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PHYSICAL REVIEW E, VOLUME 63, 036105
Mean first passage times of processes driven by white shot noise

F. Laiol? A. Porporato-? L. Ridolfi,* and I. Rodriguez-Iturtfe
IDipartimento di Idraulica Trasporti e Infrastrutture Civili, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
’Department of Civil and Environmental Engineering and Center for Energy and Environmental Studies, Princeton University,
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(Received 25 October 2000; published 20 February 2001

We consider mean first passage times in systems driven by white shot noise with exponentially distributed
jump heights. Simple interpretable results are obtained and the linkage between those results and the steady-
state probability density function of the process is presented. The virtual waiting-time oOcsTpkacess
(constant lossesand the shot noise process with linear losses are analyzed in depth, along with a more
complex process with useful implications for the modeling of the soil moisture dynamics in hydrology.

DOI: 10.1103/PhysReVE.63.036105 PACS nuner02.50-r, 05.40—a, 89.60-k

[. INTRODUCTION case when the state variakdehas an upper bound, i.es,
<s,. The probability distribution of; in this case becomes
In recent years several papers have dealt with the derivastate dependent and reads
tion of exact expressions for the mean first passage times

(MFPT'’s) of specific stochastic processgk-8]. The par- f'(h,s)=H(s,—h—s)

ticular case of systems driven by white shot noise has also -

received considerable attentigf—7], both because of its x| yem M4 5(Sb—h—5)f duye |, (3
analytical tractability and because of the large number of its Sp—S

possible applications. The main emphasis of this paper will hereH(-) is the Heavisid f ion. In the followi
be on the derivation of some interpretable expressions for th@here (-)is .t € neaviside step unctlpn. nt € following
MFPT's of stochastic processes driven by white shot noiseVe will use this second formulation which also includes the

in the special case when the jump heights are exponentiallynbound_ed case _in the fimit &g— .
distributed. Masoliver [5], in the more general framework of non-

We will consider processes whose dynamical evolution id#1arkovian processes, obtained closed exact expressions for
given by the MFPT's pf dynamic systems dr_|ven b_y vyhlte shot noise
for the special cases of exponentially distributed and con-
s stant jump heights. In this paper we derive exact expressions
g1~ POFFR), (1) for the general procegd)—(3). Such expressions agree with
those of Masolive{5], but are more directly derived and
where s=s(t) is the state variable; is time, p(s) is any written _in a much simpler and usable form, thar_lks to the
function defining the deterministic losses of the process, anflarkovian nature of the process. Moreover, the linkage be-
F(t) is the random driving process, in the form of white shottween the first passage times and the steady-state probability

noise or white Poisson noise. This latter is defined by a sedensity function(pdf) of the process is also formally estab-

quence of pulses at random times each pulse having an liShed. , _ ,
independent random height, i.e., The paper is organized as follows. In Sec. Il we detail the

dynamics of the system. In Sec. Ill the derivation of the

MFPT’s is carried out. The results are then applied to three

F()=2> hid(t—m), (2)  special forms of loss function in Sec. IV and the conclusions
' are drawn in Sec. V.

where §(-) is the Dirac delta function. We assume that the
random times{r} form a Poisson sequence, i.e., that the Il. DYNAMICS OF THE SYSTEM
probability di_stribution o_f the time inte_rval%ti =7 Tifl;i In the most general case the pdf of the state varialibe
=1,23...}isf(t)=re™ ™', where 1X is the mean interval 1o processl) can be written as
between two subsequent pulses. Under this assumption the
dynamic procesgl) is Markovian with respect t®. The p(s,Sp,t)=pe(s,Sg,t)+ 8(s—s))P(s,s0,t), (4)
probability distribution of the random heighlts (whose di-
mension is the same a} is assumed to be exponential with wheresy is the starting point of the trajectory, defined by the
mean value (3) [f(h)=ye "]. Since we are considering initial condition p(s,sy,t)= 8(s—sp). The continuous part
positive jump heights, to guarantee stationayifys) must  of the pdf isp.(s,sg,t) andP(s,Sy,t) is the time-dependent
also be positive. The extension of the results to the oppositeumulative density function o§. The atom of probability
case[ h;<0 andp(s)<0] is straightforward. 0(s—s))P(s,sq,t) is present ins=s; if p(s)#p(s, )=0.

In many practical applications, such as the description offhe resulting forward differential Chapman-Kolmogorov
soil moisture in hydrology9], it is important to consider the equations are in this cage.g., Refs[10,11]),
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9 9 One does not need to solve the partial integro-differential
5t Pe(8:80,8) = —[Pc(S,S0, ) () ] = APc(S,So, 1) equation(10) to obtain the first passage times statistics of the
process. In fact, the moments of the probability distribution

s , _ g1(So,t) areT,(so) = [ot"gr(Sp,t)dt. Therefore, an expres-
+7‘L dupe(u,So, D)’ (s—u;u) sion involving the mean time for exiting the interval’, £},
! T4(sp) (the subscript 1 is omitted from here)ois obtained
+AP(s;,50,1) ' (s,5)) (5)  from Eq.(10) as
for the continuous part of the pdf and dT(sp) ¢
—1=—p(sp) +>\f ye  "ZT(2)dz— A T(sy),
P dso s0
EP(S| 1SOIt): _)\P(S| 1SOlt)+p(S|)pC(S| !SOlt) (6) (11)

_ where the exponential part of the jump distributidri(z

for the atom of probability irs=s; . , —50,50), has been used in the integral on the right-hand side
~ Laterin this paper we will focus on some analytical rela- because, in the hypothesis tht's,, the presence of the
tionships between MFPT's and the steady-state pdf of thgong ats, becomes irrelevant. The integro-differential

process. We first summarize the solution of E&s.and(6) equation(11) was also obtained by MasolivéRef. [5], Eq.
under steady-state conditions. Taking the limittasc of (A4)] in a different and more general way.

Egs. (5 and (6) and substituting Eq(3) in Eq. (5), after Differentiating (11) with respect tos, and reorganizing

some manipulationtsee Refs|11,12)) one obtains the equa- e terms, the following second-order differential equation is
tions valid for the steady-state pdf sf

obtained:
d 2
Z<Lp(8)pc(s)]+ vp(s)Pc(S) —Apc(s) =0, (7 d“T(sop) dp(so) dT(so)
ds S +— S +y=0.
p(So) i< ds vp(So) ds, Y
AP(s))=p(s)pc(s)- (8 (12
The general form of the solution for the continuous part ofEduation(12) needs two boundary conditions: the first is
the steady-state pdf is given ji1] as obtained from Eq(11) evaluated as,=¢,
Do(S) = @~ A Sldup(u)] © o) L&) _=1-AT(9). (13
<7 p(s) ! ds, %0

whereC is a constant of integration that can be calculated=or the second boundary condition one has to consider
imposing the conditiorP(sy)=1 [in the unbounded case, Whether the lower limi¢’ is above or belovs; . In the first
P()=1]. Due to the Markovian nature of the process, thecase,§’ is a real absorbing barrier, so that the boundary
bounded and unbounded cases have the same sof@ipn condition isT(§')=0 [see Fig. 1@)]. In contrast, wherg’
(9)], all the differences being embedded in the different val-<$, £’ cannot be reached by the traject¢see Fig. )],

ues of the constar@ (see Ref[9]). and the average exiting time from the interval becomes the
mean first passage time of the threshéldwe will use the
IIl. MEAN FIRST PASSAGE TIMES notation T,(sy) to emphasize that in this case the variable

depends only oré and not oné’. In this case the second

From the forward equation$) and(6) it is easy to obtain  poundary condition is obtained by settisg=s, in Eq. (11),
the corresponding backward or adjoint equatift®. From j.e.,

the backward equation it is then straightforward to write the

differential equation that describes the evolution of the prob- é 1

ability density,gr(so.t), that a particle staring frons, in- Tg(sl):j ye TNT(2)dz+ N (14
side an interva{¢’, &} leaves for the first time the interval at K

a timet [13]. This is the usual procedure to obtain an equa-

tion for the MFPT statistics when the process is Markovian ~ A. MFPT's of a threshold & above the initial point s,

(e.g.,[4,13,14). For the process under consideration the re- \ye consider first the case when<s, [Fig. 1(b)]. The

sulting equation fogr(so,t) is thus solution of Eq.(12) with boundary condition$13) and (14)
is [Ref. [5], Eg. (5.39
d91(so,t) 997(So,t) [Ret.[5), Eq ]
. p(SO)—&SO

1
To(Sg)=— J'—e'\"(”)fe*'\"(z)dzdu
A== ) ow® ),

f S
‘H\J f'(z—50,50)97(z,t)dz=Ngr(Sp,t).
S

0

1
— M
10 +C1(§)Lop(u)e du+Cy(§), (19

036105-2
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£ s & T
________________ C fe‘”‘sl ——du+e &S
¢ (&) o R

S|

1 e "és) ¢ ( )eM(u)
=t ——" e YuTs
N YL. p(u)

Xfe"\"(z)dzdwr l’efy(gfsnewg)fefM(u)du_
u A 4

t (18

By noticing from Eq.(16) that

—yusM(u) —yuaM(u)
E b — — - ___ - b e e :_Ed(e e")
p(u) N du
So
one can proceed with the direct integration of the first term
on the left-hand sidélhs) of Eq. (18) and with the integra-
tion by parts of the third term on the right-hand sides) of
Shrr——————————— — — - - the same equation. A further reorganization of terms leads to
§' _______________ _
t = —M(u)
Te (80) Ci(&) ?’fs|e du. (19

FIG. 1. (a) and(b) trajectories and first passage times when theThe value ofC,, which results to be independent &f can
thresholdst” and ¢ are both greater than the fixed pogit(@) and  pe substituted in Eq17) yielding
when ¢’ <s (b).

1 3
Te(so)= 1+ %e""(@f e MUdy

S|

whereC,(£) andC,(£&) are integration constants and £eMW ru
1(€) 2(é) g yf f e M@dzdu (20
sop(u) s
_ 1 Equation (20) represents a first simplification of the result
M(u)=yu=» Lp(z) dz (16 that was given ifi5] as a combination of Eq§13)—(15). The

linkage between the MFPT’s and the steady-state pdf of the
process allows further simplifications of E@0). Consider
Equations(15) and (16) present some difficulties of applica- Eds.(9) and(16): one can writepc(s) =[C/p(s)]e"M®, so
tion due to the involved form of the boundary conditions that Ed.(20) becomes
(13) and(14) which defineC,(£) andC,(£). In the follow-
ing we will show thatC, (&) andC,(¢) can be directly cal- T,(sg) = EJF Y
culated when the jump heights are exponentially distributed. 2077\
From Egs.(15) and(16) one may easily determine the value
of the integration constai@, (&), which allows us to rewrite 4 1
Eqg. (15) as f

¢
m 5 Pc(U)p(u)du

S . dzdu (22
4 wp(Wp2(W) Slp(Z)p(Z) zdu (

Equation(7) can now be used to simplify the above expres-

Tu(sg)= l_ C1(8) eM(® 4 ZeM(g)f e MM gy sion. In fact, integration of Eq(7) and substitution in Eq.
Y A A ¢ (21) yields, after using Eq(8),
M) eeM(x) ,
—Cl(é)f ———dx+ yf e Mdxdx . Ts)= P($) +F AP(U) 1
soP(X) soP(X) Jx 5= 55,08 o P P

17 (22)
Note that when the starting poirg, coincides with the

Equation(17) can now be inserted in E@L4). Integration by  threshold¢, the integral on the rhs cancels out and the mean
parts of some terms and reorganization of the terms lead t@rossing time reads

036105-3
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P(§)

TdO= L @p®

(23

As a consequence, under steady-state conditions the fre-

qguency of the upcrossingpr downcrossing events of the
threshold¢ can be obtained from E¢23) [15] as
v(§)=pc(£)p(§). (24)

Returning to the MFPT’s, some manipulation of HG2)
leads to the synthetic expression

¢
Te(sS0)=Ts (S0) + Yf Ty(u)du, (25

So

which, along with Eq.(23), completely defines the MFPT
from sy to & for sp<¢. Note that a similar relationship be-

tween MFPT’s and steady-state pdf's was obtained by Bal

akrishnanret al. [16] for processes driven by Gaussian white
noise.

PHYSICAL REVIEW B3 036105

S

———[N—AP(u)+pc(u)p(u)]du
S TL (U)+pe(u)p(u)]

Te(so)= L

1

1
=T (So) ~Te(€)+ PG

N

whereTs (so), Tg(&"), andT,(u) are calculated from Eg.
(23), v(&'), v(sp), andv(u) from Eq. (24).

Differently from T,(sy), T, (So) depends on the presence
of the bound as=s, and on the shape qif(s) for s>s,.
This is clear from the presence in EQ7) of v(¢'), v(sg),
and v(u), which in turn contain the normalization constant
C. In fact, the trajectory frons, to ¢’ can take any value
above ¢’ with the presence of the upper bound decreasing
the first passage time of’ for all those trajectories that
would have taken values abosgg in unbounded conditions.

1

(1) TU(U)>du,

(27)

Some important properties of the MFPT’s become mani-

fest from this formulation: bothT ,(§) and T.(sp) in Egs.

(23) and (25 can be expressed as functions of the ratio

[P(u)/pc(u)p(u)], whereP(u) is the steady-state cumula-
tive density function calculated at a certain leuvelp(u) is
the steady-state probability density function at the sam
level, andp(u) is the loss function, again at the leuelWe
have pointed out before that all the changes inducqu &)
from the presence of the boundsat s, are embedded in the
constant of normalizatiorC. However, the constanC is
present both ifP(u) and inp.(u), so that it cancels out from
the expressions of the MFPT. The value of the latter is thu
independent of the presence of the bound#s,, and, for

similar reasons, of the shape of the loss function above th

thresholdé. The opposite is true for the frequeneyé) that
contains the constan® through p.(¢) and therefore also
depends on the part of the dynamics abgve

B. MFPT's of a threshold &' below the initial point s

We consider now the MFPT’'s whefi > s, [see Fig. 19)]
in the special case whefr—o (£>s, in the bounded cage
This variable, that we will calll ./ (sg), represents the aver-
age time that a particle starting frogxsy> ¢’ takes to ar-
rive to £’. Equation(12) needs now to be integrated with the
boundary conditions given by Eq13) and T§,(§’+)=O,

where the plus subscript is used to put in evidence the dis-

continuity  Te (&) =P(&)/[p(§)p(§)]1# Te(£'7)=0.

The procedure to calculate the resulting integration constants

is analogous to that used before. The final resu{sée also

[7)
J,

SoeM(u)

' p(u)

Tg/(so)zyf e M@dzdu (26)

3

IV. APPLICATIONS

We will consider in the following three special cases of
particular physical importance. The first is the well known
virtual waiting time or Takas problem, withp(s)=2, s

920; the second is the shot noise process with linear losses,

e.g., p(s)=gps; in the third case a piecewise loss function
and the bound irs,=1 are considered. This latter choice is
important to outline the procedure of analysis of the MFPT’s
when more complicated forms @fs) need to be used. The
special case whes is the relative soil moisture content

Yorced by a stochastic rainfall inpyi®,12,17-19 will be

gsed as an example of an important application.

A. The virtual waiting-time process

The virtual waiting-time process is a very well studied
one, since Takes[20] pointed out its importance in queuing
and storage contexts. The loss function for this process is
p(s)=pB, s=0, ands can be, for example, the total time it
would take to serve all costumers in an office at titn@
B=1 we have a single servévl/M/1 queug¢ or the time-
dependent amount of water in a reservoir depleted at con-
stant rate3. The steady-state probability density function for
this process i$see Eq.(9)]

C
pc(s)= Ee*S[ y=(NB)] (28)

with an atom of probability ins=0, P(0)=C/\. In the
unbounded case the condition of stationarity of the process is
v>N/B and the constant of integration i€=[\(yB
—\)/yB], in the bounded case the process is always station-
ary and the constant of integration is

Splitting the integral on the rhs in the part below and above

the bounds,, and considering again the relationship between

M(u) and the steady-state pdf, one obtains

_ MyB—N)
 yB—re Sl (VAT

036105-4
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30 ~

T¢(s0) (d)
/
/
~

20
10 T - /Y
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FIG. 2. MFPT's of¢ (£'), T«(so), as a function of the initial
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right s> ¢’ and Eq.(32) is used. Equation§31) and (32)
derive from the imposition of different boundary conditions
for the differential equatio{12); this leads to the already
mentioned inequalityTg(g)a&Tg,(g’*):O and to the dis-
continuity of each curve &= ¢ (£'). Also note that, due to
the presence of an upper boundsgt 10, the parts of the
curves on the rhs are bent downward with respect to the
linear expression given by E¢32): in fact, as pointed out
before, the values of ./(sy) decrease as a consequence of
the restriction imposed to the trajectories by the presence of
the bound. This effect is more evident when the starting
point sy is closer to the bound.

A final comment regards the paramet&rsy, andB: the
unbounded Tales problem is stationary only whery
>\/pB and, also in the bounded case, the signyef\/g is

locations, for the Takas process. Four curves for different thresh- : : -
olds ¢ are shown with dashed segments of different length. Blaclﬁvneg |m2p (x;agégé\djtfrmflfg;ﬂggzr? f[tﬁggcjr-l)o?cnedgzt)ﬁe
circles are placed whesy= ¢ [Eq. (29)]; on the left of these circles 9. YT :

we havesy<¢ and Eq.(31) is valid, on their rights,> ¢’ and Eq.
(32) is used. For all the equations the parameters values are
dl, y=1, B=1.1d?, ands,=10.

The MFPT of the thresholg when the initial point is also
so=¢ is, from Eq.(23),

YB
T =7 eflv(MAI— ’ 29
SNE7 Y T
the frequency of upcrossings éfis [Eq. (24)]
v(§)=Ce tdr= AT (30)
and the MFPT off whensy<¢ is, from Eq.(25),
YB YB _
Tu(s) = ey~ (B
T I NGy
1 1
_ eSol v~ (WA _ Zg_gy— —|.
YB—\ EAR
(31)

Finally, the MFPT of¢’, with sp>¢’, reads from Eq(27)
)= CyB—NyB~—M) et [y- (VB _ gsolv- (WA
C(yB—\)?

Y
YB—A\

that in the unbounded case assumes the simple form

Tg/(SQ

+

(so— &), (32

0% A
>—,
yB—\ "B

Equationg31) and(32) are plotted in Fig. 2 taking the initial

Ter(so)= (so—¢'), (33

conditions, as variable. Four curves are traced for different
values of the threshold (or ¢£’) and a black circle is placed

on each curve whergy=¢ [the position of the circles is
therefore also described by E(9)]. On the left of these
circles we havesy<¢ and Eq.(31) is valid, while on their

dimension of\ (e.g.,d" ! or s™!) depends on the process
under consideration and determines the dimension of
T«(Sp)]. If we had taken3<1 the values ofT /(sy) would
have dramatically decreased, while thoseTgf(s,) would
have increased. In the special case when\/3 the steady-
state probability distribution becomes uniformp.(s)
=[N/ (B+A\sp)]. The MFPT'’s in this case are obtained ei-
ther taking the limit as the numerator and denominator in
Egs.(29), (31), and(32) tend to zero or by directly applying
the relations(23), (25), and (27) with the above uniform
distribution. One obtains

1
T(o==+ 2, (34
& N B
_~_ _AB
WE)=C= i (35)
1
T§<so>=;+¥+§<§2—s§>, (36)
1+ s
Tor(s0)= ;”%%—g'—ggﬁé—e%. (37)

In unbounded conditionss{— =), T,(£) andT.(s) remain
unchanged, the frequenaoy(§) tends to zero, and(Sg)
tends to infinity, due to the nonstationarity of the process in
this case.

B. The shot noise process with linear losses

The second application involves a linear loss function of
the formp(s) = Bs. The decreasing trajectories fre thus
exponential, and the process corresponds to a particular form
of shot noise in which the “shots” are exponentially decay-
ing pulses of random heighi.g.,[11]). The steady-state
pdf is in this case

p(S)=pc(s)= %s(”‘”le 7S, (38

whereC is the normalization constant of the pdf,

036105-5
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o /BYMB 05 50
A’ 1
' =, Sy 04 %
ﬂ ¥
Z s
with (['[-,-]=C[-]-T[-,-], where[[-] is the Gamma = * 3
function andl[ -, - ] the incomplete Gamma functipnVhen 2 02 o E
there is no upper boungs) is called a gamma distribution '
with mean values=\/B7y. 01 10
The MFPT of the threshold (£') with starting points,

can be calculated, using the expression for the steady-stat
pdf equation(38), from Egs.(23), (25), and (27). For s
= ¢ one obtains

FIG. 3. Mean duration of an excursion bel@gwT.(¢) (dashed

11+ l )/4 lines), and frequency of upcrossing éf v(£) (continuous lines as
BT a function of the threshold valug for the unbounded shot noise

(39 process with linear losses. The four curves have different values of
B; A=1d ! andy=1 are kept fixed.

where (F4[-,-,-] is the confluent hypergeometric function

or Kummer functior{21]. Whens,<¢ the MFPT of¢ reads  tains &,,,,=\/yB. Such value is in general different from

the mean steady-state value which from B#) results to be

1

T«()= B

I 1
(75)_)\/B67§F'[E,74 =x1F1

T«(sp) 1F 11+)\ +7§F[1121+)\ 3
S =T 1 _l S N . 1 ; L _;
g=0) =51 B YSo N2 2 B Y N ('ysb)”ﬁefysb
S0 A B N T

- TZFZ 1111211+ E;‘YSO ’ (40) ’)/F |:E”ysb
where F,[-,-;-,-;-] is the generalized hypergeometric ,,q converges t§,a, only in the unbounded case.
function [22]. Finally, the MFPT froms, to ¢’ is, whens,
>§,1

C. The hydrologic soil moisture process
1 A A i ; ;
) _ = ~MBayso| 1| 2 R i Our third example deals with a model with a more com-
Te(So) ,8(750) © (F [,8’750 r [B'ysb ) plex form of the loss functiorisee Fig. 4. The special case

considered is important to analyze the linkage between cli-
) mate, soil, and vegetation through the soil moisture dynam-
ics, which represents a problem of fundamental hydrologic

1

gre) et

F ’ [ A gl } F , [ A
_1 - _i ys
g7 g7
, N interest. This section is presented to show an example of how
+£2F2{ 1,1:2,1+ —;yg'}— y—SOZFZ[l,l;Z,l the previous analytical expressions are applied to more com-
A B A plex dynamics, with results whose interpretation becomes
very important for the global understanding of the process.
When the lateral contributions can be neglected, the soil
moisture balance at a point is expressed%s

1 A
Z(=1)MB - _
+B( 1) (F[l B’ YSo

Aol
Bv ’yg ﬂiysb

In Fig. 3, T,(§) from Eq. (39) and the frequency of cross-

+_
B 0

. (41 nzrg—f=l[s,t]—E[S]—L[S], (42

ings, v(£), are plotted as a function af. The values of\ ps) (@
and y are kept constant and equal to 1, whitevaries from

0.4 to 1.6. Common features for all the curves are the in- 0.04
crease off ,(§) with ¢ and the presence of a maximum of the

crossing frequency(&). The value,, ., for which »(§) has 003

a maximum is usually very close to the mean vaduef the
steady-state distribution, because both represent leveds of
around which the trajectory preferably evolve. However, 001
only in the unbounded case the two values coincide: in fact,
one can sep(s)p.(s)=v(s) in Eqg. (7), obtaining the equa-
tion yp(émay —A=0 for the abscissa of the maximum
crossing frequency. When the loss function is linear one ob- FIG. 4. The loss functiom(s) for the soil moisture process.

0.02

0ShSw $* St ]
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wheren is the soil porosityZ, is the depth of active soil or a (mm)
3 1.5 1 075 06 05

root depth, ands is the relative soil moisture content £Gs
=<1). Infiltration from rainfall,I[s,t], is the stochastic com-
ponent of the balance and represents the part of rainfall that
actually reaches the soil columB[s] andL[s] are the rates

of evapotranspiration and leakage, respectively.

We idealize, at the daily time scale, the occurrence of
rainfall as a series of point events in continuous time, arising
in a Poisson process of ratkeand each carrying a random
amount of rainfall extracted from an exponential distribution

[9]. Under this assumption, E¢42) is the same as Ed1) 20 e Emae35mmd
with p(s)=[E(s) +L(s)]/nZ, and a random driving process
represented by Eq2). The mean interval between two rain- 01 02 03 04 05 06

fall events is IX. The value of\ is corrected with the ex- Ah

N Al . .

preSS'om‘ =\e ¥ to.take into a(?count canopy Intercep- FIG. 5. Mean duration of a plant water stress peribg,(s*),

thn (see[9112] for _detaIIS, Wh_erea_ is the mean am_oum of as a function of the frequency of the rainfall event&hen the total

rainfall falling during a precipitation event, anti is the  rainfall during the growing season is kept fixed at 650 mm. The

maximum depth of rainfall intercepted by the vegetationmaximum evapotranspiration rafg,,, is varied between 3.5 and 5

canopy during a single rain event. Finally, the use of By. mm/d. The root depth i€,=60 cm, the soil is a loam, ans’

with s,=1 andy=nZ,/« for the jump heights distribution =0.57.

allows to consider the normalization between 0 and 1 of soil

moisture and the occurrence of runoff eve@gl 2). water either in leakagéor runoff) or in canopy interception
The piecewise loss functiom(s) deriving from the according to the situation, pointing out possible optimal con-

evapotranspiration and leakage losses is shown in Fig. 4litions for vegetation.

There are no losses up to the hygroscopic psintherefore Figure 6 shows two other important variables for the
s,=s,) and linearly increasing evaporation is present fromanalysis of plant water status: the mean duration of an excur-

the hygroscopic to the wilting poirg,,, which is the soil sion froms,, to s*, which is important for the analysis of the

moisture level below which plants begin to wilt. Evapotrans-'¢CVEr of a plant from a period of in_ten;e stres8], and
b 9 b the MFPT ofs* from s;., Te(Stc), Which is useful to ana-

\F/)vlirlztr:(g)jnpfilrlf'?fozl’? C?hgtp?)i2?3?23rr:r;(;rkzatsr:ggccr)i%Igt(()amsti)rﬁyze the duration of the periods without water stress at the
. " TS beginning of the growing season in places with a wet winter

mata_ll opening, while frons* on evapotransplratlo_n is at a season[19]. T.(s,) is obtained from Eq.(25), while
maximum valueEnm,y. From field capacitysyc to soil satu- T« (Stc) is calculated from Eq(27), again without further
ration (s=1), the leakage becomes dominant and the 10SSegitficyities for the piecewise form gf(s). The variations of
increase exponentially up to the saturated hydraulic conduc—rs*(sw)' Te(S;0), and Te(s*) with respect to the root
tivity K. A detailed explanation of the rationale behind this depthZ, are shown in Fig. 6. Since the height of the active
form of p(s) can be found irf12]. soilnZ, is the “capacity” of the systent42), the trajectories

The soil moisture values® below which plants begin of soil moisture become more “regular’” when deeper soils
closing their stomata can be taken as a threshold for thgre considered, so that bofhs(s,) and Te(si.) rapidly
occurrence of vegetation water str¢$g,18. The MFPT of

s*, T« (s*), becomes therefore very important for the Ts (D

analysis of plant condition in water-controlled ecosystems. 120

Equation (23) can be used to derive the expression for 100 - Ts(519

T« (s*) regardless of the piecewise form of the loss func- 80

tion: all the complications arising from this particular form 60

of p(s) are in fact embedded in the values pfs*) and

P(s*), whose analytical expressions can be founfll@. In 40

Fig. 5, T+ (s*) is studied as a function of the frequencyof 20

the rainfall events and of the mean rainfall depthin such 2, @@

a way that the produat\ remains constant. This is to com- 2% % 75 100 125

pare environments with the same total rainfaNTs,sdur- FIG. 6. The effect of variations of the plant root depth on the
ing a growing season lastinBseas, but with differences in - ean duration of a water stress peribg (s*), on the mean dura-
the timing and average amount of the precipitation eventsion of a period without water stress at the beginning of the growing
I!’ldependently of the dlfferenpes in the maximum transpiraseasori . (s;), and on the mean time plants need to recover after
tion ratesE,,, plants experience longer periods of stressa period of intense stres§g«(s,). The mean rainfall frequency is
either where the rainfall events are very rare but intense 0X=0.2 d !, the mean rainfall depth i&s=2 cm. The maximum
where the events are very frequent and light. From a physicalvapotranspiration rate i§,,,=4.5 mm/d, s*=0.57, s,=0.24
viewpoint, this is due to the relevant losses of transpirablend the soil is a loam with field capacisy,=0.7.
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increase withZ, . A higher value ofT .« (s;.) is favorable for MFPT'’s to the steady-state pdf of the proce@s) the ex-
plants because it implies a longer unstressed period at thension of the analysis to processes with piecewise loss func-
beginning of the growing season, while a higher value oftion or with an upper bound, which are very important for
T (sy) is problematic for plants which then need a verymany geophysical applications like those involving soil
long time to recover after a period of intense stress. Thesmoisture dynamics, as explained in Sec. () fully ex-
features lead to important differences in the water use paglicit expressions for the MFPT’s of the Talsprocess and
terns of deep and shallow rooted plants, with advantages aritie shot noise with linear losses, some of wHhiBlgs. (31),
drawbacks in different situations that affect the favorablenes£32), (40), and(41)] seem not to have been reported before.

of a given environment to different vegetal species. Special attention has been given to the above-mentioned
linkage between the MFPT'’s and the steady-state pdf of the
V. CONCLUSIONS process, for its importance in the physical interpretation of

] ] . _otherwise more complicated equations.
The mean first passage times of processes driven by white

shot noise have been studied in detail for the case of expo-

nentially distributed forcing jL_lr_nps_. The main results of the ACKNOWLEDGMENTS
present work ardi) the simplification of some general ex-
pressions for the MFPT’s found in the literaturg] [Egs. We gratefully acknowledge the support of NASA and

(23), (25, and(27)]; (ii) the expression of the linkage of the NSF.
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