322 research outputs found
Magnetic field evolution and equilibrium configurations in neutron star cores: the effect of ambipolar diffusion
As another step towards understanding the long-term evolution of the magnetic
field in neutron stars, we provide the first simulations of ambipolar diffusion
in a spherical star. Restricting ourselves to axial symmetry, we consider a
charged-particle fluid of protons and electrons carrying the magnetic flux
through a motionless, uniform background of neutrons that exerts a collisional
drag force on the former. We also ignore the possible impact of beta decays,
proton superconductivity, and neutron superfluidity. All initial magnetic field
configurations considered are found to evolve on the analytically expected
time-scales towards "barotropic equilibria" satisfying the "Grad-Shafranov
equation", in which the magnetic force is balanced by the degeneracy pressure
gradient, so ambipolar diffusion is choked. These equilibria are so-called
"twisted torus" configurations, which include poloidal and toroidal components,
the latter restricted to the toroidal volumes in which the poloidal field lines
close inside the star. In axial symmetry, they appear to be stable, although
they are likely to undergo non-axially symmetric instabilities.Comment: MNRAS, accepte
Search for Stable Magnetohydrodynamic Equilibria in Barotropic Stars
It is now believed that magnetohydrodynamic equilibria can exist in stably
stratified stars due to the seminal works of Braithwaite & Spruit (2004) and
Braithwaite & Nordlund (2006). What is still not known is whether
magnetohydrodynamic equilibria can exist in a barotropic star, in which stable
stratification is not present. It has been conjectured by Reisenegger (2009)
that there will likely not exist any magnetohydrodynamical equilibria in
barotropic stars. We aim to test this claim by presenting preliminary MHD
simulations of barotropic stars using the three dimensional stagger code of
Nordlund & Galsgaard (1995).Comment: 4 pages, 2 figures, to appear in the proceedings of IAUS 302:
  "Magnetic Fields Throughout Stellar Evolution
Neutrino emission rates in highly magnetized neutron stars revisited
Magnetars are a subclass of neutron stars whose intense soft-gamma-ray bursts
and quiescent X-ray emission are believed to be powered by the decay of a
strong internal magnetic field. We reanalyze neutrino emission in such stars in
the plausibly relevant regime in which the Landau band spacing of both protons
and electrons is much larger than kT (where k is the Boltzmann constant and T
is the temperature), but still much smaller than the Fermi energies. Focusing
on the direct Urca process, we find that the emissivity oscillates as a
function of density or magnetic field, peaking when the Fermi level of the
protons or electrons lies about 3kT above the bottom of any of their Landau
bands. The oscillation amplitude is comparable to the average emissivity when
the Landau band spacing mentioned above is roughly the geometric mean of kT and
the Fermi energy (excluding mass), i. e., at fields much weaker than required
to confine all particles to the lowest Landau band. Since the density and
magnetic field strength vary continuously inside the neutron star, there will
be alternating surfaces of high and low emissivity. Globally, these
oscillations tend to average out, making it unclear whether there will be any
observable effects.Comment: 7 pages, 2 figures; accepted for publication in Astronomy &
  Astrophysic
Multi-Fluid Simulation of the Magnetic Field Evolution in Neutron Stars
Using a numerical simulation, we study the effects of ambipolar diffusion and
ohmic diffusion on the magnetic field evolution in the interior of an isolated
neutron star. We are interested in the behavior of the magnetic field on a long
time scale, over which all Alfven and sound waves have been damped. We model
the stellar interior as an electrically neutral plasma composed of neutrons,
protons and electrons, which can interact with each other through collisions
and electromagnetic forces. Weak interactions convert neutrons and charged
particles into each other, erasing chemical imbalances. As a first step, we
assume that the magnetic field points in one fixed Cartesian direction but can
vary along an orthogonal direction. We start with a uniform-density background
threaded by a homogeneous magnetic field and study the evolution of a magnetic
perturbation as well as the density fluctuations it induces in the particles.
We show that the system evolves through different quasi-equilibrium states and
estimate the characteristic time scales on which these quasi-equilibria occur.Comment: It will be published in AIP Proceedings of the Conference '40 Years
  of Pulsars: Milisecond Pulsars, Magnetars and More' held at University of
  McGill, Montreal, Canada, August 2007. Contributed Talk at Conference '40
  Years of Pulsars: Milisecond Pulsars, Magnetars and More
Internal Heating of Old Neutron Stars: Contrasting Different Mechanisms
Context: The standard cooling models of neutron stars predict temperatures
 yr. However, the likely thermal emission
detected from the millisecond pulsar J0437-4715, of spin-down age  yr, implies a temperature  K. Thus, a heating
mechanism needs to be added to the cooling models in order to obtain agreement
between theory and observation. Aims: Several internal heating mechanisms could
be operating in neutron stars, such as magnetic field decay, dark matter
accretion, crust cracking, superfluid vortex creep, and non-equilibrium
reactions ("rotochemical heating"). We study these mechanisms in order to
establish which could be the dominant source of thermal emission from old
pulsars. Methods: We show by simple estimates that magnetic field decay, dark
matter accretion, and crust cracking mechanism are unlikely to have a
significant effect on old neutron stars. The thermal evolution for the other
mechanisms is computed using the code of Fern\'andez and Reisenegger. Given the
dependence of the heating mechanisms on the spin-down parameters, we study the
thermal evolution for two types of pulsars: young, slowly rotating "classical"
pulsars and old, fast rotating millisecond pulsars. Results: We find that
magnetic field decay, dark matter accretion, and crust cracking do not produce
detectable heating of old pulsars. Rotochemical heating and vortex creep can be
important both for classical pulsars and millisecond pulsars. More restrictive
upper limits on the surface temperatures of classical pulsars could rule out
vortex creep as the main source of thermal emission. Rotochemical heating in
classical pulsars is driven by the chemical imbalance built up during their
early spin-down, and therefore strongly sensitive to their initial rotation
period.Comment: 7 pages, 5 figures, accepted version to be published in A&
Old but still warm: Far-UV detection of PSR B0950+08
We report on a Hubble Space Telescope detection of the nearby, old pulsar
B0950+08 ( pc, spin-down age 17.5 Myr) in two far-ultraviolet
(FUV) bands. We measured the mean flux densities  nJy
and  nJy in the F125LP and F140LP filters (pivot wavelengths 1438 and
1528 \AA). Using the FUV data together with previously obtained optical-UV
data, we conclude that the optical-FUV spectrum consists of two components -- a
nonthermal (presumably magnetospheric) power-law spectrum () with slope  and a thermal spectrum emitted from
the bulk of the neutron star surface with a temperature in the range of
 K, depending on interstellar extinction and neutron star
radius. These temperatures are much higher than predicted by neutron star
cooling models for such an old pulsar, which means that some heating mechanisms
operate in neutron stars. A plausible mechanism responsible for the high
temperature of PSR B0950+08 is the interaction of vortex lines of the faster
rotating neutron superfluid with the slower rotating normal matter in the inner
neutron star crust (vortex creep heating).Comment: 9 pages, 5 figures. Accepted by the Astrophysical Journa
Redshift-space limits of bound structures
An exponentially expanding Universe, possibly governed by a cosmological
constant, forces gravitationally bound structures to become more and more
isolated, eventually becoming causally disconnected from each other and forming
so-called "island universes". This new scenario reformulates the question about
which will be the largest structures that will remain gravitationally bound,
together with requiring a systematic tool that can be used to recognize the
limits and mass of these structures from observational data, namely redshift
surveys of galaxies. Here we present a method, based on the spherical collapse
model and N-body simulations, by which we can estimate the limits of bound
structures as observed in redshift space. The method is based on a theoretical
criterion presented in a previous paper that determines the mean density
contrast that a spherical shell must have in order to be marginally bound to
the massive structure within it. Understanding the kinematics of the system, we
translated the real-space limiting conditions of this "critical" shell to
redshift space, producing a projected velocity envelope that only depends on
the density profile of the structure. From it we created a redshift-space
version of the density contrast that we called "density estimator", which can
be calibrated from N-body simulations for a reasonable projected velocity
envelope template, and used to estimate the limits and mass of a structure only
from its redshift-space coordinates.Comment: Contains 12 pages, 12 figures and 8 table
The glitch activity of neutron stars
We present a statistical study of the glitch population and the behaviour of
the glitch activity across the known population of neutron stars. An unbiased
glitch database was put together based on systematic searches of radio timing
data of 898 rotation-powered pulsars obtained with the Jodrell Bank and Parkes
observatories. Glitches identified in similar searches of 5 magnetars were also
included. The database contains 384 glitches found in the rotation of 141 of
these neutron stars. We confirm that the glitch size distribution is at least
bimodal, with one sharp peak at approximately , which we
call large glitches, and a broader distribution of smaller glitches. We also
explored how the glitch activity , defined as the mean
frequency increment per unit of time due to glitches, correlates with the spin
frequency , spin-down rate , and various combinations of
these, such as energy loss rate, magnetic field, and spin-down age. It is found
that the activity is insensitive to the magnetic field and that it correlates
strongly with the energy loss rate, though magnetars deviate from the trend
defined by the rotation-powered pulsars. However, we find that a constant ratio
 is consistent with the behaviour
of all rotation-powered pulsars and magnetars. This relation is dominated by
large glitches, which occur at a rate directly proportional to .
The only exception are the rotation-powered pulsars with the highest values of
, such as the Crab pulsar and PSR B054069, which exhibit a much
smaller glitch activity, intrinsically different from each other and from the
rest of the population. The activity due to small glitches also shows an
increasing trend with , but this relation is biased by selection
effects.Comment: Accepted for publication in A&
- …
