3,221 research outputs found

    Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides

    Full text link
    It was reported earlier [Phys. Rev. Lett. 106, 056401 (2011)] that the skutterudite structure compound CoSb3_3 displays a unique band structure with a topological transition versus a symmetry-preserving sublattice (Sb) displacement very near the structural ground state. The transition is through a massless Dirac-Weyl semimetal, point Fermi surface phase which is unique in that (1) it appears in a three dimensional crystal, (2) the band critical point occurs at kk=0, and (3) linear bands are degenerate with conventional (massive) bands at the critical point (before inclusion of spin-orbit coupling). Further interest arises because the critical point separates a conventional (trivial) phase from a topological phase. In the native cubic structure this is a zero-gap topological semimetal; we show how spin-orbit coupling and uniaxial strain converts the system to a topological insulator (TI). We also analyze the origin of the linear band in this class of materials, which is the characteristic that makes them potentially useful in thermoelectric applications or possibly as transparent conductors. We characterize the formal charge as Co+^{+} d8d^8, consistent with the gap, with its 3ˉ\bar{3} site symmetry, and with its lack of moment. The Sb states are characterized as pxp_x (separately, pyp_y) σ\sigma-bonded Sb4Sb_4 ring states occupied and the corresponding antibonding states empty. The remaining (locally) pzp_z orbitals form molecular orbitals with definite parity centered on the empty 2a2a site in the skutterudite structure. Eight such orbitals must be occupied; the one giving the linear band is an odd orbital singlet A2uA_{2u} at the zone center. We observe that the provocative linearity of the band within the gap is a consequence of the aforementioned near-degeneracy, which is also responsible for the small band gap.Comment: 10 pages, 7 figure

    The Space Interferometry Mission Astrometric Grid Giant-Star Survey. I. Stellar Parameters and Radial Velocity Variability

    Full text link
    We present results from a campaign of multiple epoch echelle spectroscopy of relatively faint (V = 9.5-13.5 mag) red giants observed as potential astrometric grid stars for the Space Interferometry Mission (SIM PlanetQuest). Data are analyzed for 775 stars selected from the Grid Giant Star Survey spanning a wide range of effective temperatures (Teff), gravities and metallicities. The spectra are used to determine these stellar parameters and to monitor radial velocity (RV) variability at the 100 m/s level. The degree of RV variation measured for 489 stars observed two or more times is explored as a function of the inferred stellar parameters. The percentage of radial velocity unstable stars is found to be very high -- about 2/3 of our sample. It is found that the fraction of RV-stable red giants (at the 100 m/s level) is higher among stars with Teff \sim 4500 K, corresponding to the calibration-independent range of infrared colors 0.59 < (J-K_s)_0 < 0.73. A higher percentage of RV-stable stars is found if the additional constraints of surface gravity and metallicity ranges 2.3< log g < 3.2 and -0.5 < [Fe/H] < -0.1, respectively, are applied. Selection of stars based on only photometric values of effective temperature (4300 K < Teff < 4700 K) is a simple and effective way to increase the fraction of RV-stable stars. The optimal selection of RV-stable stars, especially in the case when the Washington photometry is unavailable, can rely effectively on 2MASS colors constraint 0.59 < (J-K_s)_0 < 0.73. These results have important ramifications for the use of giant stars as astrometric references for the SIM PlanetQuest.Comment: Astronomical Journal, in press, 22 pages, 11 Postscript figures, uses aastex.cl

    Protocol for the development of guidance for stakeholder engagement in health and healthcare guideline development and implementation

    Get PDF
    Stakeholder engagement has become widely accepted as a necessary component of guideline development and implementation. While frameworks for developing guidelines express the need for those potentially affected by guideline recommendations to be involved in their development, there is a lack of consensus on how this should be done in practice. Further, there is a lack of guidance on how to equitably and meaningfully engage multiple stakeholders. We aim to develop guidance for the meaningful and equitable engagement of multiple stakeholders in guideline development and implementation. METHODS: This will be a multi-stage project. The first stage is to conduct a series of four systematic reviews. These will (1) describe existing guidance and methods for stakeholder engagement in guideline development and implementation, (2) characterize barriers and facilitators to stakeholder engagement in guideline development and implementation, (3) explore the impact of stakeholder engagement on guideline development and implementation, and (4) identify issues related to conflicts of interest when engaging multiple stakeholders in guideline development and implementation. DISCUSSION: We will collaborate with our multiple and diverse stakeholders to develop guidance for multi-stakeholder engagement in guideline development and implementation. We will use the results of the systematic reviews to develop a candidate list of draft guidance recommendations and will seek broad feedback on the draft guidance via an online survey of guideline developers and external stakeholders. An invited group of representatives from all stakeholder groups will discuss the results of the survey at a consensus meeting which will inform the development of the final guidance papers. Our overall goal is to improve the development of guidelines through meaningful and equitable multi-stakeholder engagement, and subsequently to improve health outcomes and reduce inequities in health

    Effect of the spatial arrangement of agroecosystem on bee (Hymenoptera: Apoidea) diversity in potato (Solanum tuberosum) crops of Antioquia, Colombia.

    Get PDF
    The potato Solanum tuberosum is one of the most important products worldwide and is cultivated under different production systems. Its greatest diversity is concentrated in the South American Andes, where it originated; however, little is known about native pollen vectors that may mediate in sexual reproduction, possibly because potato multiplication at the commercial level is carried out through its tubers. In order to understand the effects that this type of agro-ecosystem may have on the diversity of pollen vectors, particularly bees, an inventory was raised in three types of production systems of the department of Antioquia: monoculture, association with other cultivated species, and association with patches of natural vegetation or forests, which were surveyed in transects located within the crops, on the edges and in its matrix. In this work, the difference between transects, plots, and production systems was recorded. The importance of the patch conservation of natural vegetation and the maintenance of the vegetal diversity around the crops for the preservation of wild bees was demonstrated in different production systems. Finally, it was concluded that the design of the agro-ecosystem plays an important role in the bee community structure in potato crop

    Low-lying level structure of 56^{56}Cu and its implications on the rp process

    Full text link
    The low-lying energy levels of proton-rich 56^{56}Cu have been extracted using in-beam γ\gamma-ray spectroscopy with the state-of-the-art γ\gamma-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in 56^{56}Cu serve as resonances in the 55^{55}Ni(p,γ\gamma)56^{56}Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in Q=639¹82Q=639\pm82~keV. We derive the first experimentally-constrained thermonuclear reaction rate for 55^{55}Ni(p,γ\gamma)56^{56}Cu. We find that, with this new rate, the rp-process may bypass the 56^{56}Ni waiting point via the 55^{55}Ni(p,γ\gamma) reaction for typical x-ray burst conditions with a branching of up to ∟\sim40%\%. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the 56^{56}Ni region.Comment: 8 pages, accepted for Phys. Rev.

    CGDSNPdb: a database resource for error-checked and imputed mouse SNPs

    Get PDF
    The Center for Genome Dynamics Single Nucleotide Polymorphism Database (CGDSNPdb) is an open-source value-added database with more than nine million mouse single nucleotide polymorphisms (SNPs), drawn from multiple sources, with genotypes assigned to multiple inbred strains of laboratory mice. All SNPs are checked for accuracy and annotated for properties specific to the SNP as well as those implied by changes to overlapping protein-coding genes. CGDSNPdb serves as the primary interface to two unique data sets, the ‘imputed genotype resource’ in which a Hidden Markov Model was used to assess local haplotypes and the most probable base assignment at several million genomic loci in tens of strains of mice, and the Affymetrix Mouse Diversity Genotyping Array, a high density microarray with over 600 000 SNPs and over 900 000 invariant genomic probes. CGDSNPdb is accessible online through either a web-based query tool or a MySQL public login

    Schwarz type preconditioners for the neutron diffusion equation

    Full text link
    [EN] Domain decomposition is a mature methodology that has been used to accelerate the convergence of partial differential equations. Even if it was devised as a solver by itself, it is usually employed together with Krylov iterative methods improving its rate of convergence, and providing scalability with respect to the size of the problem. In this work, a high order finite element discretization of the neutron diffusion equation is considered. In this problem the preconditioning of large and sparse linear systems arising from a source driven formulation becomes necessary due to the complexity of the problem. On the other hand, preconditioners based on an incomplete factorization are very expensive from the point of view of memory requirements. The acceleration of the neutron diffusion equation is thus studied here by using alternative preconditioners based on domain decomposition techniques inside Schur complement methodology. The study considers substructuring preconditioners, which do not involve overlapping, and additive Schwarz preconditioners, where some overlapping between the subdomains is taken into account. The performance of the different approaches is studied numerically using two-dimensional and three-dimensional problems. It is shown that some of the proposed methodologies outperform incomplete LU factorization for preconditioning as long as the linear system to be solved is large enough, as it occurs for three-dimensional problems. They also outperform classical diagonal Jacobi preconditioners, as long as the number of systems to be solved is large enough in such a way that the overhead of building the pre-conditioner is less than the improvement in the convergence rate. (C) 2016 Elsevier B.V. All rights reserved.The work has been partially supported by the spanish Ministerio de Economía y Competitividad under projects ENE 2014-59442-P and MTM2014-58159-P, the Generalitat Valenciana under the project PROMETEO II/2014/008 and the Universitat Politècnica de València under the project FPI-2013. The work has also been supported partially by the Swedish Research Council (VR-Vetenskapsrüdet) within a framework grant called DREAM4SAFER, research contract C0467701.Vidal-Ferràndiz, A.; Gonzålez Pintor, S.; Ginestar Peiro, D.; Verdú Martín, GJ.; Demazière, C. (2017). Schwarz type preconditioners for the neutron diffusion equation. Journal of Computational and Applied Mathematics. 309:563-574. https://doi.org/10.1016/j.cam.2016.02.056S56357430

    The relationship between transgenerational acquired resistance and global DNA methylation in Arabidopsis

    Get PDF
    Progeny of heavily diseased plants develop transgenerational acquired resistance (TAR). In Arabidopsis, TAR can be transmitted over one stress-free generation. Although DNA methylation has been implicated in the regulation of TAR, the relationship between TAR and global DNA methylation remains unknown. Here, we characterised the methylome of TAR-expressing Arabidopsis at different generations after disease exposure. Global clustering of cytosine methylation revealed TAR-related patterns in the F3 generation, but not in the F1 generation. The majority of differentially methylated positions (DMPs) occurred at CG context in gene bodies. TAR in F3 progeny after one initial generation of disease, followed by two stress-free generations, was lower than TAR in F3 progeny after three successive generations of disease. This difference in TAR effectiveness was proportional to the intensity of differential methylation at a sub-set of cytosine positions. Comparison of TAR-related DMPs with previously characterised cytosine methylation in mutation accumulation lines revealed that ancestral disease stress preferentially acts on methylation-labile cytosine positions, but also extends to methylation-stable positions. Thus, the TAR-related impact of ancestral disease extends beyond stochastic variation in DNA methylation. Our study has shown that the Arabidopsis epigenome responds globally to disease in previous generations and we discuss its contribution to TAR

    Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision

    Full text link
    A high precision geometric method for automated shoreline detection from Landsat TM and ETM+ imagery is presented. The methodology is based on the application of an algorithm that ensures accurate image geometric registration and the use of a new algorithm for sub-pixel shoreline extraction, both at the sub-pixel level. The analysis of the initial errors shows the influence that differences in reflectance of land cover types have over shoreline detection, allowing us to create a model to substantially reduce these errors. Three correction models were defined according to the type of gain used in the acquisition of the original Landsat images. Error assessment tests were applied on three artificially stabilised coastal segments that have a constant and well-defined land-water boundary. A testing set of 45 images (28 TM, 10 ETM high-gain and 7 ETM low-gain) was used. The mean error obtained in shoreline location ranges from 1.22 to 1.63. m, and the RMSE from 4.69 to 5.47. m. Since the errors follow a normal distribution, then the maximum error at a given probability can be estimated. The results confirm that the use of Landsat imagery for detection of instantaneous coastlines yields accuracy comparable to high-resolution techniques, showing the potential of Landsat TM and ETM images in those applications where the instantaneous lines are a good geomorphological descriptor. Š 2012 Elsevier Inc.The authors appreciate the financial support provided by the Spanish Ministerio de Ciencia e Innovacion and the Spanish Plan E in the framework of the Projects CGL2009-14220-C02-01 and CGL2010-19591.Pardo Pascual, JE.; Almonacid Caballer, J.; Ruiz Fernåndez, LÁ.; Palomar-Våzquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment. 123:1-11. doi:10.1016/j.rse.2012.02.024S11112

    Drug resistance in cancer

    Get PDF
    Cancer Research UK has recently sponsored a meeting, organized by the UK Medical Research Council, on cancer drug resistance. Several of the molecular mechanisms responsible for this clinical outcome, such as DNA interstrand crosslink repair, apoptosis evasion, cytochrome P450 and P-glycoprotein, were discussed. There was a special focus on leukaemia, breast and ovarian cancer, and the potential use of positron-emission tomography to study anticancer-drug resistance. The progress made in translating these findings to the clinic, like Gefitinib, P-glycoprotein phenotyping, or genome-wide analysis technology, was also discussed
    • …
    corecore