85 research outputs found

    Space-time modeling of soil moisture: Stochastic rainfall forcing with heterogeneous vegetation

    Get PDF
    The present paper complements that of Isham et al. (2005), who introduced a space-time soil moisture model driven by stochastic space-time rainfall forcing with homogeneous vegetation and in the absence of topographical landscape effects. However, the spatial variability of vegetation may significantly modify the soil moisture dynamics with important implications for hydrological modeling. In the present paper, vegetation heterogeneity is incorporated through a two dimensional Poisson process representing the coexistence of two functionally different types of plants (e.g., trees and grasses). The space-time statistical structure of relative soil moisture is characterized through its covariance function which depends on soil, vegetation, and rainfall patterns. The statistical properties of the soil moisture process averaged in space and time are also investigated. These properties are especially important for any modeling that aggregates soil moisture characteristics over a range of spatial and temporal scales. It is found that particularly at small scales, vegetation heterogeneity has a significant impact on the averaged process as compared with the uniform vegetation case. Also, averaging in space considerably smoothes the soil moisture process, but in contrast, averaging in time up to 1 week leads to little change in the variance of the averaged process

    Soil nutrient cycles as a nonlinear dynamical system

    Get PDF
    International audienceAn analytical model for the soil carbon and nitrogen cycles is studied from the dynamical system point of view. Its main nonlinearities and feedbacks are analyzed by considering the steady state solution under deterministic hydro-climatic conditions. It is shown that, changing hydro-climatic conditions, the system undergoes dynamical bifurcations, shifting from a stable focus to a stable node and back to a stable focus when going from dry, to well-watered, and then to saturated conditions, respectively. An alternative degenerate solution is also found in cases when the system can not sustain decomposition under steady external conditions. Different basins of attraction for "normal" and "degenerate" solutions are investigated as a function of the system initial conditions. Although preliminary and limited to the specific form of the model, the present analysis points out the importance of nonlinear dynamics in the soil nutrient cycles and their possible complex response to hydro-climatic forcing

    Mean first passage times of processes driven by white shot noise

    Get PDF
    The systems driven by white shot noise are analyzed based on mean first passage times. The shot noise has exponentially distributed jump heights. The the linkage between the results and the steady state probability density function of the process are presented

    Rainfall mediations in the spreading of epidemic cholera

    Get PDF
    Following the empirical evidence of a clear correlation between rainfall events and cholera resurgence that was observed in particular during the recent outbreak in Haiti, a spatially explicit model of epidemic cholera is re-examined. Specifically, we test a multivariate Poisson rainfall generator, with parameters varying in space and time, as a driver of enhanced disease transmission. The relevance of the issue relates to the key insight that predictive mathematical models may provide into the course of an ongoing cholera epidemic aiding emergency management (say, in allocating life-saving supplies or health care staff) or in evaluating alternative management strategies. Our model consists of a set of dynamical equations (SIRB-like i.e. subdivided into the compartments of Susceptible, Infected and Recovered individuals, and including a balance of Bacterial concentrations in the water reservoir) describing a connected network of human communities where the infection results from the exposure to excess concentrations of pathogens in the water. These, in turn, are driven by rainfall washout of open-air defecation sites or cesspool overflows, hydrologic transport through waterways and by mobility of susceptible and infected individuals. We perform an a posteriori analysis (from the beginning of the epidemic in October 2010 until December 2011) to test the model reliability in predicting cholera cases and in testing control measures, involving vaccination and sanitation campaigns, for the ongoing epidemic. Even though predicting reliably the timing of the epidemic resurgence proves difficult due to rainfall inter-annual variability, we find that the model can reasonably quantify the total number of reported infection cases in the selected time-span. We then run a multi-seasonal prediction of the course of the epidemic until December 2015, to investigate conditions for further resurgences and endemicity of cholera in the region with a view to policies which may bring to the eradication of the disease in Haiti. The projections, although strongly depending on still uncertain epidemiological processes, show an endemic, seasonal pattern establishing in the region, which can be better forestalled by an improvement of the sanitation system only, rather than by vaccination alone. We thus conclude that hydrologic drivers and water resources management prove central to prediction, emergency management and long-term control of epidemic cholera

    Non-Neutral Vegetation Dynamics

    Get PDF
    The neutral theory of biodiversity constitutes a reference null hypothesis for the interpretation of ecosystem dynamics and produces relatively simple analytical descriptions of basic system properties, which can be easily compared to observations. On the contrary, investigations in non-neutral dynamics have in the past been limited by the complexity arising from heterogeneous demographic behaviours and by the relative paucity of detailed observations of the spatial distribution of species diversity (beta-diversity): These circumstances prevented the development and testing of explicit non-neutral mathematical descriptions linking competitive strategies and observable ecosystem properties. Here we introduce an exact non-neutral model of vegetation dynamics, based on cloning and seed dispersal, which yields closed-form characterizations of beta-diversity. The predictions of the non-neutral model are validated using new high-resolution remote-sensing observations of salt-marsh vegetation in the Venice Lagoon (Italy). Model expressions of beta-diversity show a remarkable agreement with observed distributions within the wide observational range of scales explored (5⋅10(−1) m÷10(3) m). We also consider a neutral version of the model and find its predictions to be in agreement with the more limited characterization of beta-diversity typical of the neutral theory (based on the likelihood that two sites be conspecific or heterospecific, irrespective of the species). However, such an agreement proves to be misleading as the recruitment rates by propagules and by seed dispersal assumed by the neutral model do not reflect known species characteristics and correspond to averages of those obtained under the more general non-neutral hypothesis. We conclude that non-neutral beta-diversity characterizations are required to describe ecosystem dynamics in the presence of species-dependent properties and to successfully relate the observed patterns to the underlying processes

    Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna

    Get PDF
    The idea that many processes in arid and semi-arid ecosystems are dormant until activated by a pulse of rainfall, and then decay from a maximum rate as the soil dries, is widely used as a conceptual and mathematical model, but has rarely been evaluated with data. This paper examines soil water, evapotranspiration (ET), and net ecosystem CO2 exchange measured for 5 years at an eddy covariance tower sited in an Acacia–Combretum savanna near Skukuza in the Kruger National Park, South Africa. The analysis characterizes ecosystem flux responses to discrete rain events and evaluates the skill of increasingly complex “pulse models”. Rainfall pulses exert strong control over ecosystem-scale water and CO2 fluxes at this site, but the simplest pulse models do a poor job of characterizing the dynamics of the response. Successful models need to include the time lag between the wetting event and the process peak, which differ for evaporation, photosynthesis and respiration. Adding further complexity, the time lag depends on the prior duration and degree of water stress. ET response is well characterized by a linear function of potential ET and a logistic function of profile-total soil water content, with remaining seasonal variation correlating with vegetation phenological dynamics (leaf area). A 1- to 3-day lag to maximal ET following wetting is a source of hysteresis in the ET response to soil water. Respiration responds to wetting within days, while photosynthesis takes a week or longer to reach its peak if the rainfall was preceded by a long dry spell. Both processes exhibit nonlinear functional responses that vary seasonally. We conclude that a more mechanistic approach than simple pulse modeling is needed to represent daily ecosystem C processes in semiarid savannas
    corecore