322 research outputs found

    Search for Event Rate Modulation in XENON100 Electronic Recoil Data

    Get PDF
    We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of WIMPs to electrons is excluded at 4.8 sigma.Comment: 6 pages, 4 figure

    Search for Two-Neutrino Double Electron Capture of 124^{124}Xe with XENON100

    Get PDF
    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For 124^{124}Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of 124^{124}Xe using 7636 kg⋅\cdotd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life T1/2>6.5×1020T_{1/2}>6.5\times10^{20} yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of T1/2>6.1×1022T_{1/2}>6.1\times10^{22} yr after an exposure of 2 t⋅\cdotyr.Comment: 6 pages, 4 figure

    Removing krypton from xenon by cryogenic distillation to the ppq level

    Get PDF
    The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β\beta-emitter 85^{85}Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon nat\rm{^{nat}}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10−15^{-15} mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4⋅\cdot105^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of nat\rm{^{nat}}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN

    Search for dinucleon decay into pions at Super-Kamiokande

    Full text link
    A search for dinucleon decay into pions with the Super-Kamiokande detector has been performed with an exposure of 282.1 kiloton-years. Dinucleon decay is a process that violates baryon number by two units. We present the first search for dinucleon decay to pions in a large water Cherenkov detector. The modes 16^{16}O(pp)→(pp) \rightarrow 14^{14}Cπ+π+\pi^{+}\pi^{+}, 16^{16}O(pn)→(pn) \rightarrow 14^{14}Nπ+π0\pi^{+}\pi^{0}, and 16^{16}O(nn)→(nn) \rightarrow 14^{14}Oπ0π0\pi^{0}\pi^{0} are investigated. No significant excess in the Super-Kamiokande data has been found, so a lower limit on the lifetime of the process per oxygen nucleus is determined. These limits are: τpp→π+π+>7.22×1031\tau_{pp\rightarrow\pi^{+}\pi^{+}} > 7.22 \times 10^{31} years, τpn→π+π0>1.70×1032\tau_{pn\rightarrow\pi^{+}\pi^{0}} > 1.70 \times 10^{32} years, and τnn→π0π0>4.04×1032\tau_{nn\rightarrow\pi^{0}\pi^{0}} > 4.04 \times 10^{32} years. The lower limits on each mode are about two orders of magnitude better than previous limits from searches for dinucleon decay in iron.Comment: 20 pages, 17 figures. Accepted for publication in Physical Review D on March 30, 201

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA
    • …
    corecore