10 research outputs found

    Advanced predictive quality control strategy involving different facilities

    Get PDF
    There are many industries that use highly technological solutions to improve quality in all of their products. The steel industry is one example. Several automatic surface-inspection systems are used in the steel industry to identify various types of defects and to help operators decide whether to accept, reroute, or downgrade the material, subject to the assessment process. This paper focuses on promoting a strategy that considers all defects in an integrated fashion. It does this by managing the uncertainty about the exact position of a defect due to different process conditions by means of Gaussian additive influence functions. The relevance of the approach is in making possible consistency and reliability between surface inspection systems. The results obtained are an increase in confidence in the automatic inspection system and an ability to introduce improved prediction and advanced routing models. The prediction is provided to technical operators to help them in their decision-making process. It shows the increase in improvement gained by reducing the 40 % of coils that are downgraded at the hot strip mill because of specific defects. In addition, this technology facilitates an increase of 50 % in the accuracy of the estimate of defect survival after the cleaning facility in comparison to the former approach. The proposed technology is implemented by means of software-based, multi-agent solutions. It makes possible the independent treatment of information, presentation, quality analysis, and other relevant functions

    Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data

    Full text link
    [EN] Advanced statistical models can help industry to design more economical and rational investment plans. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing. Increasingly stringent quality requirements in the automotive industry also require ongoing efforts in process control to make processes more robust. Robust methods for estimating the quality of galvanized steel coils are an important tool for the comprehensive monitoring of the performance of the manufacturing process. This study applies different statistical regression models: generalized linear models, generalized additive models and classification trees to estimate the quality of galvanized steel coils on the basis of short time histories. The data, consisting of 48 galvanized steel coils, was divided into sets of conforming and nonconforming coils. Five variables were selected for monitoring the process: steel strip velocity and four bath temperatures. The present paper reports a comparative evaluation of statistical models for binary data using Receiver Operating Characteristic (ROC) curves. A ROC curve is a graph or a technique for visualizing, organizing and selecting classifiers based on their performance. The purpose of this paper is to examine their use in research to obtain the best model to predict defective steel coil probability. In relation to the work of other authors who only propose goodness of fit statistics, we should highlight one distinctive feature of the methodology presented here, which is the possibility of comparing the different models with ROC graphs which are based on model classification performance. Finally, the results are validated by bootstrap procedures.The authors are indebted to the anonymous referees whose suggestions improved the original manuscript. This work was supported by a grant from PAID-06-08 (Programa de Apoyo a la Investigacion y Desarrollo) of the Universitat Politecnica de Valencia.Debón Aucejo, AM.; García-Díaz, JC. (2012). Fault diagnosis and comparing risk for the steel coil manufacturing process using statistical models for binary data. Reliability Engineering and System Safety. 100:102-114. https://doi.org/10.1016/j.ress.2011.12.022S10211410

    Passivity-Based Control: An Approach to Regulate Nonlinear Chemical Processes

    No full text
    This paper presents the development of a Passivity-Based Controller (PBCr) from a First-Order-Plus-Dead-Time model of the process. This approach results in a fixed structure controller that depends on the characteristic parameters of the model. This allows a unique controller of adjustable parameters that can be used in several processes. Computer simulations on a nonlinear chemical process judge the controller performance. The simulation results showed effectiveness and good performance for the studied case

    TAO-robust backpropagation learning algorithm

    No full text
    In several fields, as industrial modelling, multilayer feedforward neural networks are often used as universal function approximations. These supervised neural networks are commonly trained by a traditional backpropagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted data (outliers) this training scheme may produce wrong models. We combine the benefits of the non-linear regression model -estimates [introduced by Tabatabai, M. A., Argyros, I. K. Robust Estimation and testing for general nonlinear regression models. Applied Mathematics and Computation. 58 (1993) 85-101] with the backpropagation algorithm to produce the TAO-robust learning algorithm, in order to deal with the problems of modelling with outliers. The cost function of this approach has a bounded influence function given by the weighted average of two functions, one corresponding to a very robust estimate and the other to a highly efficient estimate. The advantages of the proposed algorithm are studied with an example. © 2005 Elsevier Ltd. All rights reserved

    Single and blended models for day-ahead photovoltaic power forecasting

    No full text
    Solar power forecasts are gaining continuous importance as the penetration of solar energy into the grid rises. The natural variability of the solar resource, joined to the difficulties of cloud movement modeling, endow solar power forecasts with a certain level of uncertainty. Important efforts have been carried out in the field to reduce as much as possible the errors. Various approaches have been followed, being the predominant nowadays the use of statistical techniques to model production. In this study, we have performed a comparison study between two extensively used statistical techniques, support vector regression (SVR) machines and random forests, and two other techniques that have been scarcely applied to solar forecasting, deep neural networks and extreme gradient boosting machines. Best results were obtained with the SVR technique, showing a nRMSE of 22.49%. To complete the assessment, a weighted blended model consisting on an average weighted combination of individual predictions was created. This blended model outperformed all the models studied, with a nRMSE of 22.24%. © Springer International Publishing AG 2017

    Combining genetic algorithms and the finite element method to improve steel industrial processes

    Get PDF
    Most of the times the optimal control of steel industrial processes is a very complicated task because of the elevated number of parameters to adjust. For that reason, in steel plants, engineers must estimate the best values of the operational parameters of processes, and sometimes, it is also necessary to obtain the appropriate model for steel material behaviour. This article deals with three successful experiences gained from genetic algorithms and the finite element method in order to solve engineering optimisation problems. On one hand, a fully automated method for determining the best material behaviour laws is described, and on the other hand we present a common methodology to find the most appropriate settings for two cases of improvement in steel industrial processes. The study of the three reported cases allowed us to show the reliability and effectiveness of combining both techniques. © 2012 Elsevier B.V
    corecore