285 research outputs found

    Distinct mechanisms regulate Cdx2 expression in the blastocyst and in trophoblast stem cells

    Get PDF
    The first intercellular differences during mammalian embryogenesis arise in the blastocyst, producing the inner cell mass and the trophectoderm. The trophectoderm is the first extraembryonic tissue and does not contribute to the embryo proper, its differentiation instead forming tissues that sustain embryonic development. Crucial roles in extraembryonic differentiation have been identified for certain transcription factors, but a comprehensive picture of the regulation of this early specification is still lacking. Here, we investigated whether the regulatory mechanisms involved in Cdx2 expression in the blastocyst are also utilized in the postimplantation embryo. We analyzed an enhancer that is regulated through Hippo and Notch in the blastocyst trophectoderm, unexpectedly finding that it is inactive in the extraembryonic structures at postimplantation stages. Further analysis identified other Cdx2 regulatory elements including a stem-cell specific regulatory sequence and an element that drives reporter expression in the trophectoderm, a subset of cells in the extraembryonic region of the postimplantation embryo and in trophoblast stem cells. The cross-comparison in this study of cis-regulatory elements employed in the blastocyst, stem cell populations and the postimplantation embryo provides new insights into early mammalian development and suggests a two-step mechanism in Cdx2 regulation.We thank Barbara Pernaute for comments and suggestions; members of the Manzanares lab for comments, technical help and support; Ian Chambers and Austin Smith for the ZHBTc4 ES cell line; Tristan Rodriguez for the B1-TS cell line; Luis Miguel Criado and the CNIC Transgenesis Unit for TS cell morulae injections and support; Roisin Doohan for help with sections; and Simon Bartlett (CNIC) for English editing. This study was funded by grants from the Ministerio de Economia y Competitividad (grant BFU2011-23083 and BFU2014-54608-P to MM; FPU Doctoral Fellowship to TR; FPI-SO Doctoral Fellowship to SM; Severo Ochoa Center of Excellence award SEV-2015-0505 to CNIC), Comunidad Autonoma de Madrid (grant CELLDD-CM to MM), Canadian Institute of Health Research (JR), Imperial College (VA), and the MRC and Genesis Research Trust (AH). The CNIC is supported by the Spanish Ministerio de Economia y Competitividad and the Pro-CNIC Foundation.S

    PREPARATION FOR SPLIT LEAP IN RHYTHMIC GYMNASTICS – STATIC VERSUS DYNAMIC STRETCHING

    Get PDF
    This study compared split leap performance following static and dynamic stretching exercises. Seventeen well-trained female rhythmic gymnasts underwent static and dynamic stretching interventions on separate days. Immediately following the stretching exercises, participants performed 3 trials of split leaps. High speed videos of their jumps were analysed for split angle and flight time. Wilcoxon signed-rank tests were used to compare between static and dynamic stretching. Results showed that static stretching resulted in longer flight time [static: 0.430 (0.392 - 0.473) s, dynamic: 0.419 (0.386-0.452) s, p = .021] and greater split angle [median (range), static: 198 (184 - 209)°, dynamic: 191(175-207)°, p \u3c .001]. In conclusion, static stretching is more effective than dynamic stretching in preparing youth rhythmic gymnasts for technical jumps requiring large joint range of motion

    Air and water pollution over time and industries with stochastic dominance

    Get PDF
    We employ a stochastic dominance (SD) approach to analyze the components that contribute to environmental degradation over time. The variables include countries\u2019 greenhouse gas (GHG) emissions and water pollution. Our approach is based on pair-wise SD tests. First, we study the dynamic progress of each separate variable over time, from 1990 to 2005, within 5-year horizons. Then, pair-wise SD tests are used to study the major industry contributors to the overall GHG emissions and water pollution at any given time, to uncover the industry which contributes the most to total emissions and water pollution. While CO2 emissions increased in the first order SD sense over 15 years, water pollution increased in a second-order SD sense. Electricity and heat production were the major contributors to the CO2 emissions, while the food industry gradually became the major water polluting industry over time. SD sense over 15 years, water pollution increased in a second-order SD sense. Electricity and heat production were the major contributors to the CO2 emissions, while the food industry gradually

    Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence

    Get PDF
    Additional file 3: Figure S3. Regulation of genes of Arrhythmogenic right ventricular cardiomyopathy pathway during senescence induction in HFF strains Genes of the “Arrhythmogenic right ventricular cardiomyopathy” pathway which are significantly up- (green) and down- (red) regulated (log2 fold change >1) during irradiation induced senescence (120 h after 20 Gy irradiation) in HFF strains. Orange color signifies genes which are commonly up-regulated during both, irradiation induced and replicative senescence

    Histone H3.3 regulates mitotic progression in mouse embryonic fibroblasts

    Get PDF
    H3.3 is a histone variant that marks transcription start sites as well as telomeres and heterochromatic sites on the genome. The presence of H3.3 is thought to positively correlate with the transcriptional status of its target genes. Using a conditional genetic strategy against H3.3B, combined with short hairpin RNAs against H3.3A, we essentially depleted all H3.3 gene expression in mouse embryonic fibroblasts. Following nearly complete loss of H3.3 in the cells, our transcriptomic analyses show very little impact on global gene expression or on the localization of histone variant H2A.Z. Instead, fibroblasts displayed slower cell growth and an increase in cell death, coincident with large-scale chromosome misalignment in mitosis and large polylobed or micronuclei in interphase cells. Thus, we conclude that H3.3 may have an important under-explored additional role in chromosome segregation, nuclear structure, and the maintenance of genome integrity. © 2017 Published by NRC Research Press

    Low HER2 expression in normal breast epithelium enables dedifferentiation and malignant transformation via chromatin opening.

    Get PDF
    Overexpression of the HER2 protein in breast cancer patients is a predictor of poor prognosis and resistance to therapies. We used an inducible breast cancer transformation system that allows investigation of early molecular changes. HER2 overexpression to similar levels as those observed in a subtype of HER2-positive breast cancer patients induced transformation of MCF10A cells and resulted in gross morphological changes, increased anchorage-independent growth of cells, and altered the transcriptional programme of genes associated with oncogenic transformation. Global phosphoproteomic analysis during HER2 induction predominantly detected an increase in protein phosphorylation. Intriguingly, this correlated with chromatin opening, as measured by ATAC-seq on acini isolated from 3D cell culture. HER2 overexpression resulted in opening of many distal regulatory regions and promoted reprogramming-associated heterogeneity. We found that a subset of cells acquired a dedifferentiated breast stem-like phenotype, making them likely candidates for malignant transformation. Our data show that this population of cells, which counterintuitively enriches for relatively low HER2 protein abundance and increased chromatin accessibility, possesses transformational drive, resulting in increased anchorage-independent growth in vitro compared to cells not displaying a stem-like phenotype

    Specificity and origin of the stability of the sr isotopic ratio in champagne wines

    Get PDF
    The 87Sr/86Sr ratio of 39 Champagnes from six different brands, originating from the whole “Appellation d’Origine Contrôlée” (AOC) Champagne was analyzed to establish a possible relation with the geographical origin. Musts (i.e., grape juice) and base wines were also analyzed to study the evolution of the Sr isotopic ratio during the elaboration process of sparkling wine. The results demonstrate that there is a very homogeneous Sr isotopic ratio (87 Sr/86 Sr = 0.70812, n = 37) and a narrow span of variability (2? = 0.00007, n = 37). Moreover, the Sr concentrations in Champagnes have also low variability, which can be in part explained by the homogeneity of the bedrock in the AOC Champagne. Measurements of the87 Sr/86 Sr ratio from musts and base wines show that blending during Champagne production plays a major role in the limited variability observed. Further, the87 Sr/86 Sr of the musts were closely linked to the87 Sr/86 Sr ratio of the vineyard soil. It appears that the87 Sr/86 Sr of the product does not change during the elaboration process, but its variability decreases throughout the process due to blending. Both the homogeneity of the soil composition in the Champagne AOC and the blending process during the wine making process with several blending steps at different stages account for the unique and stable Sr isotopic signature of the Champagne wines.Centre de Spectrometrie de Masse pour les Sciences de la Réactivité et de Spéciatio
    corecore