273 research outputs found

    Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Fat mass and obesity gene (FTO) has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI). However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression.</p> <p>Results</p> <p>We identified several candidate genes for functional coupling to FTO through database studies and selected nine for further study in animal models. We observed hypothalamic expression of Profilin 2 (Pfn2), cAMP-dependent protein kinase catalytic subunit beta (Prkacb), Brain derived neurotrophic factor (Bdnf), neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2), Signal transducer and activator of transcription 3 (Stat3), and Btbd12 to be co-regulated in concert with Fto. Pfn2 and Prkacb have previously not been linked to feeding regulation.</p> <p>Conclusions</p> <p>Gene expression studies validate several candidates generated through database studies of possible FTO-interactors. We speculate about a wider functional role for FTO in the context of current and recent findings, such as in extracellular ligand-induced neuronal plasticity via NTRK2/BDNF, possibly via interaction with the transcription factor CCAAT/enhancer binding protein β (C/EBPβ).</p

    Determinants for a low health-related quality of life in asthmatics

    Get PDF
    People with asthma suffer from impaired health-related quality of life (HRQL), but the determinants of HRQL among asthmatics are not completely understood. The aim of this investigation was to study determinants of low HRQL in asthmatics and to study whether the determinants of HRQL differ between sexes and age groups. A cohort of three age groups in Sweden was investigated in 1990 using a questionnaire with focus on respiratory symptoms. To study quality of life, the generic instrument Gothenburg Quality of Life was used. The participants were also investigated with interviews, spirometry, and allergy testing. Asthma was diagnosed in 616 subjects. Fifty-eight per cent (n = 359) of the subjects were women; and 24% were smokers, 22% ex-smokers, and 54% were non-smokers. Women were more likely than men to report poor health-related quality of life. Respiratory symptoms severity was another independent determinant of a lower quality of life as well as airway responsiveness to irritants. Current and former smokers also reported lower quality of life. Finally, absenteeism from school and work was associated with lower quality of life. Factors such as sex, smoking habits, airway responsiveness to irritants, respiratory symptom severity, allergy, and absenteeism from school and work were associated with low HRQL in asthmatics

    Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration

    Get PDF
    Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an α-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria

    Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European children and adolescents

    Get PDF
    Background Childhood obesity is a complex multifaceted condition, which is influenced by genetics, environmental factors, and their interaction. However, these interactions have mainly been studied in twin studies and evidence from population-based cohorts is limited. Here, we analyze the interaction of an obesity-related genome-wide polygenic risk score (PRS) with sociodemographic and lifestyle factors for BMI and waist circumference (WC) in European children and adolescents. Methods The analyses are based on 8609 repeated observations from 3098 participants aged 2-16 years from the IDEFICS/I.Family cohort. A genome-wide polygenic risk score (PRS) was calculated using summary statistics from independent genome-wide association studies of BMI. Associations were estimated using generalized linear mixed models adjusted for sex, age, region of residence, parental education, dietary intake, relatedness, and population stratification. Results The PRS was associated with BMI (beta estimate [95% confidence interval (95%-CI)] = 0.33 [0.30, 0.37], r(2) = 0.11, p value = 7.9 x 10(-81)) and WC (beta [95%-CI] = 0.36 [0.32, 0.40], r(2) = 0.09, p value = 1.8 x 10(-71)). We observed significant interactions with demographic and lifestyle factors for BMI as well as WC. Children from Southern Europe showed increased genetic liability to obesity (BMI: beta [95%-CI] = 0.40 [0.34, 0.45]) in comparison to children from central Europe (beta [95%-CI] = 0.29 [0.23, 0.34]), p-interaction = 0.0066). Children of parents with a low level of education showed an increased genetic liability to obesity (BMI: beta [95%-CI] = 0.48 [0.38, 0.59]) in comparison to children of parents with a high level of education (beta [95%-CI] = 0.30 [0.26, 0.34]), p-interaction = 0.0012). Furthermore, the genetic liability to obesity was attenuated by a higher intake of fiber (BMI: beta [95%-CI] interaction = -0.02 [-0.04,-0.01]) and shorter screen times (beta [95%-CI] interaction = 0.02 [0.00, 0.03]). Conclusions Our results highlight that a healthy childhood environment might partly offset a genetic predisposition to obesity during childhood and adolescence.Peer reviewe

    The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    Get PDF
    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily

    Chemical proteomics approaches for identifying the cellular targets of natural products.

    Get PDF
    Covering: 2010 up to 2016. Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied "in situ" - in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide-alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss 'competitive mode' approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed

    Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals

    Get PDF
    Background: The giant panda has an interesting bamboo diet unlike the other species in the order of Carnivora. The umami taste receptor gene T1R1 has been identified as a pseudogene during its genome sequencing project and confirmed using a different giant panda sample. The estimated mutation time for this gene is about 4.2 Myr. Such mutation coincided with the giant panda’s dietary change and also reinforced its herbivorous life style. However, as this gene is preserved in herbivores such as cow and horse, we need to look for other reasons behind the giant panda’s diet switch. Methodology/Principal Findings: Since taste is part of the reward properties of food related to its energy and nutrition contents, we did a systematic analysis on those genes involved in the appetite-reward system for the giant panda. We extracted the giant panda sequence information for those genes and compared with the human sequence first and then with seven other species including chimpanzee, mouse, rat, dog, cat, horse, and cow. Orthologs in panda were further analyzed based on the coding region, Kozak consensus sequence, and potential microRNA binding of those genes. Conclusions/Significance: Our results revealed an interesting dopamine metabolic involvement in the panda’s food choice
    corecore