
= E−1Dve −

E−1Dve �Q

��

(
�F

��

)T

E−1Dve

(
�F

��

)T

E−1Dve �Q

��

(28)

with

E = I + Δ�Dve �
2Q

��2
. (29)

A full derivation of these expressions is given in Appendix B, and the convergence of the adopted

time discretization is verified in Appendix C . We finally note that for the present special case of Von

Figure 2. Model configuration and main model parameters. The arrows

indicate the pure shear boundary condition which is applied at the model

boundaries (incremental displacement). Model parameters that are not

defined vary depending to the test case and are listed in Table 1.

Mises/Drucker-Prager plasticity with ideal plasticity, the consistent tan-

gent operator can also be obtained in a very simple manner by modifying

the elastic moduli (de Borst, 1989).

4.3. Spatial Discretization and Solving Procedure

The above equations are discretized using a finite difference staggered

grid formulation (FDM). The discrete representation of the momentum

equations (equation (1)) is denoted as

��ij

�xj
= R, (30)

where R is the global residual and the
�

�xi
symbol corresponds to the dis-

crete spatial derivatives. At each loading step, we seek for an incremental

displacement vector field (primitive variable) that satisfies (‖R‖2 < tol).

The occurrence of nonlinear stress-strain relations locally in the model

domain (i.e., in the plastic region) causes the global equilibrium to not

be satisfied and necessitates an appropriate treatment at global level

(‖R‖2 > 0). Equilibrium is restored iteratively via a sequence of Newton

iterations:

�Δu = −J−1R , (31)

uk+1 = uk + ��Δu, (32)
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Table 1

List of Parameters Relative to the Different Tests Presented in This Study

Parameter Test 1 Test 2 Test 3 Test 4

� (∘) 30 0 30 30

� (∘) 10 0 10 10

Ginc (Pa) 2.5 × 109 2.5 × 109 1010 1010

�mat (Pa⋅s) — — 1024 2.5 × 1021

�inc (Pa⋅s) — — 1017 1017

Δt (s) — — 1010 1010

� (–) 1 3 1 1

where Δu is the solution vector containing the field of incremental displacement components, �Δu is the

Newton correction, � is a line search parameter (�min ≤ � ≤ 1), J is the Jacobian matrix, and k stands for the

iteration count. The Jacobianmatrix is constructed using the consistent tangent operators in case of plasticity

and the viscoelastic operators otherwise. The Newton corrections are computed using a sparse direct factor-

ization of J (“∖” solver in MATLAB). The parameter � is obtained via a line search procedure to minimize the

residual ‖R‖2 based on a direct search method (Räss et al., 2017).

The numerical code is based on the M2Di suite (Räss et al., 2017), which provides a fast and vectorized frame-

work for assemblingmatriceswhich arise from thefinite difference (FDM)discretization inMATLAB. Evaluation

of the plastic consistency condition, return mapping, and assembly of consistent tangent operators is real-

ized at cell centroids and grid vertices. This implies interpolation of shear stresses and strains to cell centers

and normal stresses and strains to vertices. Such an interpolation gives rise to a stencil extension as shown

in Figure 1, where the red symbols denote the degrees of freedom involved in constructing the viscoelas-

tic predictor and the blue symbols represent the nodes needed for the construction of the viscoelastoplastic

predictor. This stencil is similar to what is described for the Newton linearization of the power law viscous

rheology (Räss et al., 2017). In the regions of plastic yielding, the entries of the consistent tangent operator

need to be evaluated. This computation was facilitated by the use of symbolic algebra and code generation

(see Jupyter notebook using SymPy and NumPy python libraries). The results presented in this study can

be reproduced using the routines available from the BitBucket repository (https://bitbucket.org/lraess/m2di

https://bitbucket.org/lraess/m2di).

The verification of the implementation is provided in the following sections and was done by comparing the

results with those obtained using a standard FEM-based code for different resolutions.

5. Model Configuration and Test Cases

Themodel configuration consists of a 2-Ddomain subject to a pure shear boundary condition. An incremental

displacement (ΔuBC) is applied normal to the boundaries. The shear stress tangential to the boundaries is set

equal to 0, such that the tangential displacement components are free (i.e., a free slip condition). A circular

inclusion is located at the center of the domain, which results in a perturbation of the stress field and will

trigger strain localization (see Figure 2). All initial stresses are set to 0, and no confining pressure is applied.

The first model (Test 1) uses an elastoplastic rheology and a nonassociated Drucker-Prager plasticity model.

This test was simulated using both FDM and FEM. The second model (Test 2) relies on an elastoplastic Von

Mises type rheology. The third (Test 3) and fourth (Test 4)models employ aMaxwell viscoelastoplastic rheology

and Drucker-Prager yield function with a nonassociated flow rule. While Test 3 exhibits shear banding in an

elastoplastic medium arising from a viscous inclusion, Test 4 shows the development of shear bands in an

elastic-viscoplastic medium arising from a purely viscous inclusion. The model parameters that are common

for the different tests are specified in Figure 2. The material parameters that are specific for a test are listed in

Table 1.

6. Verification Using FEM Numerical Solutions

To verify the above described FDM implementation, we have compared the results of Test 1 with those

obtained using the FEM. Finite element results were obtained using the code Open-GeoNabla (Gerbault et

al., 2018; Souche, 2018), which is built upon MILAMIN (Dabrowski et al., 2008). This MATLAB code is designed
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Figure 3. Evolution of (a) the mean stress, (b) the mean plastic strain, and (c) the mean plastic work during shear

banding of Test 1. The solid line corresponds to the reference FEM model (76,594 elements/230,535 nodes), and the

open circles represent the results obtained with FDM (resolution of 400 × 200 cells). FEM = finite element method;

FDM = finite difference method.

to model elastoplastic deformation and uses a Drucker-Prager model with a consistent tangent linearization.

The finite element mesh is constructed with triangular elements and uses quadratic shape functions for the

displacements.

We have monitored spatially averaged quantities such as the average stress (�̄),

�̄ =
1

V ∫ ∫
√
�JII dV, (33)

the average plastic strain,

�̄p =
1

V ∫ ∫ �
p

II
dV, (34)

and average plastic work

W̄p =
1

V ∫ ∫ Wp dV. (35)

The results obtained with FDM and with FEM are shown in Figure 3. The average stress is characterized by a

period of elastic loading followedby a period of elastoplastic loading duringwhich shear banding takes place.

The transitionbetween the two regimes occurs for a strain of approximately1.3×10−3 and an average stress of

approximately 2.5 MPa. The two discretizationmethods (FEM and FDM) result in a similar evolution andmag-

nitude of the average stress, the accumulated plastic strain, and the plastic work. Differences in the average

plastic strain calculated with FEM and FDM are noticeable within the first few elastoplastic strain increments.

These can be explained by the different nature of the discretization methods. While the FEM allows to accu-

rately resolve the inclusion/matrix boundary with an unstructured mesh, the FDM (square cells) introduces a

larger discretization error. The stress field is thus better resolved in the vicinity of the inclusion with the FEM.

Therefore, the onset of plastic yielding may thus not occur at the same exact loading step with the FEM and

FDM (e.g., �BC ≈ 0.8×10−3). These differences reduce as the the plastic zone develops away from the inclusion

(e.g., �BC ≈ 1.2 × 10−3).

The spatial distribution of the accumulated strain for different increments is depicted in Figure 4. Shear bands

start to propagate from the imperfection at a strain 1.25× 10−3 (Figures 4a and 4b). At a strain of 1.35× 10−3,

the shear bands hit the boundaries which act as reflecting surfaces due to the free slip boundary condition

(Figures 4c and 4d). At the final stage (strain level 1.75×10−3), the shear bands are fully developed (Figures 4e
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Figure 4. Spatial distribution of the total strain during shear banding of Test 1. (a, c, e) The results obtained with FDM

and (b, d, f ) results computed with FEM. The results are shown for three different bulk strain increments (�BC). FDM =

finite difference method; FEM = finite element method.

and 4f). The magnitude of the accumulated strain attained within the shear zones and the imperfection is

about 5 times larger than in the least deformed parts of the domain. Overall, the results obtained with FDM

and with FEM, even using various mesh resolutions, are in a good agreement (Figure 5).

Similarly, the pressure evolution shows a good agreement (Figure 6). At the initial stages of localization

(Figures 6a and 6b), the imperfection is characterized by a neutral pressure from which positive and nega-

tive pressure lobes originate. As the shear band develops, the magnitude of the pressure lobes diminishes

(Figures 6c and 6d) and the shear bands are characterized by a lower pressure than the adjacent, less

deformed, parts of the domain (Figures 6e and 6f).

7. Convergence of the Nonlinear Solver

Amajor advantage of consistent linearization is the possibility to achieve quadratic convergence of the global

equilibrium equations during elastoplastic deformation. Here we report the convergence history of the force

residuals during the evolution of Test 1.

All models with a grid resolution of 200 × 100 cells (Figure 5c) converged smoothly. The residuals decreased

quadratically for all increments whether a line search routine was used or not. If no line search is used, the

residuals initially grow before reaching a stage of quadratic convergence. The line search routine aims atmin-

imizing such an initial growth of residuals. For this resolution and the same applied increment, models with a

(too) low value of �min can take many more nonlinear iterations to converge than models with no line search

(� = 1.0). An intermediate value of �min provides a good compromise, leading to amoderate initial growth of

residual and a small total number of iterations (Figure 7).

For the same increment, but a double resolution (400 × 200 cells Figure 5e), the global convergence can

be slow, and divergence can occur (Figure 8), which happened when the shear bands start reflecting at the
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Figure 5. Spatial distribution of the pressure (P [MPa]) during shear banding of Test 1. (a, c, e) The results obtained with

FDM (resolution of 200 × 100 cells) and (b, d, f ) the results computed with FEM. The results are given for three different

bulk strain increments (�BC). FDM = finite difference method; FEM = finite element method.

domain boundaries. In these simulations, use of a line search procedure was necessary to maintain global

convergence at each increment or, to bemore precise, to bring theNewton-Raphsonmethodwithin its radius

of convergence. The underlying reason is the mechanically destabilizing influence of the nonassociated flow

rule. Indeed, it has been known since the landmark paper of Rudnicki and Rice (1975) that nonassociated

flow can cause loss of mechanical stability, and also loss of ellipticity, even if the material is still harden-

ing. Simulations have shown that when using nonassociated plasticity, global structural softening can occur

while the material is still hardening (de Borst, 1988). Moreover, it has been shown that under such condi-

tions convergence deteriorates with increasing mesh refinement. It is emphasized that the fundamental,

mechanical-mathematical cause of these numerical observations is the loss of ellipticity, which occurs at

higher hardening rates when the difference increases between the angles of internal friction and of dilatancy.

8. Shear Banding With Von Mises and Drucker-Prager Elastoplasticity

The Von Mises and the Drucker-Prager plasticity models have been used extensively in geodynamics. Due

to the pressure-insensitive character of the Von Mises model, shear bands will propagate at approximately

45∘ away from the direction of the major compressive stress. Different from this, the pressure-sensitive

Drucker-Prager model yields shear bands oriented at approximately 35∘ away from the direction of themajor

compressive stress, depending on the precise values of the angles of friction and dilation. The results of

numerical simulations using nonassociated Drucker-Prager (Test 1) and Von Mises models (Test 2) are shown

in Figure 9. For the simulations with the Drucker-Prager model, shear zones initiate from the imperfection at

a strain of 1.25 × 10−3 with a characteristic angle of approximately 35∘. For the Von Mises model, shear zones

oriented at 45∘ start to propagate from the imperfection at a strain of 1.35 × 10−3. The shear bands gener-

ated by the Drucker-Prager model tend to be significantly more localized than those produced using the Von

Mises model, but it is unclear in how far mesh sensitivity plays a role here.
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Figure 6. Evolution of the relative L2 norm of residuals throughout the localization phase (i.e., from the onset of

elastoplastic straining). The model configuration is Test 1 and was computed using 200 × 100 cells. Residual norms are

reported over 14 elastoplastic strain increments. The models were run with and without line searches and using

different lower bracketing limits for the line search (�min). The model using �min = 1.00 took an accumulated number of

84 iterations, while for �min = 0.05 and �min = 0.25, 118 and 85 iterations were respectively needed. Iterations were

performed until the L2 norm of residuals dropped below 5.0 × 10−6 , while initial values are on the order of 103 or 104

depending on the step.

9. Shear Banding With Drucker-Prager Maxwell

Viscoelastoplasticity

The rheological model described in the preceding section is not limited to an elastoplastic rheology and

can be extended to viscous deformations. This case is particularly relevant for geodynamics applications,

which generally involve frictional plastic as well as viscous strains. In model Test 3, the deformation of the

elastoplastic domain is initiated by a low-viscosity circular inclusion. Such a configuration can be conceived as

an analogy of a viscous magmatic body intruded in the shallow elastoplastic crust. The results of the simula-

tion are given in Figure 10 for a background strain of 1.50 × 10−3. Strain localization leads to the formation of

shear bands inwhich the effective deviatoric strain rate is 2 orders ofmagnitude larger than the applied strain

rate (see Figure 10a). The inclusion is effectively viscous (Figure 10c), while the rest of the domain deforms

partly in an elastic and partly in an elastoplastic manner (see Figures 10b and 10d). Another model (Test 4)

was design to illustrate shear banding arising at a brittle-ductile transition. The viscosity of the material host-

ing the inclusion is lowered by ≈ 3 orders of magnitude, and the deformation is now viscoplastic rather than

elastoplastic. Shear banding initiates around the inclusion and propagates until reaching a steady state and

therefore a finite length (Figure 11). It is important to notice that the additive decomposition of strain rates

in viscous, elastic, and plastic contributions is exactly satisfied. This is indicated by the magnitude of the sec-

ond net deviatoric strain rate invariant, which takes the form of �̇net
d

=

√
1

2
�̇
net
d

T
�̇
net
d

where the net deviatoric
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Figure 7. Evolution of the relative L2 norm of residuals throughout the localization phase. The model configuration is

Test 1 and was computed using 400 × 200 cells. Residual norms are reported over 14 elastoplastic strain increments. The

gray and black lines correspond to simulations run with and without line searches, respectively.

strain rate tensor is formulated as �̇net
d

= �̇d −
(
�̇
e
d
+ �̇

v
d
+ �̇

p

d

)
. The spatial distribution of �̇net

d
is depicted in

Figures 10e and 11e and its magnitude on the order of machine precision.

10. Discussion
10.1. Behavior Upon Mesh Refinement

Although the use of a consistent linearization in (visco)elastoplasticity can vastly improve the convergence

speed of the iterative process that is needed to solve the nonlinear set of equations, the plasticity modeling

which has been undertaken so far in crustal mechanics falls short of providing physically realistic computa-

tional predictions. This is because currently used plasticity models which involve either strain weakening or

nonassociated flow (or both) do not incorporate a scale dependence through the introduction of an internal

length scale. Models without an internal length scale, often called local stress-strain relations, are ubiquitous

in geophysics, geomechanics, and engineering and are based on the assumption that themechanical behav-

ior in a point is representative for a small but finite volume surrounding it. This assumption is often correct

Figure 8. Spatial distribution of the total strain (Test 1) after an applied background strain of 1.75 × 10−3 . The results

were computed with three different FDM (a, c, e) and FEM (b, d, f ) resolutions. FDM = finite difference method; FEM =

finite element method.
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Figure 9. Contrasting styles of shear banding with different ideal plasticity models: Drucker-Prager (Test 1) and Von

Mises (Test 2). (a, c, e) A total strain evolution for the Drucker-Prager model. (b, d, f ) The pressure-independent Von Mises

model. Both models were computed using finite difference method with a grid resolution of 400 × 200 cells.

but fails for highly localized deformations, like fault movement or shear bands. In the presence of strain weak-

ening or nonassociated flow local stress-strain relations have to be enriched to take proper account of the

physical processes that occur at small length scales. A range of possibilities has been proposed to remedy this

deficiency (de Borst et al., 1993), and for geodynamical applications the inclusion of a deformation-limiting

viscosity, which also has been done for other crystalline solids (Needleman, 1988; Peirce et al., 1983), seems

physically themost natural approach. It is emphasized, though, that not all viscoelastoplastic rheologies rem-

edy this deficiency, andwhether a specific rheology indeed solves the problem is dependent on the particular

(parallel and/or series) arrangement of the rheological elements.

The absence of an internal length scale has a mathematical implication, as it can cause initial value prob-

lems to become ill-posed (de Borst et al., 2012), which in turn causes the solutions to no longer continuously

depend on the initial and boundary data. This, for instance, means that data assimilation techniques become

unusable. But it also has the consequence that numerical solutions becomemeaningless, since they become

fully dependent on the discretization (mesh dependent). This holds for any discretization method, finite ele-

ments, finite differences, and also meshless methods (Pamin et al., 2003). A further consequence is that mesh

refinement algorithms, which are extensively used in geodynamics (e.g., Huismans & Beaumont, 2002), will

be severely biased by mesh dependence. For different initial conditions the lack of internal length scale can

also result to the formation of shear bands networks with fractal distributions (Poliakov et al., 1994).

For nonassociated plastic flow, convergence of nonlinear solver deteriorates when the mesh is refined (see

section 7) andwhen thedifferencebetween the frictional anddilation angles is large. The convergencebehav-

ior of the supplied codes is thus not guaranteed when simulating pressure-dependent plastic flow in the

incompressible limit (e.g.,� = 0, � = 30). A detailed evaluation of the requirements needed for convergence
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Figure 10. Example of shear banding using a Maxwell viscoelastoplastic rheological model (Test 3) after an applied

background strain of 1.5 × 10−3 . Panel (a) depicts the magnitude of the effective deviatoric strain rate (�̇tot
d

). The elastic,

viscous, and plastic effective deviatoric strain rates are given in panels (b), (c), and (d; similar color scale as panel a).

Panel (e) depicts the magnitude of the net effective deviatoric strain rate. This model was computed with finite

difference method and a grid resolution of 400 × 400 cells.

of simulations involving pressure-dependent plasticity in the incompressible limit is beyond the scope of

this study.

10.2. Achieving High-Resolution and 3-D Modeling

In the current 2-D implementation, solutions are obtained by sparse direct factorization (i.e., Lower-Upper

(LU) factorization) of the matrix operators that arise from the consistent linearization (i.e., Jacobian). In this

manner, relatively high-resolution 2-D calculations can be achieved on a single-processor desktop machine.

However, 3-D calculations are too time-consumingwith this solution strategy. Indeed, iterative solvers are the

method of choice to solve large linear systems which result from 3-D calculations. They usually require effi-

cient preconditioners to unleash their full potential (Saad & van der Vorst, 2000). Preconditioners based on

elastic predictor are symmetric positive definite and can thus be factored using Cholesky’s method. However,
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Figure 11. Example of steady state shear banding using a Maxwell viscoelastoplastic rheological model (Test 4) after an

applied background strain of 1.0 × 10−2 . Panel (a) depicts the magnitude of the effective deviatoric strain rate (�̇tot
d

). The

elastic, viscous, and plastic effective deviatoric strain rates are given in panels (b), (c), and (d) . Panel (e) depicts the

magnitude of the net effective deviatoric strain rate. This model was computed with finite difference method and a grid

resolution of 400 × 400 cells.

they contain no information about strain localization patterns, and consequently they have very different

spectral properties from the actual Jacobians, which can result in a poor performance. Pseudotransient inte-

gration schemes (e.g., Gaitonde, 1994; Kelley & Keyes, 1998) or Jacobian-free Newton-Krylov techniques (e.g.,

Chockalingamet al., 2013; Knoll &Keyes, 2004)maybepowerful alternatives for 3-Dmodelingof deformations

in the viscoelastoplastic lithosphere.

10.3. Perspectives for Lithospheric and Geodynamic Modeling

In this study we have limited ourselves to the use of simple (single-surface) plasticity models. Future models

should extend to multisurface plasticity models that can take into account the transition between tension,

shear, and compaction modes. This will allow to include the effect of gravity, which leads to the occurrence

of plasticity in tension for shallow crustal depths (low confining pressure), while deeper levels will rather fol-
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low Drucker-Prager or Mohr-Coulomb type plasticity models. A further aspect lies in the development of

multiphase flow models based on consistent linearizations in order to efficiently handle viscoelastoplastic

deformations of fluid-filledporous rocks. These processes are of first-order importance for lithosphere dynam-

ics since they govern the migration of magma in the lithosphere (Keller et al., 2013) or deformation patterns

that can occur in sedimentary basins (Rozhko et al., 2007).

In this contributionwe have followed the convention of the engineering literature to use themomentumbal-

ance as point of departure, with displacements as the primitive variables. Within this context we have shown

the huge potential in terms of savings in computational times and in terms of gains in accuracy that can result

from theuse of a consistent linearization to obtain the viscoelastoplastic tangent operator.Wewish to empha-

size that the application of a consistent linearization and the ensuing gains in terms of accuracy and speed

are independent of the numerical method that is used to discretize the continuum. Although consistent lin-

earization has almost invariably been paired to finite element discretizations in the engineering literature, this

is by no means necessary, and we have used it in conjunction with the FDMwhich maintains a high popular-

ity in the geodynamics community. A next step to make the technology compatible with needs and customs

in this community is to switch to a flow formulation, with velocities and pressures as the primitive variables.

This requires some subtle modifications to the linearization but is generally fairly straightforward.

11. Conclusions

We have introduced the use of the consistent tangent operator in (visco)elastoplasticity to solve deformation

problems that are classically encountered in lithosphere dynamics within the framework of a finite differ-

ence formulation. This approach allows the efficient solution of plastic strain localization problems at the

kilometer scale. Quadratic convergencewas obtained formodels which involved the pressure-insensitive Von

Mises model and the pressure-dependent Drucker-Prager yield contour. The implementation was verified

quantitatively and qualitatively with results obtained using an independent finite element package. A minor

modification in the algorithm enables to also take into account viscous creep. Such a consistent tangent

operator for viscoelastoplasticity is essential for geodynamic modeling which needs to accurately capture

pressure-dependent frictional plastic deformation as well as viscous creep at the kilometer scale. Finally,

concise and fast model implementations have been made available as a subset of M2Di MATLAB routines

(https://bitbucket.org/lraess/m2di) and all results are fully reproducible.

Appendix A: The Viscoelastic Tangent Operator

The additive decomposition of the deviatoric strain rate �̇′ can be written as

�̇
′ =

(
�̇
e
)′
+
(
�̇
v
)′

=
�̇

2G
+

�

2�
. (A1)

Using a backward Euler rule, so that �̇′ =
Δ�′

Δt
, one obtains

Δ�′ =

(
1

2G
+

Δt

2�

)
�
t+1 −

�
t

2G
. (A2)

With the identity � t+1 = �
t + Δ� and

Gve =

(
1

G
+

Δt

�

)−1

, � =
Gve

G
,

the incremental update rule for the deviatoric stress is written as

Δ� = 2GveΔ�′ + (� − 1) � t . (A3)

The total stress update reads

�
t+1 = −Pti + �

t − ΔPi + Δ� (A4)

with, for plane-strain conditions, iT = [1, 1, 1, 0]. Substitution of the expressions forΔ� andΔP then leads to

�
t+1 = −Pti + �� t + DveΔ� , (A5)
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Figure A1. Verification of the implementation of the viscoelastic rheological model. (a) The evolution of the deviatoric

stress (�xx ) and pressure (P) in a homogeneous domain subjected to pure shear kinematics. The deviatoric rheology is

viscoelastic. (b) The evolution of the deviatoric stress and pressure inside a layer oriented parallel to the compression

direction (pure shear kinematics). The deviatoric rheology is purely viscous (the layer is 1 order of magnitude more

viscous than the matrix), but the bulk rheology is elastically compressible.

with the viscoelastic tangent operator Dve defined as

Dve =

⎡⎢⎢⎢⎢⎣

K +
4

3
Gve K −

2

3
Gve K −

2

3
Gve 0

K −
2

3
Gve K +

4

3
Gve K −

2

3
Gve 0

K −
2

3
Gve K −

2

3
Gve K +

4

3
Gve 0

0 0 0 Gve

⎤⎥⎥⎥⎥⎦
. (A6)

The verification of this algorithm for the stress evolution has been carried out in two steps. The first test has

been carried out for a viscoelastic shear rheology, considering a homogeneous domain undergoing pure

shear. For this case, an analytical solution exists and takes the form

�
analytical
xx = �ff

xx

[
1 − exp

(
−

t

tMaxwell

)]
, (A7)

where �ff
xx
= 2��̇xx is the far-field stress (assuming far-field pressure is equal to 0) and tMaxwell =

�

G
. Figure A1a

shows that the computed deviatoric stress closely follows the analytical solution for the buildup of the vis-

coelastic stress. This case only involves deviatoric strains, and therefore the pressure buildup is negligible. A

convergence test reveals the expected first-order convergence of the numerical solution toward the analytical

solution. For the referenceΔt = 104 the L1 error norm is 1.11× 10−2. This error diminishes down to 5.6× 10−3

and 2.8 × 10−3 for values of dividedΔt divided by a factor 2 and 4, respectively.

For this reason a case was considered in which a layer oriented parallel to the compressive direction and 0.3

times the height of the domain is taken into account (Moulas et al., 2018). Here the rheology is purely viscous

for the stress deviators (by letting G → ∞) and is purely elastic for the pressure. The layer is 10 times more

viscous than the embedding matrix. The results shown in Figure A1b are in agreement with those of Moulas

et al. (2018). The pressure difference between the layer and the matrix (ΔP) evolves as

ΔPanalytical = Δ�ff
xx

[
1 − exp

(
−
3

4

t

tMaxwell

)]
, (A8)
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and the difference in deviatoric stress between the layer and matrix the matrix follows

Δ�
analytical
xx = −Δ�ff

xx

[
1 −

1

2
exp

(
−
3

4

t

tMaxwell

)]
. (A9)

In this case, the Maxwell time is defined as tMaxwell =
�layer

Klayer
andΔ�ff

xx
= −Player + 2

(
�layer − �matrix

)
�̇xx stands for

the layer/matrix total stress difference in the far field (assuming far-field pressure in the layer is equal to 0) .

Appendix B: The Viscoelastic-Plastic Consistent Tangent Operator

For viscoelastoplastic straining, the stress update reads

�
t+1 = −Pti + �� t + DveΔ� − Δ�Dve �Q

��
. (B1)

A small variation � of the updated stress �t+1 is then given by

�� = Dve�� − ��Dve �Q

��
− Δ�Dve �

2Q

��2
�� , (B2)

which can be rewritten as

�� = E−1Dve�� − E−1Dve �Q

��
�� (B3)

with

E = I + Δ�D
�2Q

��2
. (B4)

Similarly, a variation of the yield condition

F(�t+1) = 0 (B5)

leads to
(
�F

��

)T

�� = 0 , (B6)

which can interpreted as the consistency condition, which must be satisfied during plastic loading. Premul-

tiplying equation (B3) by
(

�F

��

)T

and invoking condition (B6) yields an explicit expression for the variation of

the plastic multiplier:

�� =

(
�F

��

)T

E−1Dve

(
�F

��

)T

E−1Dve �Q

��

�� . (B7)

The final step in the construction of the consistent tangent operator is the substitution of the variation of the

plastic multiplier into equation (B3), leading to

�� =

⎛
⎜⎜⎜⎝
E−1Dve −

E−1Dve �Q

��

(
�F

��

)T

E−1Dve

(
�F

��

)T

E−1Dve �Q

��

⎞
⎟⎟⎟⎠
�� . (B8)

Since by definition

Dvep ≡ ��

��
, (B9)
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Figure C1. Verification of the implementation of the viscoelastoplastic rheological model (Test 4). (a) The evolution of

the effective stress (�̄). (b) The evolution of the error in effective stress relative to the high time resolution run (�̄err).

(c) The magnitude of the maximum stress error as a function of the time step magnitude.

the viscoelastoplastic consistent tangent operator Dvep takes the form

Dvep = E−1Dve −
E−1Dve �Q

��

(
�F

��

)T

E−1Dve

(
�F

��

)T

E−1Dve �Q

��

. (B10)

All the elements of the consistent tangent operator, that is,Δ�,
�F

��
,
�Q

��
,
�2Q

��2
, can be obtained analytically from

the current stress state, either at integration points or at finite difference cell centers and vertices. The inverse

of E is obtained analytically by local matrix inversion, which avoids potential inaccuracies due to numerical

approximations of the inverse of E (de Borst & Groen, 1994).

Appendix C: Convergence in Time of Discrete Viscoelastic-Plastic Rheology

A backward Euler rule was employed to discretize the entire rheological model at the local level (cell cen-

ters/vertices for FDM or integration points for FEM). The drawback of this approach is that an explicit

dependence on the time step (Δt) is introduced into the rheological coefficients (see, e.g., equation (A2)).With

the displacement-based formulation the standard elastic rheological model is recovered by letting � → ∞ or

Δt → 0. This contrasts with velocity-based formulations (Gerya & Yuen, 2007; Moresi et al., 2002; Schmalholz

et al., 2001) for which backward Euler time discretization introduces Δt in the denominator of the effective

rheological coefficient and is thus invalid in the limitΔt → 0. Such formulation is likely beneficial as it is com-

mon practice to decreaseΔt to reduce time integration error, to resolve physical processes occurring on short

time scales (e.g., seismic cyclemodeling), or to allow for solving nonlinear problems (i.e., time step adaptivity).

Here we verify that our formulation converges with increasing time resolution using Test 4 for which all ele-

ments of the rheological chain are solicited (cf. Figure 11). There exists no analytical solution for predicting the

transient evolution of the model; therefore, we use results computed at a high time resolution as reference.

Models were computed with larger time steps [0.5Δt,Δt, 2Δt, 4Δt, 8Δt], and the error in stress were com-

puted relative to the smallest time step (0.5Δt). The evolution of effective stress (�̄ =
1

V
∫∫ √

�JII dV) for the

different values of Δt is depicted in Figure C1a. The error in effective stress, �̄err, is reported in in Figure C1b,

which clearly shows a decrease of the error with a decrease of Δt. A closer look (Figure C1c) reveals that the

maximum error decrease by a factor ≈ 2 for a reduction of Δt by a factor 2, which indicates a first-order

convergence as expected for backward Euler time integration.
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