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[1] The present paper complements that of Isham et al. (2005), who introduced a
space-time soil moisture model driven by stochastic space-time rainfall forcing with
homogeneous vegetation and in the absence of topographical landscape effects. However,
the spatial variability of vegetation may significantly modify the soil moisture
dynamics with important implications for hydrological modeling. In the present paper,
vegetation heterogeneity is incorporated through a two dimensional Poisson process
representing the coexistence of two functionally different types of plants (e.g., trees and
grasses). The space-time statistical structure of relative soil moisture is characterized
through its covariance function which depends on soil, vegetation, and rainfall patterns.
The statistical properties of the soil moisture process averaged in space and time are
also investigated. These properties are especially important for any modeling that
aggregates soil moisture characteristics over a range of spatial and temporal scales. It is
found that particularly at small scales, vegetation heterogeneity has a significant impact on
the averaged process as compared with the uniform vegetation case. Also, averaging
in space considerably smoothes the soil moisture process, but in contrast, averaging in
time up to 1 week leads to little change in the variance of the averaged process.
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1. Introduction

[2] Soil moisture dynamics result from the combined
action of climate, soil and vegetation. Their space-time
characterization may provide significant insight into the
description of hydrological, meteorological and ecological
processes acting over a variety of scales [e.g., Western and
Blöschl, 1999; Rodrı́guez-Iturbe, 2000; Porporato and
Rodrı́guez-Iturbe, 2002]. Moreover, knowledge of the tem-
poral and spatial variability of soil moisture is critical for
understanding and predicting processes such as the parti-
tioning of received energy at the land surface, vegetation
water stress in a heterogeneous landscape, soil carbon and
nitrogen cycles, etc. The spatial distribution of soil moisture
has also been recognized as important in conditioning the
hydrological response during extreme events [Manfreda et
al., 2005].
[3] Soil moisture dynamics at a point have been exten-

sively analyzed through the use of stochastic models [e.g.,
Milly, 1993; Rodrı́guez-Iturbe et al., 1999; Laio et al., 2001;

Fernandez-Illescas et al., 2001; Porporato et al., 2004].
The stochastic approach leads to a quantitative description
of vegetation water stress combining mean intensity, dura-
tion and frequency of periods with water deficit [Porporato
et al., 2001; Caylor et al., 2005], and to the probabilistic
analysis of the nitrogen cycle [Porporato et al., 2003;
D’Odorico et al., 2003].
[4] Regarding spatial dynamics, much effort has focused

on the analysis of field measurements through remote
sensing or ground-based techniques and the importance of
physical characteristics such as soil texture, vegetation and
topographic patterns for soil moisture variability has been
pointed out [Western et al., 2002; Wilson et al., 2004]. Soil
moisture retrievals obtained from field campaigns (e.g.,
Washita ’92, SGP ’97, ’99, SMEX ’02 and ’04) have
allowed the extension of the soil moisture analysis to larger
domains, but confined to the near surface [e.g., Rodrı́guez-
Iturbe et al., 1995; Kim and Barros, 2002]. Using the data
from SGP ’97, Mohanty and Skaggs [2001] analyzed the
temporal variability of soil moisture through the time
stability concept [Vachaud et al., 1985]. They observed
time stable features in more permeable soils and a larger
spatiotemporal variability in a flat topography with the
coexistence of wheat and grass cover. Yoo and Kim
[2004] adopted empirical orthogonal function analysis of
the data set identifying topography as the main controlling
factor, while vegetation and soil texture have a secondary
effect that becomes more significant during the drying
periods.
[5] The impact of spatial heterogeneity of soil properties

on the soil moisture budget has been extensively investi-
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degli Studi della Basilicata, Potenza, Italy.
5Department of Civil and Environmental Engineering, Duke University,

Durham, North Carolina, USA.

Copyright 2006 by the American Geophysical Union.
0043-1397/06/2005WR004497

W06D05

WATER RESOURCES RESEARCH, VOL. 42, W06D05, doi:10.1029/2005WR004497, 2006

1 of 11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1767839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


gated using the scaling theory of soil hydraulic properties
[Miller and Miller, 1956]. Milly and Eagleson [1987]
analyze the effects of soil heterogeneity on the long-term
water balance using the model proposed by Eagleson
[1978]. They define the effective soil parameters for an
equivalent homogeneous soil to capture effects of the spatial
heterogeneity on the soil water budget. Kim et al. [1997]
show that equivalent parameters depend not only on the
spatial characteristics of soils but also on the climate.
Recent results of Zhu and Mohanty [2003] suggest how to
derive effective soil parameters.
[6] Other studies [e.g., Albertson and Montaldo, 2003]

focus on the description of root zone soil moisture through
the development of a conservation equation for the variance
of soil moisture within a grid cell with uniform soil and
vegetation. This approach identified the effects of processes
such as infiltration, evapotranspiration and horizontal redis-
tribution in increasing or decreasing the variance of soil
moisture. In particular, it was found that some processes are
either solely dissipative or solely productive, while transpi-
ration and infiltration may increase or reduce variance
depending on the soil moisture state. Using the same
framework, Teuling and Troch [2005] analyze the soil
moisture patterns at three sites in different parts of the
world emphasizing the significant role of vegetation and
soil texture on the soil moisture patterns, vegetation being
the dominant control during the growing season.
[7] Despite the previous efforts, many aspects of soil

moisture spatial dynamics are not yet clear owing especially
to the multitude of sources of variability. In the present
work the spatial and temporal dynamics of soil moisture
are studied assuming homogeneous soil and negligible
topographic effects. The analysis centers on a stochastic
model that accounts for the spatial and temporal variability
of rainfall and incorporates effects of spatial heterogeneity
of vegetation. The approach, although a very simplified
representation of an enormously complex problem, yields
an analytical framework for the description of the space-
time dynamics of relative soil moisture that clearly indi-
cates the role of vegetation and rainfall parameters under
general conditions. This type of framework may be very
useful in the attempt to establish general criteria for the
description of the soil moisture over a range of spatial and
temporal scales.

2. Space-Time Rainfall Model

2.1. Specification of Rainfall Model

[8] Rainfall events are modelled as a space-time Poisson
process of rate lR per unit time per unit area. Each event is
characterized as a circular region (or rain cell) of random
radius, WR, duration, D, and intensity, X. The model is a
special case of that of Cox and Isham [1988] in which we
take here the cells to have zero velocity. The rain cells are
thus characterized by three random quantities and to keep
the number of model parameters small we take the distri-
butions of WR, D and X to be exponential, with means mWR

=
1/rR, mD = 1/h and mX = 1/b respectively. All random
variables are mutually independent and independent of the
process of occurrences. The model is highly idealized but
has enough flexibility to represent the main features of the
process and is at the same time analytically tractable.

[9] We denote the rainfall intensity at position u and time
t by Y(u, t), omitting for simplicity the tilde used by Isham
et al. [2005]. We also note that here lR, rR and WR have
been given a subscript R (to denote rain cells) that was not
needed in the earlier paper. Then [Isham et al., 2005] the
expectation of the rainfall intensity is

E Y u; tð Þ½ � ¼ mY ¼ l0
R

hb
ð1Þ

where l0R = 2plR/rR
2 is the rate of rain cells that cover an

arbitrary space-time point. The variance of the intensity is

s2Y ¼ 2l0
R

hb2
: ð2Þ

The space-time correlation structure of the rainfall intensity
process is given by

corr Y 0; tð Þ; Y l; t þ hð Þ½ � ¼ l00
R lð Þe�hh=l0

R; ð3Þ

where jlj = l, l00R(l) = lR E[WR
2 C(l/WR)], and

C uð Þ ¼ 2 cos�1 u=2ð Þ � u 1� u2=4ð Þ
1
2 0 
 u 
 2

0 2 
 u

(
ð4Þ

is the area of overlap of two unit discs, with centers a
distance u apart. For many purposes, C(u) is adequately
approximated [see Isham et al., 2005] by

Ck uð Þ ¼ p 1� u=2ð Þ 0 
 u 
 2

0 2 
 u;

�
ð5Þ

leading to the simplified form

l00
R lð Þ ¼ l0

R 1þ rRl
4

� �
e�rRl=2; ð6Þ

and, in this case, the correlation is approximately

corr Y 0; tð Þ; Y l; t þ hð Þ½ � ¼ 1þ rRl
4

� �
e�rRl=2e�hh: ð7Þ

[10] A more detailed description of the derivation of (1)
to (2) is given by Isham et al. [2005, section 2] along with a
fuller description of the rainfall model.

2.2. Rainfall Process Aggregated in Time

[11] Rainfall is a continuous intermittent process gener-
ally recorded as cumulative amounts over equispaced time
intervals, such as hours or days. Therefore temporally
aggregated rainfall is of much interest for hydrologists
and meteorologists [Rodrı́guez-Iturbe et al., 1998].
[12] The formulation of a continuous time random pro-

cess representing the instantaneous rate of rainfall described
in the previous section leads to the derivation of all the most
relevant properties at daily or other timescale accumulation.
[13] The aggregated process may be defined as

YT u; tð Þ ¼
Z kþ1ð ÞT

kT

Y u; tð Þdt ð8Þ
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where [kT, (k + 1)T] is the time window of integration with k
representing the time lag from a time origin and T the
aggregation interval.
[14] The mean of the temporally aggregated rainfall is

then simply E[YT(u, t)] = mYT = mY T, while the variance is

s2YT ¼ 2s2Y e�hT þ hT � 1
� �

=h2: ð9Þ

[15] The covariance is defined for lags equivalent to
multiples k of the interval of aggregation, T, and may be
derived from the expression

cov YT 0; 0ð Þ; YT l; kð Þ
� 	

¼
Z kþ1ð ÞT

kT

Z T

0

cov Y 0; t1ð Þ; Y l; t2ð Þ½ �dt1dt2:

ð10Þ

[16] After integration of equation (10) the space-time
correlation structure of the temporally aggregated rainfall
is obtained in approximate form as

corr YT 0; 0ð Þ; YT l; kð Þ
� �

¼ gS lð ÞgT kð Þ; ð11Þ

where

gS lð Þ ¼ l00
R lð Þ=l0

R ð12Þ

and

gT kð Þ ¼ e�hkT e�hT � 2þ ehT
� �

= 2 e�hT þ hT � 1
� �
 �

k ¼ 1; 2; � � � ð13Þ

The special cases of purely spatial and purely temporal
correlation are recovered from the individual factors.
[17] These expressions for the mean, variance and corre-

lation function of the aggregated rainfall process will now
be used to fit the rainfall model to data from a region in
southern Italy.

2.3. Estimation of the Rainfall Model Parameters

[18] The study area is part of the Basilicata Region in
southern Italy and overlaps two important river basins, the
Agri and the Sinni. Daily records of 17 rain gauges covering
an area of about 3000 km2 (see Figure 1) were used for

10 years of records without interruption, from 1975 to 1984
in all stations.
[19] To account for the strong seasonality effects typical

of Mediterranean climates, we subdivided each record into
two periods of six months each: April–September and
October–March. The stations are listed in Table 1, where
we report also their annual means as well as their seasonal
means and standard deviations. The spatial structure of the
network is shown in Figure 1.
[20] Estimation of the rainfall model parameters is done

as follows.
[21] 1. The mean rain cell radius (rR

�1) is estimated by
fitting the spatial correlation function of the temporally
aggregated process, gS(l), to the spatial correlation of the
data. Figure 2 shows the results for the study area where the
parameter rR is estimated as 0.080 (km�1) for the fall/winter
period and as 0.060 (km�1) for the spring/summer period.
In the case reported in Figure 2a, we used a multiplying
factor equal to 0.7 to remove the discontinuity at zero lag
(sometimes called a nugget effect).
[22] 2. The mean storm duration (h�1) is estimated by

fitting the temporal correlation function of the aggregated
rainfall process, gT(k), to the means of the daily data.
Seasonal fluctuations have been removed by subtracting
the monthly means from the record. Figure 3 compares the
estimated and fitted correlation functions for the spring/
summer season. The temporal correlations in the fall/winter
period are negligibly different and have not been shown.
The estimate of h is 4.05 (day�1) for the spring/summer
season and is 3.75 (day�1) for the fall/winter period.
[23] 3. The mean cell arrival rate (lR) and the mean cell

depth (b�1) are estimated using the equations for the mean
and variance of the aggregated rainfall process. Thus one
obtains the system,

lR ¼ 2r2R e�hT þ hT � 1ð Þm2
YT

pT 2hs2
YT

; ð14Þ

b ¼ 4 e�hT þ hT � 1ð ÞmYT

Th2s2
YT

; ð15Þ

where the mean, mYT, and variance, sYT
2 , of rainfall are

estimated directly from the data averaging across all the rain
stations.

Figure 1. Rainfall network within the Basilicata study area used to estimate the parameters of the
rainfall model.
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[24] Equations (14) and (15) applied to the study area
provided the following estimates for the parameters: lR =
1.66 � 10�4 (d�1km�2) and b = 0.0394 (d/mm), so that
mX = 25.4 mm/d, during the spring/summer period; lR =
3.86 � 10�4 (d�1 km�2) and b = 0.0263 (d/mm), so that,
mX = 38.0 mm/d, for the fall/winter period.
[25] Table 2 summarizes the estimated parameter values

of the rainfall model for the two periods under consider-
ation. Values are significantly different between the two
periods reflecting the different precipitation patterns ob-
served in the region.
[26] From the model one may estimate the fraction of

time that an arbitrary site has rain. Thus for the spring/
summer period, we have [Cox and Isham, 1988] Pwet = 1 �
exp(�l0R/h) = 0.069. On average a cell is estimated to last
0.25 days, so that it rains once in every 0.25/0.069 = 3.6
days. By comparison, in the data 18% of days have some
rain, which implies that it is raining at any given site of the

region 18 � 0.25 = 4.5% of the time. Similarly for the fall/
winter period, from the model an arbitrary site of the region
is estimated to have rain for 9.6% of the time. A cell is
estimated to last 0.27 days and in the data 24% of days are
wet yielding a corresponding value of 24 � 0.27 = 6.5%.
Thus the model reproduces fairly well the fraction of time
with rain observed in the data.

3. Soil Moisture Dynamics

[27] The soil moisture dynamics are described by a
simplified water balance equation where the rainfall repre-
sents an additive term affected by a factor (1 � f) that
accounts for canopy interception. The soil losses are mod-
elled as a linear function of the relative saturation of soil
that represents a reasonable approximation for arid and
semiarid regions where saturation and well watered con-
ditions are relatively rare and evapotranspiration is well

Table 1. Rainfall Stations of the Selected Study Area Located in the Basilicata Region, Southern Italy

Code Name Annual Rainfall, mm/yr

Spring/Summer Fall/Winter

Mean, mm/d s, mm/d Mean, mm/d s, mm/d

4138 Agromonte 1276 2.21 5.85 4.73 10.83
4124 Armento 743 1.50 5.19 2.69 7.81
4144 Carbone 1025 1.85 5.34 3.63 9.21
4413 Castelluccio Inferiore 1373 2.02 6.17 5.03 12.22
4125 Castelsaraceno 1421 1.93 5.85 4.56 11.69
4149 Cersosimo 936 1.91 6.78 3.61 10.63
4422 Lagonegro 1729 3.23 9.05 7.25 16.62
4127 Missanello 816 1.72 5.59 2.52 7.08
4122 Montemurro 862 1.63 4.88 2.83 7.21
4150 Noepoli 766 0.73 3.68 2.10 8.11
4129 Roccanova 671 1.26 4.19 2.27 6.55
4151 S. Giorgio Lucano 814 1.53 6.03 3.07 13.23
4142 S. Severino Lucano 1410 2.28 6.40 5.30 12.68
4147 Senise 632 1.13 3.63 2.24 6.44
4424 Trecchina 1927 2.77 7.80 6.68 15.23
4152 Valsinni 739 1.23 5.14 2.55 10.26
4411 Viggianello 1069 1.87 5.57 4.29 9.95

Figure 2. Correlation functions in space of daily precipitation during the periods (a) April–September
and (b) October–March in the Basilicata Region. The points describe the correlation between stations
grouped by distance, the open circles represent the mean values of the estimated correlation between
stations grouped by distance, and the dashed lines are the fitted theoretical spatial correlation given by
equation (12) with parameters rR = 0.060 km�1 and rR = 0.080 km�1, respectively.
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approximated by a linear dependence on soil moisture
content [Laio et al., 2001; Porporato et al., 2004]. The
equation may be written as

nZr
dS tð Þ
dt

¼ 1� fð ÞY tð Þ � VS tð Þ; ð16Þ

where S(t) (dimensionless) is the relative soil moisture at
time t; n is the soil porosity; Zr [L] is the depth of the root
zone; V [L/T] is the soil water loss coefficient; (1 � f)
(dimensionless) is the net rainfall coefficient. The parameter
V accounts for evapotranspiration, leakage, and runoff
losses; it depends on vegetation and soil characteristics. The
factor (1 � f) is mainly controlled by the plant species and
condition of vegetation. Typical values range between 0.6
and 0.9 [e.g., Lull, 1964].
[28] The previous equation can be standardized and

rewritten in spatially explicit form for an arbitrary point A as

dSA tð Þ
dt

¼ �aASA tð Þ þ bAYA tð Þ ð17Þ

where aA = [V/(nZr)]A is the normalized soil water loss at
A and bA = [(1 � f)/(nZr)]A is the normalized net rainfall
coefficient that describes the effects of the vegetation
interception, assumed to be a constant fraction of the
rainfall intensity. Such parameters synthetically account for
the effects of vegetation characteristics on soil water
balance. The solution of (17) gives the dynamics of the
soil moisture process as a function of the rainfall input.
Thus, in equilibrium, one obtains

SA tð Þ ¼
Z 1

0

e�aAwbAYA t � wð Þdw: ð18Þ

[29] Isham et al. [2005] discuss in detail the impact of the
lack of an upper bound in the relative soil moisture

dynamics as well as the form of interception used in
equation (17).
[30] The expected value of the relative soil moisture

given the vegetation at a point is

E SA tð Þ½ � ¼ bA

aA
mY : ð19Þ

[31] The covariance of the soil moisture at two points (A
and B) separated in space by a distance l and in time by an
interval h has the form

cov SA tð Þ; SB t þ hð Þ½ � ¼
Z 1

0

Z 1

0

bAbBe
�aAu�aBv

� cov YA t � uð Þ; YB t þ h� vð Þ½ �dudv: ð20Þ

[32] Thus, conditionally on a given vegetation cover at
the two points, the covariance is obtained from equation
(20) as

cAB hð Þ ¼ cov SA tð Þ; SB t þ hð Þ½ �

¼ l00
R lð Þs2Y bAbB

l0
R

� 2he�aBh

aA þ aBð Þ h2 � a2Bð Þ þ
e�hh

aB � hð Þ aA þ hð Þ

� �
ð21Þ

where it is important that the site (B), characterized by the
parameters (aB, bB), corresponds to the later time, and that
the vegetation cover controls the value of the pairs (aA, bA)
and (aB, bB).
[33] For vegetation assumed uniform in space, aA = aB =

a and bA = bB = b, the space-time covariance of relative soil
moisture is then

cov SA tð Þ; SB t þ hð Þ½ � ¼ l00
R lð Þs2Y b2
l0
Ra

he�ah � ae�hh
� �

h2 � a2ð Þ ð22Þ

and has been studied in detail by Isham et al. [2005].

4. Heterogeneous Vegetation

4.1. Specification Vegetation Model

[34] In ecology, there has been increasing interest in the
study of spatial patterns of vegetation and the underlying
processes [e.g., Turner, 1989; Levin, 1992]. These patterns
result from complex interaction between physical and
biological forces and interact with hydrological processes
[e.g., Rodrı́guez-Iturbe and Porporato, 2004]. They have
been extensively studied in savanna ecosystems [e.g., Smith
and Goodman, 1987; Skarpe, 1991; Jeltsch et al., 1999]. Of

Table 2. Rainfall Model Parameters Estimated Over the Basilicata

Region

Parameters Spring/Summer Period Fall/Winter Period

rR, km
�1 0.060 0.080

h, day�1 4.05 3.75
b, d/mm 0.0394 0.0263
lR, km

�2 d�1 1.66 � 10�4 3.86 � 10�4

l0R, day
�1 0.289 0.379

Figure 3. Correlation function in time of the daily
precipitation during the period April–September in the
Basilicata Region. The circles represent the mean values of
the estimated autocorrelation at different stations, and the
dashed line is the fitted theoretical autocorrelation given by
equation (13) with parameter h = 4.05 day�1.
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interest here, Caylor et al. [2003] recently examined the
spatial arrangement of canopy-dominant trees at 10 sites
along the Kalahari Transect in southern Africa showing they
are predominantly randomly located.
[35] Here we consider the presence of two functionally

different vegetation types (e.g., grasses and trees) whose
different physiological characteristics will affect the values
of the parameters a and b in the soil moisture equation. The
spatial structure of vegetation is represented by assuming a
matrix of grass with trees located according to a Poisson
process in space with rate lT. The trees are assumed to have
circular crowns with radii, WT, exponentially distributed
with parameter rT. Figure 4 gives some examples of
realizations from the above model.
[36] To remove the conditioning on vegetation types at

A and B in the covariance function of soil moisture, the
probability of occurrence of the four possible combinations
of land cover for the two points (A, B) is needed. Once
these probabilities are obtained we may then proceed to
use the already derived expression for the covariance
given the cover at A and B (equation (21)) weighted by
the joint probabilities of the vegetation cover. We use the
subscript c for the points covered by tree and u for the
points uncovered. Thus the parameters aA and bA will take
values ac or au, and bc or bu according as A is or is not
under the canopy; similarly for the parameters attached to
point B.

4.2. Joint Probabilities of Vegetation Cover

[37] With the vegetation described by the above Poisson
model the expressions for the probabilities of the four
different possible combinations of vegetation cover at two
points A and B separated by a distance l in space are as
follows. Denote the event that A is not covered by the
canopy by Au, with events Ac, Bu and Bc defined similarly.
The number of trees covering A has Poisson distribution of
mean lTE(pWT

2), so that

P Auð Þ ¼ exp �lTE pW 2
T

� �
 �
¼ exp �2plT=r2T

� �
: ð23Þ

Consequently the probability that a point is covered by a
tree is

P Acð Þ ¼ 1� P Auð Þ ¼ 1� exp �2plT=r2T
� �

: ð24Þ

[38] Similarly the number of trees covering both A and B,
a distance l apart, has a Poisson distribution with mean
lTE{WT

2C(l/WT)}. We can now calculate the probabilities of
such events as Au \ Bc, that A is uncovered and B covered.
For this we write

KT ¼ W 2
T p� C l=WTð Þf g; ð25Þ

so that E(KT) is the expected crown area reduced by the
expected area of overlap between two tree crowns l apart.
The joint probability of having point A not covered and B, at
distance l, covered (or vice versa) is thus

P Au \ Bcð Þ ¼ P Ac \ Buð Þ ¼ exp �lTE pW 2
T

� �
 �
� 1� exp �lTE KTð Þf gð Þ:

[39] In the same way, the probability that two points, at
distance l from each other, are both uncovered is

P Au \ Buð Þ ¼ exp �lTE pW 2
T þ KT

� �
 �
: ð26Þ

Finally, the probability that both points are under cover can
be found by subtraction.
[40] The expectation of the tree crown area reduced by

the overlapping area may be derived using the simplified
expression (5). In this case, when WT is exponentially
distributed with parameter rT,

E KTð Þ ¼ 2pr�2
T 1� 1þ rT l=4ð Þe�rT l=4
h i

ð27Þ

leading to simplified expressions for the probabilities such
as P(Au \ Bu) that have been used in the numerical work
later in the paper.

4.3. Statistical Moments of Relative Soil Moisture

[41] The expected value of the relative soil moisture in
the heterogeneous case may be obtained as the sum of the
means of tree covered soil and grass covered (i.e., tree
uncovered) soil weighted by their relative probabilities.
That is,

E Sð Þ ¼ mS ¼ mY bc=ac þ bu=au � bc=acð Þzf g; ð28Þ

where z = exp(�2plT/rT
2).

Figure 4. Examples of the vegetation patterns obtained from the model with rT = 1/8 m�1 and lT equal
to 500, 1500, and 5000 km�2 moving from the left to the right; gray represents trees, and white represents
the grasses. The tree cover fraction is (a) 18%, (b) 45%, and (c) 87%.
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[42] When the entire landscape is covered by trees or by
grass, the mean assumes the expression for the uniform case.
An example of mean soil moisture as a function of the
parameters lT and rT is given in Figure 5a. The parameters of
the rainfall process used in this example correspond to those
of the April–September period for the Basilicata region.
[43] The covariance of the soil moisture for heteroge-

neous vegetation can be derived from the expression of the
conditional covariance function (equation (21)). In general,
the covariance between two random variables Y and Z can
be obtained from their conditional covariance given X as

cov Y ; Zð Þ ¼ EX cov Y ; Z j Xð Þf g þ cov EX Y j Xð Þ;EX Z j Xð Þf g:
ð29Þ

Here we take X as representing cover so that the
conditioning on X gives four distinct possibilities of which
two, corresponding to one site covered and the other not, are
under our assumptions equal by symmetry. Because the
relevant probabilities for different cover combinations have
been obtained in Section 4.2 and furthermore the covariance
conditional on coverage at the two points has also been
derived, one can easily obtain the unconditional covariance
from equation (29). The analytical solution thus obtained is
lengthy and not illuminating and will not be given here.
Numerical values are straightforward to calculate from
equations (29) and (21).
[44] The variance of the relative soil moisture in a

heterogeneous landscape is obtained similarly, but the
expressions are simpler since A and B are coincident and
therefore only two possibilities for cover must be consid-
ered. Thus

s2S ¼ s2Y
b2uz

au hþ auð Þ þ
b2c 1� zð Þ
ac hþ acð Þ

� �
þ m2Y

bu

au
� bc

ac

� �2

z 1� zð Þ:

ð30Þ

[45] Formulas for uniform grass or uniform tree cover
follow as special cases. The first term in equation (30)
represents the sum of the variances weighted by the
probabilities of the two vegetation types; the second term
depends on the squared difference between the ratios b/a of
the two vegetations coexisting over the landscape. Figure 5b
shows the standard deviation of relative soil moisture as a
function of the vegetation parameters.
[46] Both mean and standard deviation of relative soil

moisture (Figures 5a and 5b) are represented as functions of
the mean radius of tree crowns. As expected, both functions
are highly sensitive to rT for high values of lT.
[47] Examples of the correlation of relative soil moisture

are shown in Figure 6 for the set of rainfall parameters
estimated for the Basilicata region. The inset shows the
same function on a semilog scale to underline the correla-
tion reduction due to the presence of vegetation at small
scales that is not clearly distinguishable in the linear plot.
[48] Two regimes can be clearly identified in the corre-

lation structure of the relative soil moisture corresponding to
small and large spatial scales. Separation of scales has also
been noticed in the analysis of soil moisture data in Illinois
(USA) and Russia by Vinnikov et al. [1996, 1999], where
the empirical correlation was characterized as the sum of
two exponential functions associated with small-scale land
surface variability and large-scale atmospheric forcing,
respectively. Those authors also observed a slightly higher
spatial correlation in the case of a growing forest with a
more uniform cover.

4.4. Relative Soil Moisture Instantaneous in Time and
Integrated in Space

[49] The impact of spatial scale on the description of soil
moisture dynamics is an interesting and important topic in
hydrology. The extensive use of remote sensing images
makes this issue even more critical for a correct interpreta-

Figure 5. Dependence of the (a) mean and (b) standard deviation of the relative soil moisture on the
parameters lT [km

�2] and rT [m
�1] of vegetation. Parameters of the rainfall process are lR = 1.66 � 10�4

day�1 km�2, h = mD
�1 = 4.05 day�1, b = mX

�1 = 0.0394 d/mm, and rR = mWR

�1 = 0.060 km�1. Parameters
related to the vegetation are VT = 7 mm/d, fT = 0.2, [nZr]T = 400 mm, VG = 4 mm/d, fG = 0.05, and
[nZr]G = 100 mm.
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tion of features averaged over different spatial scales, while
soil moisture variability within an area may significantly
affect the results from hydrological models.
[50] In this Section we analyze the variance of the relative

soil moisture process averaged over a square of side L. This
can be obtained by integrating the correlation function of the
soil moisture process in space as [e.g., Vanmarcke, 1983],

s2SL ¼
1

L4

Z L

�L

Z L

�L

L� ju1jð Þ L� ju2jð Þ

� cov S w; tð Þ; S wþ u; tð Þf gdu1du2; ð31Þ

where the previous notation has been extended so that
S(w, t) is the soil moisture at vector position w at time t.
[51] Because of the relative algebraic complexity of the

covariance function of relative soil moisture, here we obtain
the variance of the integrated process only via numerical
integration. For homogeneous vegetation, Isham et al.
[2005] found the variance of the integrated process
analytically using a Gaussian approximation to the more
complex, analytically derived spatial correlation function.
[52] The results described in the following refer to a

landscape made up by two functionally different vegetation
types, listed in Table 3, and to the climatic conditions of the
Basilicata region in southern Italy typical of the period
April–September (see Table 2).
[53] Figure 7 compares the standard deviation of the

relative soil moisture integrated in space as a function of
the integration area for heterogeneous vegetation and for the
two alternative homogeneous cases. The vegetation hetero-
geneity affects the standard deviation of the soil moisture at
all scales producing a function that is in between the two
bounds represented by the homogeneous cases. For the
smaller averaging areas (from 10�6 to 10�1 km2), the shape
of the function describing the standard deviation of the
averaged process differs from that of the two homogeneous

cases. This may be related to the spatial characteristics of
the correlation function shown in Figure 6. For larger scales
the standard deviation of the relative soil moisture has the
behavior of a homogeneous case with an averaged cover,
because when the averaging area has a characteristic di-
mension exceeding the correlation length of the vegetation
structure, the stochastic effects of the vegetation heteroge-
neity are largely removed from the process.
[54] Figure 8 shows the ratio between the standard

deviation of the spatially averaged relative soil moisture
and the standard deviation at a point for different values of
rR for both the homogeneous and the heterogeneous
vegetation cases. The spatial averaging produces a sig-
nificant reduction of the point standard deviation for areas
larger than 50 m �50 m in the heterogeneous case while the
homogeneous case does not show a reduction of the above
ratio at this scale. The reduction becomes dominant for
areas above 1 km2 in both cases.
[55] The behavior of the ratio between the variance of the

spatially averaged process and the point variance underlines
the importance of allowing for heterogeneous vegetation for
a correct description of the relative soil moisture, especially
at the small scales where the vegetation structure represents
a dominant component. In fact, differences in rainfall
parameters (rR and lR) have a negligible effect for
averaging areas of less than 10�1 km2. On the other hand,
variability of the averaged process becomes mainly
controlled by the parameter rR at scales larger than 1 km2.
It was also found that averaging over areas of characteristic
size larger than 100/rR results in a loss of the structure
overimposed by the rainfall field.
[56] Figure 9 shows the standard deviation of the spatially

averaged process over a square area of 100 m � 100 m as a
function of the tree root depth multiplied by soil porosity,
nZr, and for different root depths of the grass. Soil moisture
variability increases with the reduction of the storage
capacity represented by nZr, shallow roots leading to larger
fluctuations in the soil moisture induced by both rainfall
inputs and water losses. Furthermore, the soil moisture
variability displays a large sensitivity to the presence of
shallow-rooted vegetation within the landscape. In fact,
changes in the product [nZr]G for grasses lead to larger
modifications in the standard deviation of the relative soil
moisture than those induced by the corresponding product
[nZr]T for trees.

4.5. Relative Soil Moisture Averaged in Space
and Time

[57] The dependence of relative soil moisture on the
averaging time does not significantly differ from the homo-

Figure 6. Examples of correlation functions of relative
soil moisture for the case of heterogeneous vegetation.
Parameters of the rainfall process are lR = 1.66 � 10�4 d�1

km�2, h = mD
�1 = 4.05 days�1, b = mX

�1 = 0.0394 d/mm,
and rR = mWR

�1 = 0.060 km�1. Parameters related to the
vegetation are VT = 7 mm/d, fT = 0.2, [nZr]T = 400 mm,
VG = 4 mm/d, fG = 0.05, [nZr]G = 100 mm, lT = 2000 km�2,
and rT = 0.008 km.

Table 3. Parameters Adopted to Characterize the Two Vegetation

Types Considered Within the Model

Vegetation Parameters Value

[nZr]T, mm 400
fT 0.20
VT, mm/d 7.0
lT, km

�2 2000
rT

�1, km 0.0080
[nZr]G, mm 100
fG 0.050
VG, mm/d 4.0
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geneous case discussed by Isham et al. [2005]. In fact, the
time-dependent terms of the covariance function are not
modified by the presence of heterogeneous vegetation
(whose characteristics are assumed here to be time-
independent).
[58] Figure 10 shows an example of the standard devia-

tion of the averaged process over an area of 1 km2 and for
integration windows ranging from 1 day to 30 days. Modest
changes occur for temporal scales ranging from 1 day to 3
days and only after 3 days does the standard deviation start
to decrease in a more noticeable manner. Although Figure 10
corresponds to a particular set of parameter values this
behavior was observed for many other examples. Time-
scales lower than 1 day are not shown since the loss
function used in the model neglects all dynamics occurring
at shorter timescales and thus is appropriate only at scales of

a day or more. It should be noted, however, that apart from
sudden soil moisture increases due to the pulsing rainfall
input (that are properly accounted for in the model), other
processes acting at the hourly timescale are not expected to
introduce marked temporal variability in soil moisture
dynamics and thus to affect its temporal autocorrelation at
short time lags.
[59] Figure 11 shows the impact of averaging in both

space and time on the standard deviation of the relative
soil moisture process. The graph is obtained via numer-
ical integration for averaging areas ranging from 1 m2 to
106 km2 and using time intervals of 1, 10 and 30 days. The
importance of scales for a correct characterization of the
variability of the soil moisture process is clearly detected.
Averaging in time induces modifications to the standard
deviation that are minor relative to those resulting from
averaging in space. With uniform soil texture conditions

Figure 7. Standard deviation of the spatially integrated
soil moisture in the case of heterogeneous vegetation and
uniform vegetation. Parameters are as for Figure 6.

Figure 8. Ratio between the standard deviation of the
spatially averaged relative soil moisture and the point
standard deviation for different rR for both the homo-
geneous and heterogenous vegetation cases. Remaining
parameters are as for Figure 6.

Figure 9. Standard deviation of the soil moisture averaged
over a square area of 0.01 km2 as a function of the
parameter [nZr]T [cm] and for three different values of
[nZr]G. The remaining parameters are as for Figure 6.

Figure 10. Standard deviation of the relative soil moisture
averaged over a square area of 1 km2 and in time over
durations ranging from 1 day to 1 month. Parameters are as
for Figure 6.
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the spatial correlation of the relative soil moisture results
from two interacting fields, one operating at small spatial
scales (vegetation) and the other at larger scales (rainfall).
The first sharp reduction of the standard deviation is due to
the averaging at small scales that transforms the heteroge-
neous landscape into averaged homogeneous vegetation
while the second sharp reduction is due to the decrease
of correlation induced by the rainfall field.

5. Final Discussion

[60] The spatial and temporal variability of the soil
moisture has been described through an analytical formal-
ism that incorporates effects of rainfall (e.g., spatial struc-
ture and temporal dynamics), soil properties (e.g., effective
root depth and leakage) and vegetation (e.g., spatial hetero-
geneity of the landscape, rainfall interception and evapo-
transpiration) in the covariance function of the process. The
covariance reflects the dynamics of the soil moisture result-
ing from the interactions of processes acting over different
spatial scales. The variance of the relative soil moisture is
found to be proportional to the rainfall variance and related
to the parameters of the two functionally different vegeta-
tion types and the structure of the vegetation cover (see
equation (30)).
[61] The most important conclusions from this study are

now briefly described.
[62] Vegetation composition has a significant impact on

the variability of the averaged process, especially at small
scales, and becomes progressively less significant with the
increase of the averaging area. Particularly interesting is the
ratio between the variance of the spatially averaged soil
moisture and the point variance (see Figure 8) which is quite
different from that found for the homogeneous case. This
ratio is considerably smaller than one for averaging areas
larger than 50 m � 50 m showing that the vegetation
structure significantly modifies soil moisture variability.
Hydrological modeling should therefore account for this
in the parametrization of spatially averaged soil moisture
and fluxes dependent on this variable.

[63] The standard deviation of the averaged relative soil
moisture is particularly sensitive to the averaging spatial
scale. Averaging in space considerably smoothes the rela-
tive soil moisture process; this effect depends on the
vegetation characteristics (small scale) and the structure of
the rainfall process (large scale). By contrast, averaging in
time up to periods of 1 week does not modify significantly
the soil moisture standard deviation. It is important to
remark here that this result is likely to be strongly dependent
on the assumption that no topographical effects are control-
ling the soil moisture dynamics. In regions where large-
scale topography plays a dominant role, time averaging
could have a significant effect.
[64] Comparison of the derived analytical results with

the space-time correlation structure of soil moisture fields
is a research priority of the authors. We are not aware of
empirical soil moisture data available in space and time
that will enable a strict validation of the theory. For this
reason we are proceeding to compare the analytical results
with correlation structures derived from soil moisture
fields obtained through different types of hydrologic
models. The results of such analyses will be reported
elsewhere.
[65] The impact of controlling topographical effects on

the space-time correlation structure of soil moisture is an
important concern of current research. Previous work by
Caylor et al. [2005] has highlighted the importance of the
interlocked systems of hillslopes and the drainage network
in the spatial organization of soil moisture content. The
authors are attempting to link a modified version of the
scheme presented in this paper to the spatial structure of a
river basin where the drainage network acts as a template
for the organization of the soil moisture dynamics.
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