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ABSTRACT
An exponentially expanding Universe, possibly governed by a cosmological constant, forces
gravitationally bound structures to become more and more isolated, eventually becoming
causally disconnected from each other and forming so-called ‘island universes’. This new
scenario reformulates the question about which will be the largest structures that will remain
gravitationally bound, together with requiring a systematic tool that can be used to recognize
the limits and mass of these structures from observational data, namely redshift surveys of
galaxies. Here we present a method, based on the spherical collapse model and N-body simu-
lations, by which we can estimate the limits of bound structures as observed in redshift space.
The method is based on a theoretical criterion presented in a previous paper that determines
the mean density contrast that a spherical shell must have in order to be marginally bound to
the massive structure within it. Understanding the kinematics of the system, we translated the
real-space limiting conditions of this ‘critical’ shell to redshift space, producing a projected
velocity envelope that only depends on the density profile of the structure. From it we created
a redshift-space version of the density contrast that we called ‘density estimator’, which can
be calibrated from N-body simulations for a reasonable projected velocity envelope template,
and used to estimate the limits and mass of a structure only from its redshift-space coordinates.

Key words: methods: N-body simulations – galaxies: clusters: general – galaxies: kinematics
and dynamics – large-scale structure of Universe.

1 I N T RO D U C T I O N

The current paradigm of an exponentially expanding Universe
implies that large-scale, gravitationally bound structures will even-
tually become causally disconnected from each other, forming island
universes scattered inside a mostly empty Universe (e.g. Adams &
Laughlin 1997; Chiueh & He 2002; Busha et al. 2003; Nagamine
& Loeb 2003). In our previous paper (Dünner et al. 2006, here-
after ‘Paper I’), we presented a criterion to determine the limits of
bound structures, defining superclusters as the biggest gravitation-
ally bound structures that will be able to form. This criterion defined
a critical density contrast over which a spherical shell will stay bound
to a spherically distributed overdensity. As defined, this criterion can
only be applied to data given in real, three-dimensional space (‘real
space’). This is not the case of observational data, which comes
from large galaxy surveys having two angular coordinates and a ve-

�E-mail: rdunnerp@puc.cl
†Researcher of the Academia Chilena de Ciencias 2004–2006.

locity coordinate. Using the Hubble law, one can estimate the real
distance to an object from its recession velocity, but, given that we
are interested in dense, relatively evolved structures with significant
peculiar velocities, our estimation will be strongly affected by the
velocity dispersion of the structure, fooling any attempt to apply a
real-space-based method (Kaiser 1987).

Here we present a way to apply our theoretical criterion to
redshift-space data, permitting its application to redshift surveys.
The new criterion is based on the geometrical appearance of the
real-space criterion as seen in redshift space, and needs to be cali-
brated using statistics from N-body simulations to account for ve-
locity dispersions not considered in the theoretical model presented
in Paper I. This method represents an alternative to the caustic ap-
proach, first proposed by Regos & Geller (1989) and further devel-
oped by Diaferio & Geller (1997) and Diaferio (1999). The caustic
method, based on the direct search for caustic curves which repre-
sent the redshift-space envelope of the bound structure within it, has
been extensively used to study galaxy clusters (e.g. van Haarlem &
van de Weygaert 1993; Geller, Diaferio & Kurtz 1999; Reisenegger
et al. 2000; Rines et al. 2000, 2002; Biviano & Girardi 2003; Rines
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et al. 2003; Diaferio, Geller & Rines 2005; Rines & Diaferio 2006),
constituting the most widely used method in the area. Among its
main achievements, it has been used to measure the mass profile
and light-to-mass radio from galaxy clusters.

Our method, even though it shares some of the basic elements of
the caustic method, as will be discussed later, has the independent
motivation of directly representing the spherical collapse density
criterion for the critical shell in redshift space, giving a clear physical
interpretation to its results.

In Section 2, we discuss the effects of transforming the real-space
data into redshift space as seen from N-body simulations, introduc-
ing the critical projected velocity envelope, which is a theoretical
construction produced by joint projection of all shells, within a cer-
tain radius, intersecting the line of sight. We also study the imple-
mentation of a parametrized template for the density profile, for
which we used the density profile proposed by Navarro, Frenk &
White (1997).

In Section 3, we propose a new method for applying the criterion
in redshift space, which is presented in three alternative versions. For
this we introduce the concept of ‘density estimator’, which replaces
the previously used density contrast in determining the threshold
that defines the critical shell. We statistically determine the value of
this estimator, together with analysing the main divergences from
the spherical collapse theoretical model that introduce errors into
the method. Each version of the method will require one or more
density estimators, which will be presented later.

In Section 4, we test our method using our N-body simulation,
estimating the systematic error that is expected for radius and mass
estimations for the gravitationally bound structure.

Finally, in Section 5, we present our conclusions, together with a
step-by-step recipe for applying one of the proposed methods.

2 I N G R E D I E N T S F O R A F I T T I N G M E T H O D

2.1 Redshift-space representation of the spherical collapse
model

In Paper I, we showed that the spherical collapse model, when ex-
tended to the case of a universe dominated by a cosmological con-
stant, can be used to set a criterion for the ‘critical’ (marginally
bound) shell of a mass concentration. The spherical shells are char-
acterized by a single parameter named density contrast �s, where
the s stands for shell. Its value, for the critical shell (cs), can be
written as

�cs = ρ̄cs
m

ρc
= 2.36, (1)

where ρ̄m is the mean mass density enclosed by the shell, and ρc =
3H2

0/8πG is the critical density of the Universe.
In the simulations, this criterion was shown to give an external

limit to the extension of gravitationally bound structures, overes-
timating their mass by 39 per cent on average. None the less, the
model gives infalling velocity predictions which correctly follow
the lower envelope of radial velocities deep into the virialized core
of bound structures (see fig. 8 in Paper I). This, together with the
one-to-one relation between the shell’s infalling speed and its en-
closed density contrast, makes it possible to extend the model to a
redshift-space representation.

To go from the real-space to the redshift-space representation, we
need to replace the coordinate along the line of sight by the corre-
sponding recession velocity. For simplicity, we will assume that the
distance to the structures is much greater than their size, so we do
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Figure 1. Three-dimensional effect of transforming to redshift space using
the Hubble equivalence between velocity and distance. On the left-hand part,
structure is in real space. On the right-hand part, structure is in redshift space.
In green particles bound to the structure and in blue unbound particles. For
clarity, only particles inside the critical radius in real space were plotted.

not need to account for angular effects and the replacement can be
done directly in Cartesian space. An example of this transformation
is shown in Fig. 1, where the structure on the right-hand part is the
redshift representation of the structure on the left-hand part, as seen
by an observer looking along the Z-axis. In the case of a spherically
symmetric structure, as described by the spherical collapse model,
the projected velocity seen by an observer will be composed by the
projection of the radial velocity of the spherical shell with respect
to its centre and the recession velocity of the whole structure (see
Fig. 2a).

Let us consider a spherically symmetric, gravitationally bound
structure. Each shell has its own radial speed, which only depends
on its enclosed density contrast. As the spherical collapse model
constrains the shells not to cross each other, we will see the innermost
shells falling at greater speeds than outer ones. When moving from
the centre to greater radii, we will cross a shell that just stopped its
expansion, through slowly expanding ones, up to shells expanding
with the Hubble flow. According to this model, the critical shell will
be expanding with a speed (critical velocity) of only 29 per cent of
the Hubble flow at the present time (see Paper I).

We are interested in identifying all shells lying within the crit-
ical shell, each of which will have a different projected shape in
redshift space. Slowly expanding shells will appear as ellipsoids
shrunk along the line of sight, while fast contracting ones will ap-
pear elongated along the line of sight, but flipped, so that apparently
closer points will really be at the more distant side of the structure
(Kaiser 1987). A diagram explaining this effect is shown in Fig. 2,
where a fast contracting shell has a higher projected velocity than
the outer expanding shell, protruding from the outer ellipsoid and
producing the well-known ‘Finger of God’ effect.

We define the projected velocity envelope as the surface that en-
closes the redshift-space representation of all shells within a given
radius R. This can be written as

venv
p (rp) = max

r∈[rp,R]

{
|vr (r ) |

√
1 −

(rp

r

)2
}

, (2)
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Redshift-space limits of bound structures 1579

Figure 2. Redshift-space appearance of spherical shells. Panel (a) shows
the position of shells in real space: the interior shell (grey) is contracting,
the dashed shell is at rest, and the outer shell (black) is expanding at the
critical velocity. The black dot on the contracting shell is falling faster than
the expansion of the white dot on the critical shell, so its projected velocity is
higher, appearing closer in redshift space. Panel (b) shows the corresponding
ellipsoids in redshift space: the colouring has been kept from panel (a). The
critical shell appears shrunk along the line of sight because its expansion
speed is less that the Hubble flow at its radius. The interior shell instead
appears elongated along the line of sight because its contraction speed is
higher than the Hubble flow at its radius, but also flipped, such that the far
side appears closer that the near side. The zero-velocity shell appears as
a horizontal line. The black long-dashed line shows the projected velocity
envelope obtained from including all shells inside the critical shell.

where vr is the radial velocity respect to the centre of the structure
and rp is the projected radius on the sky (Reisenegger et al. 2000).
The spherical collapse model allows to predict vr(r), and therefore
venv

p

(
rp

)
, directly from the density profile (Paper I). Setting R equal

to the critical radius of the structure (rcs), yields the critical projected
velocity envelope (‘critical envelope’, for short), corresponding to
the redshift-space envelope of all shells within the critical shell.
The velocity envelope, when defined up to the turnaround radius, is
equivalent to the caustics defined by Regos & Geller (1989).

If all the assumptions of the spherical collapse model were true,
one would expect that all the bound particles should lie within this
critical envelope. Moreover, if inner ellipsoids protrude from the
ellipsoid defined by the critical shell, then one would expect to see
contamination in the protruding regions from objects outside the
critical shell.

An effect that is not considered in the spherical collapse model
are the velocity perturbations due to the interaction between nearby
objects that will mix many particles into and out of the critical en-
velope, causing large systematic and random errors in the intended

criterion for determining the limits of the bound structure in red-
shift space. To account for these systematic errors we used N-body
simulations as described in the next section.

2.2 Velocity envelope in N-body simulations

In order to study the behaviour of structures in redshift space,
we used numerical simulations, which permitted us to observe the
redshift-space distribution of the structures, knowing at the same
time which particles were bound and which were not. Our simu-
lations are the same as described in Paper I, performed with the
GADGET2 code (Springel 2005), containing 1283 dark matter parti-
cles inside a box of side length 100 h−1 Mpc, and considering a flat
	CDM universe with �	 = 0.7. We took snapshots at the present
time (a = 1) and in the far future (a = 100), assuming that in late
epochs the structure evolution will decrease significantly so no ma-
jor changes will be seen from then on (see also Busha et al. 2003;
Nagamine & Loeb 2003).

We selected the 11 largest structures for our study, with masses
ranging from 1 × 1014 to 7 × 1014 M�. Although these structures
might be rather small to represent our current understanding of su-
perclusters, many of them showed significant substructure, as ex-
pected from objects that are still evolving into a virialized state. The
bound particles were identified using the state at a = 100 and then
correspondingly tagged and followed to the present frame, repeating
the procedure described in Paper I.

In order to transform the simulated data to redshift space, we
replaced the distance along one axis by the corresponding projected
velocity. This can be done in any direction, but for simplicity we
did so only along the three main axes, giving a total of 33 data sets
for statistical analysis.

Fig. 3 shows the critical envelope for two objects in our study
with nearly spherical symmetry, with radii normalized in terms of
the critical radius rcs and velocities referred to the Hubble flow at
rcs. These critical envelopes were obtained measuring the density
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Figure 3. Critical projected velocity envelopes along the line of sight as
expected in the spherical collapse model from the density profile for four
well-behaved, representative simulated structures. Badly behaved structures,
generally implying double cores or very significant substructure, usually
present lower peak velocities and wider central regions. Radii are normalized
in terms of the critical shell’s radius and velocities in terms of the Hubble
flow at that radius. The masses satisfy Mobj#2 > Mobj#3 > Mobj#9 > Mobj#10

(see Table 3).
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Table 1. Mean and s.d. values for several performance indicators
for the critical envelope corresponding to the true density profile
(see text).

Redshift space Real space
Indicator Mean s.d. Mean s.d.

A 23.96 10.01 28.2 13.0
B 76.04 10.01 71.8 13.0
C 30.59 13.24 0.26 0.23
D 106.62 17.56 72.0 13.1

contrast at all radii and applying the procedure described in Pa-
per I to find the radial velocity, and finally projecting it along the
line of sight. At large radius, where there is no ellipsoid crossing,
we see the ellipsoid corresponding to the critical shell, which has
the same shape since its expansion velocity is the same fraction
(29 per cent in present time) of the Hubble flow (see Paper I). At
smaller radius we observe the existence of ellipsoid crossing in red-
shift space, which is produced because the inner shells are contract-
ing faster than the expansion velocity of the critical shell. Adjusting
the object’s centre, we observe an improvement in matching the
resulting profiles. Specifically, a choice closer to the densest core
of the structure increases the height of the peak of the velocity en-
velopes and improves the agreement between the shapes of curves
corresponding to different objects. Even though the profiles do not
match exactly at small radii, all of them share the same characteristic
shape, showing higher velocities in less massive objects, meaning
a higher concentration than more massive structures, in qualitative
agreement with the results of Navarro et al. (1997). These proper-
ties suggest that it may be possible to estimate the critical envelope
by a general template that depends only on the bound mass of the
structure.

To study the accuracy of the prediction given by the critical en-
velope for the location of particles in redshift space, we counted the
number of bound particles inside and outside the critical envelope,
as well as the number of unbound particles inside the critical en-
velope. Our results are summarized in Table 1. We used the same
statistical indicators as in Paper I, so now we can compare the per-
formance of the criteria in redshift and real spaces. The indicators,
all expressed as percentages of the total number of particles inside
the critical envelope, are:

(i) A: particles inside the critical envelope that do not belong to
the cluster at a = 100;

(ii) B: particles inside the critical envelope that do belong to the
cluster at a = 100;

(iii) C: particles outside the critical envelope that belong to the
cluster at a = 100;

(iv) D: all particles that belong to the cluster at a = 100.

Note that A + B = 100 per cent and D = B + C.
We observe that, compared to the real-space criterion (Paper I),

the new redshift-space criterion produces better results for the in-
dicators A and B, but the indicator C increases significantly (see
Table 1), implying that it does not give an external limit to the lo-
cation of particles in redshift space, in contrast with the real-space
case.

As pointed out before, compared to predictions done in real space,
predictions done on redshift space are affected by a higher mixing of
bound and unbound particles. This is due to the velocity dispersion,
which makes many particles (inside the critical shell in real space)
fall outside of the critical envelope in redshift space. The velocity
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Figure 4. Absolute value of the velocities versus their radii to the centre for
object #9. The solid line shows the absolute theoretical velocity. The dashed
line indicates the critical radius. The turnaround radius is clearly observed
where the solid line touches zero, accompanied, as expected, by a minimum
of absolute velocities. For clarity we plotted a 70 per cent random sample of
all particles.

dispersion is produced by local interactions between nearby objects
as they decelerate driven by the central attractor, manifesting as local
peculiar velocities in random directions. To check if the velocity
dispersion was accompanied by an increase in the mean speed of
the particles (as expected), we plotted the later with respect to their
radii, comparing it to the absolute value of the theoretical radial
velocity profile. In Fig. 4, we can see how the theoretical profile
approximately marks the lower bound of absolute velocities for
particles inside the critical radius, but outside the virialized core
(around 2.5 Mpc from the centre), so we can claim that the main
contributor for particles escaping from the critical envelope is the
overall increment in particle speeds due to interactions between
them.

2.3 Density profile template

Until now, we have used the measured density profile to estimate the
critical envelope from our simulated structures. When confronted
with observational data in redshift space, we will not have this infor-
mation, so we need a general way to estimate the density profile of
a structure based on a small number of parameters. We have seen in
Section 2.2 that the critical envelopes for different structures have
a coherent shape (see Fig. 3), but with scales correlated with the
bound mass of the structure. This is in agreement to what was pro-
posed by Navarro et al. (1997), who presented the now well-known
NFW profile, which is a generalized density profile for virialized
clusters, obtained empirically from many simulations. In particu-
lar, we used the results from a later publication (Eke, Navarro &
Steinmetz 2001), which corrected several details from the origi-
nal work. In general words, they postulate that a cluster’s density
profile can be estimated using as a single parameter, the radius r�

at which a characteristic (‘virial’) density contrast � is reached.
The parameter � depends on the cosmology and can be obtained
in a flat universe as � = 178�0.45

m , which in our case gives � =
103.5. This characteristic radius is much smaller than our critical
radius, falling near the edge of the virialized zone where clusters
are less affected by external structures and look more homogeneous,
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Figure 5. Density profiles of all structures (solid line), compared to the
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plot. The dark and light grey vertical areas denote placement of critical
radii measured from the simulated data and from the fitted NFW template
respectively (the dark grey area actually extends under the light grey area
up to its left-hand end, but is hard to see in the plot). The horizontal area
denotes the range for the asymptotic values for the density, �m ρc.

making it easier to estimate using redshift data. The NFW profile
was formulated to give good results for radii ranging from 0.1rs

to 10rs, where rs = r�/c� and c� is the concentration parameter,
which can be obtained as a function of the mass contained within
r�, and whose value is around ∼8 for the masses of the structures
studied by us. Considering that the critical radius is of order 3–5r�,
the NFW profile is more accurate for the inner part of the structure.
This region is the most interesting one for our purposes, since it is
where ellipsoid crossing takes place and the shape of the critical
envelope is directly dependent on the density profile. On the other
hand, we caution that large bound structures may generally not be
dominated by clusters as relaxed and spherical as those for which
the NFW profile was derived.

The NFW density profile was fitted to every object in our simu-
lation using the actual density in real space.
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Figure 6. Radial velocities compared to the theoretical velocity profile obtained from the true density profile (black solid line) and from the NFW density
profile fitted to the structure (red dashed line). Green dots indicate bound objects and blue dots the opposite. On the left-hand object #1, and on the right-hand
object #9. Sampling 50 per cent.

Fig. 5 shows the density profiles for all our simulated structures,
compared to the NFW template profile. Scales have been normal-
ized by their corresponding NFW scale, in order to let us compare
all profiles to a single NFW template. The dark- and light-grey ver-
tical areas show where the critical radii obtained from the simulated
data and from the NFW profile, respectively, are located. The hor-
izontal area shows the asymptotic values expected as the density
reaches the mean density of the Universe. Clearly, the true density
profiles depart from the template at radii somewhat smaller than
the critical radius, as they approach the mean density of the Uni-
verse. This early departure from the model implies that estimation
of the critical radius done directly from the NFW template will be
biased to lower values. Below, we will present ways to deal with this
bias.

As seen in Figs 6 and 7, the radial velocities and critical en-
velopes predicted using a NFW density profile show different levels
of agreement with the true velocities depending on the range of
radii considered. For small radii, it yields a higher density than ob-
served, predicting higher infalling velocities. Given the resolution of
our simulation, which was intended to search for large-scale struc-
ture rather than replicating the behaviour of the virialized cores of
structures, we believe that our simulated data is unable to produce
accurate densities at such radii. For intermediate radii, the predic-
tion is very good, as expected, since the NFW profile was fitted at
a measured r� in this range. Finally, for larger radii, closer to rcs,
the generalized profile gives better or worse results depending on
the absence or presence of significant substructure, respectively. In
general, the presence of substructure increases the density at higher
radii, so the NFW profile underestimates it, consequently giving a
low estimate for the critical radius.

Tables 2 and 3 compare the predicted critical radius and enclosed
mass for every object in the analysis. We observe that the critical
radius according to the NFW profile is 89.8 per cent of the measured
critical radius. Thus, considering that the spherical collapse crite-
rion gives an external limit for the critical radius, estimations done
with the NFW profile will underestimate the size of the structure as
defined by the spherical-collapse criterion.

Concerning the mass of the structures, we find that the mean true
bound mass (Mbound) is 82.7 per cent of the mass enclosed by the
NFW profile critical radius in real space. This should be compared
to the same relation for the true critical radius, where the true bound
mass is 71.7 per cent of the mass enclosed by it (see Paper I for
details).
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Figure 7. Projected velocities versus normalized projected radius. In green, particles that will eventually fall in the object. In blue, particles that will escape.
The curves show different critical envelope estimations. The black solid line shows the true velocity envelope. The red dashed line is the NFW envelope adjusted
using the observed r� value. The cyan solid line is the NFW envelope fitted using the NFW-core method (fitting methods are explained in Section 3.2). The
magenta solid line is the NFW envelope fitted using the NFW-cs method. The brown solid line show the combined envelope fitted using the combined method.
On the left-hand object #1, and on the right-hand object #9. Sampling 50 per cent.

Table 2. Critical radii considering different models in real space. Columns:
(1) object index; (2) r�: virialization radius needed to fit the NFW density
profile; (3) rcs: critical radius applying to our criterion (�cs = 2.36) to the
true density profile; (4) rNFW

cs : critical radius applying our criterion to the
fitted NFW profile (�NFW

cs = 2.36); (5) ratio between rNFW
cs and rcs.

Object # r�(Mpc) rcs(Mpc) rNFW
cs (Mpc) rNFW

cs /rcs

1 1.81 8.28 8.21 0.99
2 1.51 7.84 6.79 0.87
3 1.48 7.54 6.65 0.88
4 1.56 7.92 7.02 0.89
5 1.30 7.38 5.80 0.79
6 1.21 7.93 5.38 0.68
7 1.48 7.63 6.64 0.87
8 1.30 6.29 5.80 0.92
9 1.31 6.01 5.85 0.97

10 1.27 5.67 5.66 1.00
11 1.23 5.37 5.49 1.02

Table 3. Enclosed masses considering different models in real space, con-
trasted to the effectively bound mass. Columns: (1) object index; (2) Mbound:
bound mass at a = 100; (3) Mcs: mass enclosed by the critical radius rcs; (4)
mass ratio between bounded mass and Mcs; (5) MNFW

cs : mass enclosed by the
critical radius obtained using the NFW density profile rNFW

cs ; (6) mass ratio
for MNFW

cs .

Object # Mbound Mcs
Mbound

Mcs
MNFW

cs
Mbound
MNFW

cs

1 6.34 7.64 0.83 7.60 0.83
2 5.29 6.47 0.82 5.96 0.89
3 4.71 5.76 0.82 5.26 0.90
4 4.14 6.68 0.62 5.99 0.69
5 4.07 5.41 0.75 4.31 0.94
6 3.23 6.70 0.48 3.01 1.07
7 2.95 5.98 0.49 4.53 0.65
8 2.44 3.34 0.73 3.18 0.77
9 2.40 2.91 0.83 2.79 0.86

10 2.02 2.45 0.82 2.44 0.82
11 1.46 2.08 0.70 2.18 0.67

All masses in units of 1014 M�.

3 F I T T I N G M E T H O D D E F I N I T I O N

3.1 Density estimator

The great advantage of using the NFW profile is that the result-
ing critical envelope depends exclusively on the bound mass of
the studied structure. In this way, the projected velocity envelope
can be scaled (changing either r� or M�) until the contained mass
and volume satisfy some condition equivalent to the critical den-
sity contrast, but in redshift space. For this purpose, we will define
an observable to characterize the redshift-space density contrast in-
side the surface given by a certain projected velocity envelope. The
redshift-space ‘density estimator’ is defined as

�̂R = M̂R

VRρc
, (3)

where M̂R is the mass inside the projected velocity envelope defined
by the radius R and VR = 4πR3/3 is the real-space volume enclosed
by the same radius. This definition allows us to obtain density es-
timators for any projected velocity envelope, including the critical
envelope. In practice we will need to define density estimators for
only two kinds of projected velocity envelopes: the critical envelope
and the ‘core envelope’, which is the projected velocity envelope ob-
tained using the NFW density profile for radii within r�, necessary
to estimate the NFW density profile in redshift space. These density
estimators can be computed for all the structures in our sample, and
then averaged to produce a calibrated estimator that can let us infer
the correct critical envelope without need of real-space data.

The aim is to have a general template for the desired projected
velocity envelope, which can be associated to a specific density
estimator, specially calibrated for it. When fitting a template to data
from a redshift survey, it can be scaled until its density estimator
takes the desired value, yielding an estimation for the radius in real
space that characterizes it.

To understand better the properties of the density estimator, we
calculated it using the ‘true critical envelope’ (inferred from the true
density obtained from the simulations) from all our 11 objects from
3 points of view. Results are shown in Table 4. The mean value
for the density estimator is ˆ̄�cs = 1.60. This value is significantly
lower than the criterion �cs = 2.36 for real space, implying that the
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Redshift-space limits of bound structures 1583

Table 4. Density estimators for all projections. Rows: (1–3) projections in the x-, y- and z-axes;
(4) mean values for each object. Columns: all 11 objects.

Object #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11

X-axis 1.92 1.48 1.65 2.16 1.23 1.30 1.43 1.84 1.77 1.68 1.68
Y-axis 1.54 1.81 1.63 1.62 1.34 1.20 1.37 1.50 1.77 1.81 1.67
Z-axis 1.55 1.58 1.76 1.45 1.40 1.12 1.53 1.49 1.84 1.83 1.87
Mean 1.67 1.62 1.68 1.74 1.32 1.20 1.44 1.61 1.79 1.77 1.74

selected volume is less populated or, in other words, many more par-
ticles escaped the theoretical prediction, also reflected in the greater
value for C. This leads to the conclusion that perturbations away
from the spherical collapse model have a stronger manifestation in
particles velocities than in their positions, decreasing the reliability
of predictions in redshift space.

3.2 Critical envelope recipes and fitting method

We would like to replace the true density profiles (unknown in ac-
tual observed structures) by a simple parametrization, based on the
NFW density profile. In order to test its accuracy, we compare the
previously defined performance indicators for the following three
projected velocity envelopes.

(i) True envelope: The projected velocity envelope is determined
directly from the true density profile.

(ii) NFW envelope: The virialization radius r� is determined us-
ing the appropriate overdensity criterion in real space, yielding an
NFW density profile, which is used to generate a projected velocity
envelope defined for shells within the critical radius according to
the NFW density profile.

(iii) Combined envelope: r� and rcs are found using the appro-
priate overdensity criteria in real space. We generate a projected
velocity envelope using the ellipsoid corresponding to the critical
shell, adding the inner part of the NFW envelope where it protrudes
from the ellipsoid.

Table 5 gives a comparison of the statistical indicators for all the
three critical envelopes in consideration. We clearly see how the
combined envelope shows almost the same statistical properties as
the true envelope. In contrast the NFW envelope shows a greater
amount of particles that escaped the profile (indicator C).

Until now, the projected velocity envelopes have been determined
from information in real space that is not available in actual observed
structures. To fit the velocity envelopes directly in redshift space,
we will need to use density estimators in order to scale the templates
up to the desired size. Here we propose three ways to do this.

The first way is to directly try to estimate the NFW density profile
for the structure, for which one needs to estimate the virialization

Table 5. Mean values and s.d. values for several performance indicators for
three critical envelopes obtained from real-space measurements. Rows: (1)
True: critical envelope calculated using the true density profile; (2) NFW:
uses the NFW density profile according to r� in real space; (3) Comb: uses
the NFW profile for the innermost radii and the maximum ellipse given by
the critical radius.

Envelope Ā σA B̄ σB C̄ σC D̄ σD

True 23.96 10.01 76.04 10.01 30.59 13.24 106.62 17.33
NFW 19.72 7.35 80.28 7.35 37.17 21.67 117.42 24.23
Comb 23.88 9.98 76.12 9.98 30.80 14.09 106.93 17.55

radius r�. In order to estimate r� from the redshift-space data, we
defined another template based on the NFW density profile.

(i) Core envelope: equivalent to the NFW envelope, but now con-
sidering only shells inside the virialization radius.

Then we can construct a density estimator �̂NFW
core that can be used

to fit the core envelope in redshift space. Once we have estimated
r�, we can use it for estimating rNFW

cs , defined as the radius where
the density contrast in real space �NFW

s = 2.36. We labelled this
recipe as ‘NFW-core’.

The second way is to directly fit the NFW envelope, which is
defined up to rNFW

cs , using a density estimator previously calibrated
for this template (�̂NFW

cs ). The fitted envelope will directly estimate
the critical radius rNFW

cs . We labelled this recipe as ‘NFW-cs’.
The last method is to use the combined envelope, for which we

need to estimate two independent parameters, r� and rcs. For the
first we can fit the core envelope, following the same procedure as
in the NFW-core recipe. After estimating r�, we can construct the
combined envelope leaving as a single free parameter the critical
radius rcs, which defines the outer ellipsoid. Finally, we can use
another density estimator, �̂comb

cs , previously calibrated for the com-
bined envelope, to fit this last parameter. We labelled this recipe as
‘comb’.

Having estimated the critical radius using one of these methods,
we use equation (1) to estimate the enclosed mass. Then the true
bound mass can be estimated using the statistical relation between
the mass inside the critical shell and the bound mass, as explained
in Paper I.

3.3 Centre determination

A very important step in our method for identifying the structure
limits is to first have a good estimate for its centre, where to anchor
the projected velocity envelope. The intuitive way to do this is to
look for the region with the highest density of particles (galaxies)
in redshift space. In other words, we need to find the centre which
maximizes the size of the projected velocity envelope for a given
density estimator. We performed this maximization using the core
envelope, focusing on finding the densest virialized centre for our
structure. As density estimator we used �̂NFW

core calibrated for the
centre found in real space, using the procedure described in the next
subsection.

We found that the new centre appeared to be displaced from the
original centre on average a 13.5 per cent of r� (representing the
virialized core), but the errors produced from using this new centre
were marginal compared to other systematic errors, being around
one order magnitude smaller.

3.4 Density estimator calibration

In order to use the general projected velocity envelope to estimate
the critical radius of gravitationally bound structures, we first need to
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Table 6. Mean values and s.d. values for inner density estimators for
several projected velocity envelopes with parameters determined in
real space. See row definitions in the text. The first three estimators
correspond to envelopes defined up to the critical radius, while the
fourth is defined up to the much smaller virialization radius r�.

Envelope Estimator Mean s.d.

True �̂true
cs 1.59 0.25

NFW �̂NFW
cs 2.06 0.35

Comb �̂comb
cs 1.59 0.26

Core �̂NFW
core 109.64 14.56

obtain a density estimator specially calibrated for that particular type
of projected velocity envelope. The best way of doing this is to use
a statistically significant number of simulated structures in the scale
range we are interested in, and calculate the corresponding density
estimator using the actual projected velocity envelope obtained from
real-space measurements.

Here, we are going to use the mean of the density estimators found
in all 33 projections as our calibrated density estimator, and the s.d.
will be used as the expected error. The density estimators needed
by our projected velocity envelope recipes are �̂NFW

core for the core
envelope, �̂NFW

cs for the NFW envelope and �̂comb
cs for the combined

envelope.
The mean density estimators, together with their s.d. values are

shown in Table 6. For completeness, and as a comparison point, we
also included the mean density estimator for the true envelope, �̂true

cs ,
which can also be found for every single object and point of view
in Table 4.

We observe that the True and Combined density estimators are
very similar, which tells us that the NFW profile accurately repro-
duces the central part of the true velocity envelope. On the other
hand, the NFW envelope has a much greater density estimator, which
is the result of a smaller critical radius (rNFW

cs ). The density estimator
associated to the core envelope is actually very close to its equiva-
lent value in real space (� = 103.5), which is good considering that
the structures’ core are ruled by virialization, far from the spherical
collapse constraints we are assuming.

3.5 Main sources of error

We can distinguish two kinds of error sources when first looking
at Table 4: the first is associated to big variability in the estimator
depending on the axis being viewed, and the other is manifested as
an overall under or overestimation of the density estimator for all
views of the same object. For the first, the axis dependence tells us
that there is a strong influence of the cluster’s particular geometry or
anisotropies outside of the spherical distribution. A good example is
object #4, where we find a big deviation in observations done along
the X-axis, showing an overestimation of the inner density with
respect to observations done along the other axes. After analysing
the statistics, and plotting the radial velocities from all axes (see
Fig. 8), we conclude that this difference is produced by an inflow of
particles from an external structure placed right on the line of sight,
and whose virialized velocities mix in redshift space with particles
from the studied cluster. The effect is an oversized parameter A and
an undersized parameter C.

These observations appeared repeated in every object with big s.d.
of the density estimator among the three axes, but did not appear
related to objects with highly non-spherical cores or double cores.

Regarding the second type of error, we conclude that it is related
to highly non-spherical cores or anisotropies inside the critical ra-
dius. That is the case of object #5 shown in Fig. 9, which has a
double core.1 We observe that the double core does not produce a
big deviation between estimations from different axes, but produces
a significant underestimation of the inner density, which at the end
will cause that this kind of objects will be bigger than predicted.

4 F I T T I N G M E T H O D T E S T I N G

Before being able to apply the method to real observations, we tested
it in our simulations, in order to get statistical information that can
be used to interpret later results.

4.1 Performance statistics

We fitted the three kinds of critical envelopes to our data in redshift
space using our previously calibrated density estimators. Consider-
ing that we have only 11 objects in our study, we decided to use the
same data to do the fittings, but we rotated the redshift projections in
45◦ to at least use different points of view at this stage. To fit the pro-
files, we just scaled them until the density estimator condition was
reached. As centre for the profiles, we used our redshift-determined
centres. We realized three fittings:

(i) Combined method (comb): Uses the density estimator �̂NFW
core

to fit the core envelope and calculate r�. Then fits an ellipsoid (that
corresponds to the critical shell) adjusting its radius until the com-
bined envelope produce the desired density estimator, �̂comb

cs , directly
estimating rcs.

(ii) NFW-based method (NFW-core): Uses the density estimator
�̂NFW

core to fit the core envelope and calculate r�. Then uses the NFW
density profile to calculate the critical radius rNFW

cs .
(iii) NFW-based method 2 (NFW-cs): Uses the density estimator

�̂NFW
cs to fit the whole NFW envelope to the structure in redshift

space, directly estimating rNFW
cs .

For the radius and mass estimations, we need to consider the
systematic biases discussed in Section 2.3 for the critical radius
obtained from the NFW density profile rNFW

cs and for the bound
mass estimated from the mass enclosed by the critical radius. In
particular we use that r̂cs = rNFW

cs /0.898 and M̂bound = 0.717M̂cs,
where M̂cs is the mass derived from equation (1).

There are two main statistics we are interested in. The first denotes
mean systematic deviations of the estimated parameter (radius or
mass) from the true value.2 For this we define the parameter αi as
the mean of the ratio between the estimated and the true value of
the physical property i. The existence of this kind of mean biases
is mostly due to statistical deviations, and should disappear as we
increase the number of structures studied for the whole calibration
and testing of this system.

Secondly, we are interested in quantifying errors due to mor-
phological characteristics that depart individual structures from the
mean. A way to do this is calculating the s.d. of measurements done
from different angles, normalized by the true value, which has the
advantage of discounting the mean bias produced by systematic er-
rors. We labelled this as σx,i , where i denotes again the physical
property we are referring to. The mean parameter, averaged over all
structures, σ̄x , will give us the error we expect to find in estimations

1 In the analysis we used as centre the centre of the bigger core.
2 For the mass, the true value is the bound mass in a = 100.
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Figure 8. Projected velocities versus normalized projected radius for object #4. On the left-hand panel is the X-axis view, while on the right-hand panel is the
Y-axis view. Sampling 50 per cent.
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Figure 9. Projected velocities versus normalized projected radius for object #5. This object presents a double core that will eventually merge into a single
object. We observe that this feature does not produce a significant effect when observing it from a different point of view. Sampling 50 per cent.

Table 7. Systematic bias errors and mean s.d. Columns: (1) fitting method;
(2, 4, 6) mean normalized bias ᾱ in the measured r�, rcs and M; (3, 5, 7)
s.d. σ̄x , which represents the deviation of estimations along different axes
with respect to the mean of the estimations for the same object.

Method ᾱ� σ̄x,� ᾱc σ̄x,c ᾱM σ̄x,M

Comb 1.013 0.080 1.000 0.068 1.045 0.206
NFW1 1.013 0.080 1.007 0.083 1.086 0.253
NFW2 1.015 0.066 1.003 0.068 1.055 0.203

done without taking into consideration the particular morphological
properties of the studied structure.

The mean results from this analysis can be found in Table 7.
There we can observe that the systematic biases are all very
small, reaching in the worst cases 1.5 per cent for r� estimations,
0.7 per cent for rcs estimations and 8.6 per cent for mass estima-
tions. This result should be taken with some care, because we need
to consider that there is an evident correlation between the source
and the test data for our system, but this situation can be improved
very easily by growing our sample with new simulated structures.

For the s.d., we observe that errors due to morphological
anisotropies out of the spherical symmetry reach in the worst cases
8.0 per cent for r� estimations, 8.3 per cent for rcs estimations and
25 per cent for mass estimations.

In Figs 10–12, we present the results for all methods. It is clear that
the method is axis-dependent, showing big deviations in structures
with strange morphologies. These deviations are in agreement with
the variability observed in the density estimators shown in Table 4,
suggesting that much can be done identifying types of structures
and calibrating custom density estimators for them.

As a last conclusion, we observe that the best results are obtained
with the combined and NFW-cs methods, both of which have in
common that they are fitted to rcs instead of r�.

4.2 Error estimation

The most direct way to estimate the expected error from estimating
the size and mass of a bound structure using this method is to cal-
culate the actual deviations from the true value over all objects in
our study. For the critical radius and the bound mass we used the
following equation:

Errx =
√

1

N

∑
i

(x̂i − xi )
2

x2
i

, (4)

where x is the parameter on which we want to determine the
error.

The expected errors calculated in this way are shown in Table 8.
We emphasize that these errors are the ones we should expect after
a ‘brute-force’ application of the method, having no consideration
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Figure 10. Estimated virial radii r� versus measured virial radii for all profile recipes and points of view. On the left-hand panel, results from the combined
method. In the centre, results from NFW-core method. On the right-hand panel, results from NFW-cs method. Circles indicate X-axis projections, triangles
indicate Y-axis projections and squares indicate Z-axis projections.

Figure 11. Estimated critical radii versus measured critical radii for all profile recipes and points of view. On the left-hand panel, results from the combined
method. In the centre, results from NFW-core method. On the right-hand panel, results from NFW-cs method. Circles indicate X-axis projections, triangles
indicate Y-axis projections and squares indicate Z-axis projections. Results have been debiased considering that rcs,NFW = 0.898rcs.

Figure 12. Estimated bound masses versus measured bound masses (in a = 1). On the left-hand panel, results from the combined method. In the centre, results
from NFW-core method. On the right-hand panel, results from NFW-cs method. Circles indicate X-axis projections, triangles indicate Y-axis projections and
squares indicate Z-axis projections. Results have been debiased considering that rNFW

cs = 0.898rcs for the NFW-based methods and Mbound = 0.717Mcs for all.

of the observable morphology of the structure. Due to the statistical
nature of the fitting method, one would expect significant improve-
ment in the expected errors after a more careful analysis of individ-
ual cases, where different ‘kinds’ of structures, including structures
with evident double cores or highly contaminated by substructure,
were considered. This analysis is beyond the scope of this work, but
can be included in future works.

5 C O N C L U S I O N S

We have presented a new method to estimate the mass and radius of
gravitationally bound structures based solely on redshift information

present in redshift survey catalogues. The method is based on the
spherical collapse model (Paper I) and on the important observation
that the theoretical critical envelope correctly follows the true critical
envelope deep inside the virialized centre of the simulated structures.
We used the NFW density profile (Navarro et al. 1997) to generate
a template for the critical envelope, which was calibrated using
N-body simulations.

The extension of the method to redshift space gave birth to a new
set of criteria that we called ‘density estimators’. These were defined
as the expected redshift-space density inside the projected velocity
envelope. Their calculation was completely empirical, depending on
statistical analysis of simulated structures due to the considerable
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Table 8. Expected errors in critical radius and bound mass
estimations. Columns: (1) fitting method; (2) percentage error
in critical radius estimation; (3) percentage error in bound
mass estimation.

Method Errorr (per cent) ErrorM(per cent)

Comb 8.5 31.3
NFW1 12.2 44.1
NFW2 8.1 30.9

velocity dispersion found in them. We observed that the main cause
of velocity dispersion was the gain of peculiar velocities due to
local interaction between infalling objects and substructure. The
study of substructure and of the morphology of the studied structure
can be of great help to improve the error bars, since the density
estimators show great dependence on these properties. From this,
we conclude that numerical simulations can be used to emulate the
particular properties of the studied structures, producing ‘custom-
made’ methods to obtain the best results.

In contrast to the caustic method, our method forces a limit to
the radius of the structure, defined as the maximum radius at which
one should expect to find bound objects. The shape of the velocity
envelope though is less flexible than the caustics shape, suggesting
that a combination of both methods can give better results, finding
the envelope at lower radii using the caustics where they are more
defined, and using the fixed envelope at higher radii to set a limit to
the structure.

The more reliable methods from the study were the ‘combined’
and the ‘NFW-cs’ methods. The procedure to apply the combined
method to a redshift data set is then the following.

(i) Calibrate data so that every element is accurately related to
a mass, so that the whole data set serves as a redshift-space mass
field.

(ii) Identify the centre of the structure by maximizing the number
of particles inside the core envelope for a given density estimator.

(iii) Fit the NFW profile to the central region (core) by adjusting
r� until the measured density estimator is equal to the mean density
estimator for the core, given in Table 6.

(iv) Add the ellipsoid given by rcs to the critical envelope, and
adjust rcs to the value r̂cs, at which the density estimator inside the
total critical envelope is equal to the mean density estimator for the
combined method, given in Table 6.

(v) Given r̂cs, calculate the bound mass using equation (1).
(vi) The fractional errors for r̂cs and M̂bound are given in Table 8.

In our next paper we will present the application of the method
presented here to estimate the size and bound mass of the Shapley
supercluster (Proust et al. 2006).
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