107 research outputs found

    Genomic data of different resolutions reveal consistent inbreeding estimates but contrasting homozygosity landscapes for the threatened Aotearoa New Zealand hihi

    Get PDF
    Inbreeding can lead to a loss of heterozygosity in a population and when combined with genetic drift may reduce the adaptive potential of a species. However, there is uncertainty about whether resequencing data can provide accurate and consistent inbreeding estimates. Here, we performed an in-depth inbreeding analysis for hihi (Notiomystis cincta), an endemic and nationally vulnerable passerine bird of Aotearoa New Zealand. We first focused on subsampling variants from a reference genome male, and found that low-density data sets tend to miss runs of homozygosity (ROH) in some places and overestimate ROH length in others, resulting in contrasting homozygosity landscapes. Low-coverage resequencing and 50 K SNP array densities can yield comparable inbreeding results to high-coverage resequencing approaches, but the results for all data sets are highly dependent on the software settings employed. Second, we extended our analysis to 10 hihi where low-coverage whole genome resequencing, RAD-seq and SNP array genotypes are available. We inferred ROH and individual inbreeding to evaluate the relative effects of sequencing depth versus SNP density on estimating inbreeding coefficients and found that high rates of missingness downwardly bias both the number and length of ROH. In summary, when using genomic data to evaluate inbreeding, studies must consider that ROH estimates are heavily dependent on analysis parameters, data set density and individual sequencing depth

    The influence of nonrandom extra-pair paternity on heritability estimates derived from wild pedigrees

    Get PDF
    Quantitative genetic analysis is often fundamental for understanding evolutionary processes in wild populations. Avian populations provide a model system due to the relative ease of inferring relatedness among individuals through observation. However, extra-pair paternity (EPP) creates erroneous links within the social pedigree. Previous work has suggested this causes minor underestimation of heritability if paternal misassignment is random and hence not influenced by the trait being studied. Nevertheless, much literature suggests numerous traits are associated with EPP and the accuracy of heritability estimates for such traits remains unexplored. We show analytically how nonrandom pedigree errors can influence heritability estimates. Then, combining empirical data from a large great tit (Parus major) pedigree with simulations, we assess how heritability estimates derived from social pedigrees change depending on the mode of the relationship between EPP and the focal trait. We show that the magnitude of the underestimation is typically small (<15%). Hence, our analyses suggest that quantitative genetic inference from pedigrees derived from observations of social relationships is relatively robust; our approach also provides a widely applicable method for assessing the consequences of nonrandom EPP

    Can threatened species adapt in restored habitat? No expected evolutionary response in lay date for the New Zealand hihi

    Get PDF
    Many bird species have been observed shifting their laying date to earlier in the year in response to climate change. However, the vast majority of these studies were performed on non‐threatened species, less impacted by reduced genetic diversity (which is expected to limit evolutionary response) as a consequence of genetic bottlenecks, drift and population isolation. Here, we study the relationship between lay date and fitness, as well as its genetic basis, to understand the evolutionary constraints on phenology faced by threatened species using a recently reintroduced population of the endangered New Zealand passerine, the hihi (Notiomystis cincta). A large discrepancy between the optimal laying date and the mode of laying date creates a strong selection differential of −11.24. The impact of this discrepancy on fitness is principally mediated through survival of offspring from hatchling to fledgling. This discrepancy does not seem to arise from a difference in female quality or a trade‐off with lifetime breeding success. We find that start of breeding season depends on female age and average temperature prior to the breeding season. Laying date is not found to be significantly heritable. Overall, our research suggests that this discrepancy is a burden on hihi fitness, which will not be resolved through evolution or phenotypic plasticity. More generally, these results show that threatened species introduced to restored habitats might lack adaptive potential and plasticity to adjust their phenology to their new environment. This constraint is also likely to limit their ability to face future challenges, including climate change

    A high-density SNP chip for genotyping great tit (Parus major) populations and its application to studying the genetic architecture of exploration behaviour

    Get PDF
    High‐density SNP microarrays (“SNP chips”) are a rapid, accurate and efficient method for genotyping several hundred thousand polymorphisms in large numbers of individuals. While SNP chips are routinely used in human genetics and in animal and plant breeding, they are less widely used in evolutionary and ecological research. In this article, we describe the development and application of a high‐density Affymetrix Axiom chip with around 500,000 SNP s, designed to perform genomics studies of great tit (Parus major ) populations. We demonstrate that the per‐SNP genotype error rate is well below 1% and that the chip can also be used to identify structural or copy number variation. The chip is used to explore the genetic architecture of exploration behaviour (EB ), a personality trait that has been widely studied in great tits and other species. No SNP s reached genomewide significance, including at DRD 4 , a candidate gene. However, EB is heritable and appears to have a polygenic architecture. Researchers developing similar SNP chips may note: (i) SNP s previously typed on alternative platforms are more likely to be converted to working assays; (ii) detecting SNP s by more than one pipeline, and in independent data sets, ensures a high proportion of working assays; (iii) allele frequency ascertainment bias is minimized by performing SNP discovery in individuals from multiple populations; and (iv) samples with the lowest call rates tend to also have the greatest genotyping error rates

    A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide

    Get PDF
    Conservation management strategies for many highly threatened species include conservation breeding to prevent extinction and enhance recovery. Pairing decisions for these conservation breeding programmes can be informed by pedigree data to minimize relatedness between individuals in an effort to avoid inbreeding, maximize diversity and maintain evolutionary potential. However, conservation breeding programmes struggle to use this approach when pedigrees are shallow or incomplete. While genetic data (i.e., microsatellites) can be used to estimate relatedness to inform pairing decisions, emerging evidence indicates this approach may lack precision in genetically depauperate species, and more effective estimates will likely be obtained from genomic data (i.e., thousands of genome-wide single nucleotide polymorphisms, or SNPs). Here, we compare relatedness estimates and subsequent pairing decisions using pedigrees, microsatellites and SNPs from whole-genome resequencing approaches in two critically endangered birds endemic to New Zealand: kakī/ black stilt (Himantopus novaezelandiae) and kākāriki karaka/orange-fronted parakeet (Cyanoramphus malherbi). Our findings indicate that SNPs provide more precise estimates of relatedness than microsatellites when assessing empirical parent–offspring and full sibling relationships. Further, our results show that relatedness estimates and subsequent pairing recommendations using PMx are most similar between pedigree and SNP-based approaches. These combined results indicate that in lieu of robust pedigrees, SNPs are an effective tool for informing pairing decisions, which has important implications for many poorly pedigreed conservation breeding programmes worldwide

    Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing

    Get PDF
    Background: The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations

    The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs

    Get PDF
    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs

    Fewer invited talks by women in evolutionary biology symposia.

    Get PDF
    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks

    Genomic Tools in Biological Invasions: Current State and Future Frontiers

    Get PDF
    Human activities are accelerating rates of biological invasions and climate-driven range expansions globally, yet we understand little of how genomic processes facilitate the invasion process. Although most of the literature has focused on underlying phenotypic correlates of invasiveness, advances in genomic technologies are showing a strong link between genomic variation and invasion success. Here, we consider the ability of genomic tools and technologies to (i) inform mechanistic understanding of biological invasions and (ii) solve real-world issues in predicting and managing biological invasions. For both, we examine the current state of the field and discuss how genomics can be leveraged in the future. In addition, we make recommendations pertinent to broader research issues, such as data sovereignty, metadata standards, collaboration, and science communication best practices that will require concerted efforts from the global invasion genomics community
    corecore