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ABSTRACT

Overexpression of the HER2 protein in breast cancer patients is a
predictor of poor prognosis and resistance to therapies. We used an
inducible breast cancer transformation system that allows investigation
of early molecular changes. HER2 overexpression to similar levels as
those observed in a subtype of HER2-positive breast cancer patients
induced transformation of MCF10A cells and resulted in gross
morphological changes, increased anchorage-independent growth of
cells, and altered the transcriptional programme of genes associated
with oncogenic transformation. Global phosphoproteomic analysis
during HER2 induction predominantly detected an increase in protein
phosphorylation. Intriguingly, this correlated with chromatin opening,
as measured by ATAC-seq on acini isolated from 3D cell culture.
HER2 overexpression resulted in opening of many distal regulatory
regions and promoted reprogramming-associated heterogeneity.
We found that a subset of cells acquired a dedifferentiated breast
stem-like phenotype, making them likely candidates for malignant
transformation. Our data show that this population of cells, which
counterintuitively enriches for relatively low HER2 protein abundance
and increased chromatin accessibility, possesses transformational
drive, resulting in increased anchorage-independent growth in vitro
compared to cells not displaying a stem-like phenotype.
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INTRODUCTION
Metastasis is the main cause of cancer death, but understanding the
root cause of malignant transformation remains poorly understood.
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Many questions remain unanswered as to what triggers cancer
formation beyond DNA mutations in pre-cancerous tissue
(Ciccarelli and DeGregori, 2020). Perturbed signalling due to
dysregulated phosphorylation of oncogenic proteins is known to
alter pathway activity and contributes to cellular transformation
(Sever and Brugge, 2015; Hanahan and Weinberg, 2011). Similarly,
cell identity and cellular plasticity are phenotypic outcomes of
the signalling and epigenetic information in both healthy and
disease states (Wainwright and Scaffidi, 2017). Therefore,
understanding how an altered signalling environment affects
the epigenome and shifts cellular states is crucial in furthering
our understanding of cancer formation. Integrating systematic
analyses of phosphorylation sites (phosphosites) from global
phosphoproteomics data with DNA/RNA-sequencing data helps
to better understand the functional significance of the signalling
effects on chromatin changes. Phenotypic changes that occur during
cancer development are driven by changes in the gene expression
patterns, which are themselves governed by regulatory states
encoded within the nucleoprotein structure of chromatin (Voss
and Hager, 2014). The alterations in chromatin structure that lead
to differential accessibility to transcription factor binding have
been identified as perhaps some of the most relevant genomic
characteristics correlated with biological activity at a specific locus
(Thurman et al., 2012). Nevertheless, the specific regulatory
changes driving the transition from normal to transformed cells
remain largely unknown.

HER2 (ERBB2)-positive breast cancer accounts for ~20% of all
breast cancers (Wang and Xu, 2019). The ability of HER2-positive
breast cancer cells to leave the primary tumour site and establish
inoperable metastasis is a major cause of death and a serious
impediment to successful therapy. Molecular analysis of HER2-
positive breast cancer progression is limited by the inability to
characterise and catalogue early changes at the onset of
transformation. Conventional in vitro models (Pradeep et al.,
2012; Gangadhara et al., 2016) can recapitulate the genetics,
morphology, therapeutic response and highly transformative nature
of the disease. However, they do not allow for the fine tuning and
temporal control required to fully assess cellular events leading up to
malignant transformation. To overcome this issue, we developed an
inducible in vitro model of human breast cancer to investigate the
mechanisms that drive early transformational changes in HER2-
positive breast cancer. The strength of an inducible system lies in
that it can recapitulate key transitional states in cancer progression in
a controlled manner, permitting isolation of cancer-like cells at
defined stages of transformation to catalogue early tumour-
promoting changes.
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Here, we analysed HER2 protein overexpression in a normal
diploid, oestrogen- and progesterone-negative breast epithelial cell
line, MCF10A (Qu et al., 2015), to identify global cell signalling
and chromatin accessibility changes in the first few hours and days
of cellular transformation. In particular, we explored how cell
signalling interacts with chromatin to induce transformation as a
result of HER2 pathway activation.

RESULTS

Conditional HER2 overexpression promotes in vitro
transformation

HER?2 overexpression in non-tumourigenic MCF10A cells is a well-
established breast cancer model and has been used in numerous in
vitro studies (Muthuswamy et al., 2001; Imbalzano et al., 2009). To
recapitulate the early transformational events and the stochastic
nature of early breast cancer development, we generated a
controllable in vitro model system by stably transducing a
doxycycline-inducible HER2 construct in MCF10A cells (Carter
et al., 2017). This model allows for the generation of transformed
phenotypes in a synchronised and time-controlled manner and is
useful for investigating early transformational events using multi-
omic analysis (Fig. 1A). To analyse the range of HER2 expression at
the protein level, we cultured cells for 24 h in five different
concentrations of doxycycline, using ranges that have been used
previously in inducible expression studies with other proteins
(Baron et al., 1995; Leitner et al., 2014). In our model, a 24 h
induction with 1 pg/ml doxycycline resulted in strong HER2 protein
expression (Fig. 1B). When grown in three-dimensional (3D) cell
cultures, control MCF10A cells (MCF10A“™Y) formed regular,
spherical acini, whereas a majority of MCF10A"ER? acini were
misshapen, with cells budding into the surrounding matrix (Fig. 1C;
Fig. S1A). Our results indicate that activation of tyrosine
kinases may promote the formation of these branched networks
through the phosphorylation of activator phosphosites of FAK
(Y576) and FAK (S574) via signalling of the MAPK pathway. We
found CTTN to be highly and significantly phosphorylated at three
sites — T401, S405 and T411 — and these sites are known to be
activating post-translational modifications (Bandela et al., 2022).
We propose that the molecular changes behind the disrupted acini
are the result of abnormal HER2 expression that activates CTTN,
which binds to FAK (PTK2), resulting in cell scattering by
polymerisation of actin and loss of cell-to-cell communication
(Dataset 1) (Kelley et al., 2011; Walkiewicz et al., 2015). HER2
overexpression resulted in significantly increased in vitro migratory
and invasive potential, as measured by transwell assays (Fig. 1D)
(Xiang and Muthuswamy, 2006; Paszek and Weaver, 2004).
Furthermore, MCF10AMER? cells displayed a hallmark of in vitro
transformation, with increased anchorage-independent growth
compared to that of control cells (Fig. 1E). Collectively, these
results show that HER2 overexpression in MCF10A cells results in
phenotypes associated with in vitro transformation. Indeed, aberrant
expression of HER2 is already known to induce phenotypes
associated with in vitro transformation (Seton-Rogers et al., 2004)
and evokes aggressive tumorgenicity and metastasis in vivo (Alajati
etal., 2013).

Phosphoproteomic analysis following HER2 overexpression
uncovers signalling changes associated with cancer

HER?2 is a tyrosine kinase known to activate a plethora of signalling
pathways downstream. To investigate the dynamic changes in the
phosphoproteome over time, and the order in which they occur
during the phased progression from normal to transformed cells

upon HER2 overexpression, we performed an unbiased
phosphoproteomic analysis of the early phosphorylation events (at
0.5, 4 and 7 h post HER2 protein induction). The experiment was
carried out under standard growth conditions in two-dimensional
(2D) cell culture, and without serum starving, to be closer to
physiological conditions. A GFP-transduced MCF10A cell line was
used as a control for doxycycline-only induced changes
(MCF10ASFP). As expected, we observed an increase in HER2
phosphorylation levels in HER2 at T701 phosphosite and its family
member EGFR (HER1) at Y1110 phosphosite (Fig. S1B). To filter
changes relevant to HER2 induction, we selected only those
phosphosites that were significantly changed upon HER2
expression but were not significantly changed in the
MCF10ASF? cells, with a stringent cut-off at log2 fold change
for HER2>1.5, P<0.05, and log2 fold change for GFP<S, P>0.05
(Fig. 2A). From this refined dataset, some potential novel HER2
targets including NUCKS1 (S73 and S75), a frequently
phosphorylated protein at multiple sites, were significantly
downregulated at the 4 h time point (Fig. 2A), when HER2
protein levels were still quite low, as measured by western blotting
(Fig. SIC). NUCKSI is known to play a significant role in
modulating chromatin conformation (Parplys et al., 2015; Grundt
etal., 2004), and regulates events such as replication, transcription
and chromatin condensation (Ostvold et al., 2001). NUCKSI
phosphorylation at various phosphosites is also known to correlate
with breast cancer resistance to retinoic acid, known to exert anti-
proliferative effects in several breast cancer cell lines (Carrier
et al., 2016). Other novel candidates include DDX21, with
multiple phosphorylation serine sites (S164, S168 and S171),
which were also significantly enriched in our phosphoproteomic
analysis (Fig. 2A). We aimed to investigate the link between
signalling and chromatin, and observed that DDX21-bound
promoters on average had increased enrichment of active
chromatin marks (H3K4me3, H3K27ac and H39Kac) but were
depleted for repressive marks (H3K27me3 and H3K9me3) and
promoter-distal (H3K4mel) marks (Calo et al., 2015). Some
highly phosphorylated phosphosites, which have not been
shown to be associated with HER2 protein expression, include
homeodomain-interacting protein kinase 1 (HIPK1), which is
highly expressed in invasive breast cancers (Park et al., 2012).
SHC1 (S246), TTC7A (S182), CDC42EP3 (S89) and RIPOR1
(S351) were also significantly and stably activated at all the time
points screened, suggesting that they may have important roles in
the biology of HER2-expressing breast cancer cells (Fig. 2A;
Fig. S2B). The effect of HER2 overexpression on all proteins was
also quantified (Fig. 2B). Interestingly, of those changes, the 4 h
time point showed the largest changes in phosphorylation, when
HER?2 levels were still quite low. Although HER2 protein expression
was still low, some of these downstream changes might be present at
later time points as part of the evolution process.

The low levels of HER2 activation at early time points may
closely mimic, at least partially, the early signalling changes
occurring in HER2-positive breast cancer patients. The signalling
changes associated with low-level HER2 induction have not
been evaluated to date. We re-analysed these data by decreasing
the significance threshold to log2 fold change>0.5, false discovery
rate (FDR)-corrected P<0.05 for HER2 expression, but not
significantly changing for GFP (Dataset 1). This analysis
revealed significant changes in phosphorylation in 1045
phosphopeptides over all time points in MCF10AMER? cells,
where the number of phosphosites increased in a time-dependent
manner (Fig. S1D).
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Using the DAVID Functional Annotation Tool (Huang da et al.,
2009), and filtering for all significant changes (log2 fold
change>0.5, FDR-corrected P<0.05) at all time points analysed,
we identified the mitogen-activated protein kinase (MAPK)
signalling pathway to be one of the most enriched cascades in our
system (Fig. S1E). The idea that signalling has direct effects on
chromatin has already been known, whereby receptor tyrosine
kinases can relay extracellular signals by signal transduction
pathways to the chromatin (Schreiber and Bernstein, 2002).
Signalling pathways, particularly MAPK cascades, elicit
modification of chromatin through various transcription factors
and chromatin regulators (Clayton and Mahadevan, 2003;
Pogna et al., 2010). Activation of the MAPK pathway ultimately
leads to the phosphorylation of transcription factors, which is
crucial for gene activation (Treisman, 1996). We hypothesised

Day 9

respective timelines as MCF10A cells undergo
in vitro transformation. ATAC-seq, assay of
transposase-accessible chromatin using
sequencing; scRNA-seq, single-cell RNA
sequencing. (B) HER2 protein expression
analysis by western blotting in MCF10A cells
infected with inducible HER2 lentiviral particles
and cultured in various concentration of
doxycycline for 24 h. GAPDH was used as a
loading control. n=2. (C) MCF10A"ER2 and
control cells were cultured in 3D over 9 days.
Control cells formed spherical acini, which
increased in size over time. MCF10AHER? cells
formed flat projecting cells of complex masses,
typical of transformed cells. Images captured by
a confocal, LSM 510 microscope. Scale bars:
50 pm. n=3. (D) Cell migration and invasion was
analysed through the 8 ym pores of transwell
membranes over a 16 h period of chemotactic
migration towards full serum medium. The ability
for cell invasion was measured in collagen or
Matrigel-coated transwells. Migration ability was
measured in using uncoated wells. Statistical
significance was calculated using unpaired
two-tailed Student’s t-test. *P<0.05, **P<0.01;
ns, not significant. n=3. (E) Colony growth of
MCF10AMER2 and control cells in 0.3% ultra-
pure agarose over 3 weeks. Five different-size
colonies from ImageJ analysis were quantified.
Representative microscopic images of colonies
stained with Crystal Violet after 3 weeks are
shown on the right. Statistical significance was
calculated using unpaired two-tailed Student’s
t-test. *P<0.05, **P<0.01, ***P<0.001. Images
are at 1.6x magnification. Scale bars: 1000 um.
n=3.

DAPI ACTIN

that the

differentially regulated transcription factors and
chromatin regulators identified in the phosphoproteomic screen
are likely to contribute to chromatin changes mediating the
transformed phenotypes. Indeed, our phosphoproteomic analysis
revealed significant changes in various transcription factors
known to affect chromatin dynamics (Fig. S1F). These
chromatin regulators included SIRT1, SOX13, POU2F1, and
multiple residues on POL2RA and NCORI. In particular, the
phosphorylation of JUN at residue S73 could be reconciled
by a model in which phosphorylation of JUN triggers dissociation
of histone deacetylases (HDACSs) and facilitates the rearrangement
of chromatin structure (Wolter et al., 2008). Based on these
results, we then set out to assess, in an unbiased manner,
the effects that signalling changes have on the chromatin
organisation.
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Fig. 2. HER2 promotes in vitro trans-
formation through increase in signalling
and widespread chromatin opening.

(A) Volcano plots depicting the
phosphoproteome upon HER2 protein
expression at 0.5, 4 and 7 h compared to
control cells. Statistical significance is
shown as log2 fold change for HER2>1.5,
P<0.05, and log2 fold change for GFP<5,
P>0.05. The plot shows the phosphosites
that are significantly changing upon HER2
protein induction but not significantly
changing in the GFP cells at the same time.
Those with the highest increase or
decrease in fold change are labelled. n=3.
(B) Bar graph depicting the number of
detected phosphosites increasing or
decreasing in phosphorylation in the
phosphoproteomic analysis at the indicated
time points analysed. Statistical significance
is shown as log2 fold change for
HER2>1.5, P<0.05, and log2 fold change
for GFP<5, P>0.05). (C) Differential
accessibility (log2 fold change>0.5, FDR-
corrected P<0.05) between MCF10AHER2
and control cells, plotted against the mean
reads per region. Cells were grown in 3D
cell culture from 0 to 48 h, and ATAC-seq
was performed on their acini. Heatmap
shows chromatin accessibility across all
time points for each replicate in cells
expressing HER2 or GFP (controls). n=3.
(D) Fraction of total regions that are
differentially accessible (up peaks) or
inaccessible (down peaks) in early or late
type comparisons. ‘Early’ time point
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Identification of two distinct chromatin accessibility
landscapes within HER2-induced transformation

To investigate the interplay between signal transduction pathways
and chromatin dynamics, we used an assay of transposase-
accessible chromatin using sequencing (ATAC-seq) to determine
the genome-wide chromatin accessibility landscape in the acini of
MCF10A cells in a time-dependent manner (0-48 h) by isolating
cells from 3D cell culture. Principal component analysis (PCA)
separated the samples into two groups, ‘early’ (0, 1, 4 and 7 h time
points) and ‘late” (24 h and 48 h time points) (Fig. S1G). We
selected these conditions with the aim of encompassing time points
relevant to both types of analysis. The 0, 4 and 7 h time points were
chosen to characterise early chromatin changes triggered by
signalling. The late conditions were selected to detect the

represents data from 0, 1,4 and 7 h
combined. ‘Late’ time point represents data
from 24 h and 48 h combined. Log2fold>2,
FDR-corrected P<0.05. (E) Gene Ontology
(GO) categories for biological processes for
differential peaks that are significantly up
(log2fold change>0.5, FDR-corrected
P<0.05) for the early MCF10AHER?/early
MCF10ACTR cells.

FDR (-log,,)

resulting delayed chromatin changes occurring later in the process
of transformation. We identified 17,868 significant changes
between MCF10AMER2 cells and control cells (TO starting
population before HER2 protein induction) over the time course,
which showed an increase in accessibility in MCF10AMER? cells
relative to controls (Fig. 2C; Fig. S2A). We assessed differential
accessibility between early and late groups and observed that a
much larger fraction of regions, with >2-fold difference relative to
TO, were enriched in the early group compared to in the late group
(75% versus 44%, respectively; Fig. 2D). Conversely, only ~2.9%
of peaks in the early group and ~6.5% of peaks in the late group
were >4-fold more accessible, which we define as ‘hyper-
accessible’ chromatin states (Fig. S2A). Even though the numbers
of hyper-accessible versus hypo-accessible regions (which lose
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accessibility >4-fold) did not show a stark difference, the overall
number of accessible regions following HER2 expression
outnumbered inaccessible regions. This shows that there is an
increase in chromatin accessibility during the early stages of
transformation (Fig. 2D). Therefore, this might suggest that the
first adaptive response to oncogenic HER2 signalling is altered
chromatin accessibility to induce differential gene expression.
Subsequently, the changes in chromatin accessibility even out in the
later time points, with the number of hypo-accessible regions even
exceeding the hyper-accessible ones at late time points, which could
indicate that cells have reached an equilibrium (Fig. S2A).

Next, we performed functional enrichment analyses [Gene
Ontology (GO) terms] for upregulated peaks in the early HER2
signature (Fig. 2E). The regions with increased chromatin
accessibility at all times analysed were enriched for GO terms
associated with response to transforming growth factor, cell—cell
adhesion, epithelial cell proliferation, morphogenesis and regulation
of neural precursor cells. The differentially accessible regions
upstream of the transcriptional start site (TSS) were largely gene
distal, with relatively few promoter-proximal regions (Fig. 3A). To
probe how the observed changes in cell signalling can underlie
transcriptional and/or epigenetic control during cellular
transformation, we examined transcription factor binding motifs
that were significantly enriched in relation to all differential ATAC-
seq peaks. The most significantly enriched motifs in the accessible
chromatin regions as a result of perturbed HER2 expression were
CEBP, HLF, ATF4 and CHOP (Fig. S2C). We also observed
significant enrichment of motifs for all the time points analysed for
inaccessible peaks corresponding to closed regions, which included
ATF3, AP-1, BATF, FRAI, JUNB, FRA2 and NFxB (Fig. 3B).
Previously, it has been shown that enrichment of AP-1 family
member motifs is associated with increased accessibility (Hardy
et al., 2016). There was some overlap between the family members
of transcription factors identified in the phosphoproteomic screen
and ATAC-seq motif analysis, including NFxB, JUN, ATF1, JUND
and AP-1 (Fig. S2D). The transcription factors found in our motif
analysis associated with accessible chromatin are known to be
involved in several cancer types, including breast, lung, endometrial
and prostate cancers with a more aggressive phenotype (Detry et al.,
2008).

We next examined whether peaks were shared between those that
were opening (more accessible) and those that were closing (less
accessible) in the early and late groups. We found that there was a
small overlap between early and late inaccessible peaks but none
between the accessible peaks (Fig. 3C). This suggests that
increasing accessibility is dynamic during transformation, and
that sites with early loss in accessibility relative to TO could
potentially have driving roles in the population drift. We further
examined the genomic distribution of the differentially
inaccessible chromatin of the overlapping regions, which
showed that most genomic regions were associated with two
nearby genes (Fig. S2E). Namely, some of the common
differential regions correlated with genomic location of FBN2,
the genomic chromosomal coordinates of which were found to be
matching with the promoter region of the FBN2 gene. This gene
was found to have aberrant promoter methylation in a number of
cancers (Hibi et al., 2012) (Fig. S2E). Other regions included
RIMS2, known to be associated with particularly aggressive breast
cancers (Zhang et al., 2021), and APIP, which binds HER3
receptor, leading to the heterodimerisation between HER2 and
HER3 and resulting in sustained activation of downstream
signalling (Hong et al., 2016). No differentially accessible

region was found to be promoter proximal, as all the regions
were at least 5 kb upstream of the TSS (Fig. S2G).

To elucidate the heterogeneity in gene expression between
subpopulations of cells in light of the pervasive chromatin
opening we identified, we performed single-cell RNA
sequencing (scRNA-seq) following induction of HER2
overexpression over 72 h. Cells were grouped according to their
time point by Uniform Manifold Approximation and Projection
(UMAP) dimensional reduction. Although there was no distinct
separation between the time points, there was a trend in clustering
of MCF10AC™E. versus HER2-expressing cells (Fig. S3A).
Seurat clustering found differentially expressed features and
separated them into four groups, with cluster 0 enriching in the
MCF10A“™L population, and cluster 1 associating with the
highest HER2 expression (Fig. S3B). As expected, we observed a
time-dependent increase in HER2 gene expression (Fig. S3C).
There is a consensus that high HER2 expression is associated with
stem-like phenotype (Oliveras-Ferraros et al., 2010); however,
much controversy remains on whether stemness and high-grade
tumours are highly correlated with each other. Some studies have
suggested a strong correlation between stemness and high
oncogene expression, whereas others reveal little relationship
(Poli et al., 2018; Simeckova et al., 2019). We identified clear
transcriptional signatures of oncogenes associated with breast
cancer progression such as the time-dependent increase in
ALDOA, a gene that increases in vitro spheroid formation and
increases abundance of cancer stem cells (Fig. 3D; Fig. S3D), and
LAMB3, which mediates invasive and proliferative behaviours by
the PI3K—AKT signalling pathway (Zhang et al., 2019), as well as
the decrease in genes like MUCI, conversely, upon HER2
overexpression, the downregulation of which is linked to stem-
like phenotype (Stingl, 2009). Although the expression of /D3 is
also associated with stemness (Huang et al., 2019), this pattern
was not found in our data, suggesting that these processes overlap
only partially.

Genome browser tracks of early and late HER2 samples showed
the relative accessibility of some regions associated with the
indicated gene, with arrow-marked regions in Fig. 3E indicating
differentially open regions. The ferritin heavy chain (FTHI) gene,
which displayed sharp decline upon HER2 expression (Fig. 3E;
Fig. S3D) was also associated with inaccessible chromatin, as
shown by the scRNA-seq and ATAC-seq datasets. Low FTHI
expression is known to make breast cancer cells radiosensitive,
and its higher expression is correlated with radioresistance
(Tirinato et al., 2021). An in-depth analysis of FTHI expression
in HER2-positive clinical samples might improve the efficacy of
radiation treatments.

Sustained low HER2 expression facilitates dedifferentiation
and confers stem-like traits

MCF10AMER2  cells  exhibited heterogeneous capacity for
anchorage-independent growth when measured by their ability to
form colonies in semi-solid medium, in that a significant proportion
of MCF10AHER? cells were able to form cell aggregates, with a
>2-fold increase in colony-forming units compared to control cells
(Fig. 1E). We hypothesised that cells possessing the ability to form
colonies under anchorage-independent growth conditions are a
selection of aggressive cells out of the total number of cells seeded.
Conversely, the proliferative but non-malignant cells that often
dominate any heterogeneous parental cell line would be selected
against under these conditions. We evaluated whether anchorage-
independent growth correlated with reprogramming-associated
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Fig. 3. Abnormal HER2 expression shows overlapping
genes/transcription factors identified in multiomics data.

(A) Distance to closest transcriptional start sites (TSSs) of all

differentially accessible regions in the early and late cell types.

The bars represent only those regions that are upstream of the
TSS. ‘Open sea’ refers to regions that are at least 50 kb or

more upstream of the TSS. (B) Enrichment of transcription

factor recognition sequences in differential ATAC-seq peaks
comparing MCF10AHER2 and control cells based on HOMER

analysis. Down peaks=log2fold<—2, FDR-corrected P<0.05.

HOMER analysis using the accessible (up) peaks can be

Te6 found in Fig. S2C. (C) Venn diagram showing the number of

differentially accessible regions that are shared between the up
(open) and down (closed) peaks in the early and late samples.
Up peaks=log2fold>2, FDR-corrected P<0.05. Down
peaks=log2fold<-2, FDR-corrected P<0.05. (D) scRNA-seq
was performed in 2D cell culture on MCF10A cells with HER2
induction from 0 to 72 h (3 days). Heatmap summarises some
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heterogeneity by testing the expression of proteins found in
mammary epithelial stem cell hierarchy by flow cytometry
(Stingl, 2009), in which it has been shown that breast stem cells
are characterised by MUC1-negative, EPCAM!®Y and CD24!°%
expression (Fig. 4A). We therefore evaluated whether HER2
overexpression could enrich for cells with functional stem-like
properties based on these three markers and found that this stem-like
phenotype was enriched in MCF10AMER? cells, as a large
proportion of cells lost the expression of MUC1, EPCAM and
CD24 (Fig. 4B; Fig. S3E and Fig. S4). Because our population is
heterogeneous due to differing numbers of copies of the lentiviral
HER?2 construct, and we have the same amount of doxycycline used
to induce the oncogene, the upper threshold of expression of HER2
will depend on the transgene copy number. We therefore
hypothesised that stem-like markers would be positively
correlated with HER2 levels in our heterogeneous population, i.e.
cells having many HER2 copies would also be more likely to
express stem-like markers. Surprisingly, we found that cells
expressing relatively low HER2 levels had the most pronounced
stem-like phenotype compared to other flow-sorted populations of
cells with increasing levels of HER2 (Fig. 4B). We confirmed the

of the most highly and lowly expressed genes with the
induction of HER2 gene. (E) Insertion tracks of samples at
example regions. This signal is an average signal of three
replicates of combined time points into either ‘early’ samples or
‘late’ samples. Differentially open regions are marked with
arrows.

different levels of HER2 protein expression after sorting cells into
three compartments of low, medium and high HER2 expression by
western blotting, which correlated as expected (Fig. 4C). We also
compared these subpopulations of cells to HER2-positive patient
samples that were already known to be HER2 positive with
immunohistochemical scores of 3+ or 2+, which showed that low
HER2-expressing cells expressed even less HER2 protein compared
to these groups (Fig. S3F). Next, to determine the transformational
potential of these cell types by measuring anchorage-independent
growth, we flow sorted MCF10AMER? cells into the three different
cell populations and paradoxically found that low HER2-expressing
cells had increased transformational potential relative to that of the
other populations of sorted cells (Fig. 4D). We thought that high
HER2-expressing cells may be undergoing oncogene-induced
senescence (OIS), thus resulting in reduced colony formation
compared to other cell types. To confirm this, we measured proteins
implicated in OIS but found no significant increase in OIS markers
in the high HER2-expressing cells compared to other populations,
indicating other biological effects being responsible for the lower
capacity in anchorage-independent growth of high HER2-expressing
cells (Fig. S3G). It is possible that high oncogene expression induces
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Fig. 4. Low HER2 expression leads to increased transformation, stemness and chromatin accessibility. (A) Proposed simplified breast epithelial
hierarchy present in human mammary glands. (B) Cells were analysed by flow cytometry, and HER2-positive cells were separated into three subpopulations
of low, medium and high HER2 overexpression, as indicated. The enrichment of stem markers is shown as a proportion of the total number of cells exhibiting
MUC1-negative and EPCAM-negative phenotype. The proportion of cells shown here shows the overlap between MUC1-negative and EPCAM-negative
cells, all of which were subsequently 100% CD24 negative. n=3. (C) MCF10AMER? cells were flow sorted into the labelled subtypes, and HER2 expression
analysis in MCF10A cells by western blotting was performed. GAPDH was used as a loading control. The bottom 20% of HER2-expressing cells were
labelled as ‘HER2 low’ cells (blue); the top 20% of HER2 expressing cells were labelled as ‘HER2 high’ cells (red). The middle population (35%) was labelled
as ‘HER2 med’ (orange). HER2-negative cells are highlighted in green based on HER2-negative control cells. N=3. (D) HER2 expression was induced for

3 days, and cells were sorted based on HER2 expression into low, medium and high HER2 expression. 5000 cells from each condition were plated into ultra-
pure agarose to investigate their in vitro transformative potential. Results are plotted as box plots from three biological replicates. Unpaired two-tailed
Student’s t-test was performed to compare ‘HER2 med’ and ‘HER2 high’ groups to the ‘HER2 low’ group; P-values are displayed on the graph. One-way
ANOVA was performed to determine statistical significance. The boxes represent interquartile range, and the whiskers indicate the minimum and maximum.
n=3. (E) MCF10A"ER2 cells were sorted into the three subtypes. ATAC-seq libraries were prepared and sequenced. DiffBind was used to analyse the
differentially accessible regions, plotted as percentage of open or closed regions. n=3. (F) Heatmap shows genes of interest that are consistently differentially
expressed in at least three of the four time points analysed upon HER2 overexpression. Blue rectangles represent genes that are downregulated; red
rectangles represent genes that are upregulated. The white rectangles show lack of differential expression for that specific time point. Genes are only listed if
the statistical significance had FDR-corrected P<0.05. Importance of genes highlighted in red is mentioned in the text.
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cancer cells to dormancy that is associated with loss of ability to self-
replicate and differentiate (Bellovin et al., 2013).

Because we found that chromatin opening was the feature
associated with early signalling to chromatin response, we wanted to
know whether this was reflected in the phenotypic heterogeneity, in
particular low versus high HER2 levels. To this end, we used
ATAC-seq to determine the genome-wide chromatin accessibility
landscape in the five different populations of cells (MCF10A“TRE,
low HER2, medium HER2, high HER2 and MCF10A"ER? cells).
We analysed these data by comparing each cell type to the
control cells (MCF10A“™L) and comparing the percentage of
differentially accessible regions between the cell types. We found
that low HER2-expressing cells exhibited the highest percentage of
chromatin opening compared to other cell populations (Fig. 4E),
confirming that the phenotypes associated with invasiveness and
anchorage-independent growth were driven by molecular features in
stem-like cells and opening of chromatin. To put the magnitude
of these chromatin differences in context, i.e. the differential
accessibility between low HER2- and high HER2-expressing cells,
we found that ~95% of peaks were accessible in low HER2-
expressing cells. Conversely, only ~42% of the peaks were open
(accessible) in the high HER2-expressing cells. Overall, these data
indicate that a sharp increase in HER2 may result in triggering cell
intrinsic defensive systems, whereas a low-level sustained presence
of HER2 can shift cell identity, via chromatin remodelling, towards
tumour-promoting phenotypes.

We found that a subset of these sScRNA-seq-unique differentially
expressed genes that were either upregulated or downregulated at
multiple time points were also associated with heterogeneity of
breast cancer, related to cancer progression and stem cells (Fig. 4F).
For example, expression of HMGAI, which is known to promote
breast cancer angiogenesis through the transcriptional activity of
FOXM1 (Zanin et al., 2019), increased in a time-dependent manner
(Fig. 4F). However, expression of FOS, a pro-proliferative
transcription factor, which has been validated in breast tumour
samples and is highly expressed in relapse samples and treatment
failures (Vendrell et al., 2008), was found to be downregulated at all
time points (Fig. 4F). Intriguingly, high proliferation rates as a result
of FOS expression can lead to improved outcomes for patients with
breast cancer, as they can lead to higher expression of apoptosis-
effector genes (Fisler et al., 2018). Our data also show the time-
dependent increase in EFHD2, a gene linked to epithelial-
mesenchymal transition and metastasis (Fan et al., 2017). MED24,
encoding a subunit for the mediator complex of RNA polymerase II,
is known to be a downstream target of HER2 and may be a critical
gene required for cancer development (Liu et al., 2019).

DISCUSSION

In this study, we addressed the question of what the earliest
molecular changes are at the interface between increasing oncogenic
HER?2 signalling and chromatin accessibility in a non-transformed
breast epithelial cell line. Overexpression of the HER2 oncogene in
breast epithelial cells resulted in some unexpected changes in
cellular phenotypes. Namely, we observed an inverse relationship
between HER2 levels and tumourigenic properties in vitro, where
cells expressing a sub-threshold amount of HER2 protein exhibited
increased anchorage-independent growth. This was also associated
with features of dedifferentiation towards breast stem cell identity.
Among the expected features, MCF10AMER? cells underwent
in vitro transformation, as evidenced by increased anchorage-
independent growth accompanied by the formation of spindle-like
conformations in 3D cell culture (Fig. 1B,D). These findings are

concordant with other studies in which loss of cell polarity
following HER2 overexpression has been described (Ortega-Cava
et al., 2011; Hartman et al., 2013; Xiang and Muthuswamy, 2006).

We propose that a sub-threshold level of HER2 protein has the
ability to elicit activation of signalling pathways that directly impact
on chromatin to drive dedifferentiation and survival and to enhance
transformation. Although high levels of oncogenic expression are
an important biomarker in diagnosing HER2-positive breast cancer,
our data support the hypothesis that even low levels of HER2
protein expression can be associated with disease aggressiveness,
poor patient outcome and therapeutic resistance (Gilcrease et al.,
2009). The mechanism underlying why low HER2-expressing cells
can be aggressive and its prognostic value have not been sufficiently
evaluated. Our data show that the subset of low HER2-expressing
cells likely use changes in chromatin state as their route for cellular
transformation (Fig. 4E); the accessible chromatin induced by low-
level HER2 signalling may continuously predispose cells to
secondary additional hits required for metastasis and therapeutic
resistance (Denny et al., 2016). The resulting chromatin changes via
low HER2 expression may create a lasting and highly transformative
state. It should be noted that early HER2 protein levels, as measured
by the timing of HER2 expression from basal levels, is not the same
as low HER2 protein levels, as the latter does not activate signalling
pathways.

Across the different subtypes of breast cancers, and in particular
HER2-positive breast cancer, loss of differentiation is associated
with lower patient survival and aggressiveness (Margaryan et al.,
2017; Pupaetal., 2021). However, in low HER2-expressing cells, the
correlation between dedifferentiation and aggressiveness remains
unclear. Stem marker signatures drive cancer growth, and their
inhibition delays it (Rudin et al., 2012). Several known stem markers,
including the EPCAM, MUCI1 and CD44 signatures, promote
transformation and tumour progression (Stingl, 2009). Our data
suggest that changes in chromatin and dedifferentiation correlate with
the aggressive nature of the low HER2-expressing cells, but the
mechanism underlying this process has yet to be identified (Fig. 4B).

We observed leucine aminopeptidase 3 (LAP3) to be
significantly activated in our phosphoproteomic screen at all of
the time points analysed in MCF10AMER?  compared to
MCF10AST? cells (Fig. 2A). LAP3 is known to play a critical
role in breast cancer cells by regulating migration and invasion, and
is associated with metastasis (Fang et al., 2019). In addition, we
found that phosphorylation of nucleolar and coiled-body
phosphoprotein 1 (NOLC1) at residue S622 was also significantly
increased at all time points (Fig. 2A). This protein is highly
expressed in nasopharyngeal carcinomas (Hwang et al., 2009)
and in breast cancer cells (Sacco et al., 2016). The consistent and
highly stable activation of these two proteins may serve as
potential biomarkers for late-stage disease and provide important
targets for antimetastatic therapeutic targets. Furthermore, zinc
finger protein 36 (ZFP36) is correlated with lower-tumour grade
breast cancer (Canzoneri et al., 2020). Interestingly, we found that
ZFP36 (S188) was significantly activated at the 4 h and 7 h time
points but not at the earlier 30 min time point (Fig. 2A), indicating
that low HER2-expressing cells prefer a programme of signalling
phosphosites associated with worse patient outcome (Canzoneri
et al., 2020).

The morphological changes in breast cancer models are often
used to indicate the high transformational characteristics of those
cells (Barker et al., 2022). We found that proteins associated with
aggressive basal-like phenotype were found to be increased in our
phosphoproteomic screen, which included ADGRA2 (S1079) and
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DENNDA4C (S1250). This shows that the morphological changes
observed in our system (Fig. 1B) were likely to be caused by HER2-
induced transformation.

It is possible that the intrinsic heterogeneity found within the
tumour population may be preventing specific patterns from
emerging in a bulk RNA-sequencing analysis. It is known that
differential downregulation of IFITM family members is associated
with resistance maintenance following anti-HER2 therapy,
trastuzumab (Wang et al., 2019). Our scRNA-seq data reveal
downregulation of IFITM3 within 24 h of HER2 overexpression,
that is maintained until at least 72 h, which could show that this does
not decrease as a result of resistance but may predispose resistance
to therapies at the very early stage of disease. Overall, our data show
the power of combining genome-wide molecular approaches using
an in vitro transformation model system to uncover subtle but
relevant variations in cellular states. Given the dramatic remodelling
of the chromatin state driven by a single factor in HER2-positive
breast cancer, we speculate that other cancer types may also feature
similar mechanisms of cellular transformation through chromatin
remodelling. Cataloguing early chromatin changes can emerge as a
promising therapeutic target, with a particular focus on early and
low HER2-induced alterations in breast cancer. We attempted to
integrate the ATAC-seq data with the signalling changes we have
observed to see whether there is a strict linear correlation; however,
within the confines of the small number of time-point pairs available
for analysis, it is not appropriate to correlate the ATAC-seq and
phosphoproteomic timeseries data to try to identify biological
mechanisms, as the problem of multiple testing would make such
correlations almost meaningless.

Metastasis is a multi-step, low-probability process, in which
primary cells must invade the local tissue and extravasate into a
distant site. Our work shows that low HER2-expressing cells gain
transformational ability through dedifferentiation and dramatic
chromatin remodelling. This model could be further extended
to assess how HER2-driven changes in chromatin state are used
as a route for metastasis in in vivo models, and whether low loss
of differentiation correlates with aggressiveness in more
physiologically relevant models.

MATERIALS AND METHODS

Cell culture

The immortalised human mammary epithelial cell line MCF10A was
obtained from the American Type Culture Collection (ATCC) and grown
under recommended conditions. Briefly, MCF10A cell medium consists of
Dulbecco’s modified Eagle medium (DMEM/F12) (Sigma-Aldrich,
#D8347) supplemented with 5% horse serum (Sigma-Aldrich, #H1138),
0.5 pg/ml hydrocortisone (Sigma-Aldrich, #H0888), 20 ng/ml epidermal
growth factor (EGF) (Sigma-Aldrich, #E4127), 100 ng/ml cholera toxin
(Sigma-Aldrich, #C8052), 10 pg/ml insulin (Sigma-Aldrich, #19278) and
1% penicillin/streptomycin (Pen/Strep).

HEK293T cells were cultured in DMEM (Sigma-Aldrich, #D5796) in
10% foetal bovine serum (FBS) with 1x Pen/Strep.

For 3D overlay cell cultures, cells were grown in chamber wells in a
mixture of Matrigel (Corning, #356230) and collagen (Corning,
#11563550), which were mixed with 0.1 M NaOH and 10x PBS, as
previously described (Xiang and Muthuswamy, 2006). To collect cells from
3D cell cultures, cell recovery solution (Corning, #354253) was used at 4°C
for 30-60 min according to the manufacturer’s instructions. Staining 3D
acini were fixed with 4% paraformaldehyde (PFA). Acini were
permeabilised with 0.5% Triton X-100 and blocked in 10% goat serum in
PBS-Tween 20. Acini were stained with phalloidin dye overnight at 4°C.
The detachable chambers were removed, and acini were mounted in
mounting media reagent and allowed to dry in the dark at room temperature.
Once dried, slides were visualised using a fluorescence microscope.

Vectors and viral infections

To generate the HER2-inducible MCF10A cell line (Carter et al., 2017), we
first transiently transfected HEK293T cells using jetPRIME transfection
reagent (Ppolyplus, #114-15). The inducible HER2 construct (Addgene,
#46948) alongside pMD2.G (Addgene, #12259) (envelope plasmid), and of
pCMV delta R8.2 (Addgene, #12263) (packaging plasmid) were
transfected into 90% confluent HEK293T cells for 24 h. Lentiviral
particles were harvested by centrifugation, and early-passage MCF10A
cells were infected for 48 h. Cells were then flow sorted based on GFP
expression to obtain a pure population.

Western blotting

Cells were harvested and lysed in RIPA buffer containing protease and
phosphatase inhibitors. Lysates were mixed with sample loading buffer,
and proteins were resolved using sodium dodecyl sulphate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred onto PVDF membranes.
Membranes were blocked in 5% milk, and antibodies were incubated
overnight in 5% bovine serum albumin (BSA) solution. Antibodies used
included anti-HER2 (Cell Signaling Technology, #2165, 1:1000), anti-
GAPDH (Cell Signaling Technology, #2118, 1:2500), anti-p53 (Cell
Signaling Technology, #2527, 1:1000), anti-p27 (Cell Signaling
Technology, #3836, 1:1000), anti-p21 (Cell Signaling Technology,
#2947, 1:1000), anti-tubulin (Abcam, #7291, 1:1000) and anti-rabbit
secondary (Amersham ECL Rabbit IgG, HRP-linked whole Ab, #NA934,
1:5000).

Human samples were obtained from Barts Cancer Institute tissue bank.
Where human samples were used, informed consent was obtained from all
individual participants included in the study. All clinical investigations were
conducted according to the principles expressed in the Declaration of
Helsinki.

Flow cytometry and flow sorting

Cultured cells were detached from plates with trypsin and stained with 2%
horse serum. Cells were then stained with the following conjugated
antibodies: anti-HER2 BV650 (BD Biosciences, #745299, 1:100), anti-
EPCAM APC (BD Biosciences, #347200, 1:40), anti-MUC1 BV786 (BD
Biosciences, #743410, 1:50), anti-CD24 BV711 (BioLegend, #311135,
1:50) for 20 min at room temperature. Cells were washed with 1 ml of 2%
horse serum and then resuspended in 4’,6-diamidino-2-phenylindole
(DAPI) solution. Stained cells were analysed on a BD LSRFortessa™
cell analyzer (BD Biosciences). For cell sorting, cells were stained with the
antibodies of interest and isolated using an ARIA fusion cell sorter.

ATAC-seq library preparation and differential analysis

Cells (5x10%) were directly recovered from cell culture by trypsin from 2D
cell culture or by using the recovery solution (Corning, #354253) for cells
grown in either 2D or 3D cell culture. ATAC-seq libraries were generated as
described previously (Buenrostro et al., 2015), with minor amendments. We
performed ten initial PCR amplification cycles followed by direct
purification of the transposed DNA, without performing quantitative PCR
to calculate the additional numbers of required cycles. Sequencing data were
aligned to the human genome (grch38) using bowtie2. Peaks were called on
each biological replicate of all ATAC-seq reads using MACS2, and putative
copy number and mitochondrial regions were removed. The peak dataset for
differential analysis was generated by applying a threshold using a desired
fold-change and a —log10-transformed FDR-adjusted P-value. Differential
accessibility was assessed using DiffBind (https://bioconductor.org/
packages/devel/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf), and regions
were called differentially accessible based on log2 fold change and FDR-
corrected P-value.

Phosphoproteomic sample preparation

For phosphoproteomic experiments, cells were grown in 2D cell cultures.
Cell pellets were lysed using 8 M urea lysis buffer (containing phosphatase
inhibitors). The amount of protein in the lysates was quantified by
bicinchoninic acid (BCA) assay. Then, 250 ug from each sample was
digested into peptides with immobilised TPCK-trypsin beads (Thermo
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Fisher Scientific, #20230) at 37°C overnight. Phosphorylated peptides were
enriched from total peptides using TiO, chromatography, as reported
previously (Montoya et al., 2011; Larsen et al., 2005). Finally, peptides were
snap frozen and dried in a SpeedVac. Dried peptides were dissolved in 0.1%
trifluoracetic acid and analysed by liquid chromatography— tandem mass
spectrometry (LC-MS/MS) on a Q Exactive plus mass spectrometer
(Thermo Fisher Scientific). Peptide identification was performed using the
Mascot search engine (Casado and Cutillas, 2011). Allowed variable
modifications were phosphorylation on Ser, Thr and Tyr, and oxidation of
Met, and Pescal software (Casado and Cutillas, 2011; Cutillas and
Vanhaesebroeck, 2007) was used to quantify the peptides. Kinase-
substrate enrichment analysis (KSEA) (Casado et al., 2013) was used to
determine kinase activities. The intensity values were calculated by
determining the peak of each individual extracted ion chromatogram and
plotted as heatmaps. The resulting quantitative data were transferred and
visualised in Microsoft Excel. The significance (log2 fold change<—0.5-
fold, FDR-corrected P<0.05 for downregulated phosphosites and log2 fold
change>0.5-fold, FDR-corrected P<0.05 for upregulated phosphosites) of
each phosphosite was annotated by an asterisk; we used the filter’ function
in Excel to filter out those phosphosites that were not significant. All of the
significant MCF10AS™™ data were filtered out, while simultaneously
filtering out non-significant data for the MCF10AHER? cells, giving us
significant changes in MCF10AMER? cells that were not significantly
changing in the MCF10ASFP cells. The number of phosphosites was
determined by the number of columns as each column contained one
phosphosite, unless overlapping sites were present, in which case they were
manually counted.

Migration/invasion assays

A chilled Matrigel or collagen mixture was directly pipetted on the centre of
8 um pore size transwell inserts (Millicell, #MCEP12H48) that were placed
into a 12-well plate, and allowed to solidify at 37°C. Meanwhile, cells were
trypsinised and pipetted onto the transwell inserts — which were either
coated with matrix or left uncoated — and cultured for 16 h. Highly
migratory/invasive cells were stained with 0.05% Crystal Violet dye. Images
of random regions were taken using a standard light microscope and
quantified using Imagel.

Soft agar colony formation assays

A 0.8% base layer was formed in plates using ultra-pure culture grade
agarose (Thermo Fisher Scientific, #16500500) allowed to settle at room
temperature. Five-thousand cells per well were mixed with 0.3% agarose
and plated evenly, drop wise, on top of the base layer. Medium was changed
every 2days for 3 weeks. Colonies were fixed using 4% PFA and
permeabilised using 100% methanol. Colonies were stained using 0.05%
Crystal Violet dye, and images were taken using a dissecting microscope.
Binary masks were applied to each of the images, and thresholding
parameters for diameter ranging from 10 um to 100 um were set on Imagel.
Colonies were counted using ImagelJ only if they satisfied criteria above the
threshold values, and colony counts were then manually checked and
adjusted if necessary.

scRNA-seq

MCF10A cells were induced with 1 ug/ml doxycycline at 0, 7, 24, 48 and
72 hin 2D cell cultures. Cells were then detached using TrypLE (Gibco) and
collected in 1x Dulbecco’s PBS (DPBS; Gibco). After one wash in 1x
DPBS, cells were resuspended in 2% BSA-DPBS at a concentration of
10,000 cells/ul. Then, 500,000 cells (50 ul) were blocked with 10 ul
TruStain FcX blocking solution (BioLegend). Each treatment group
was stained with 0.5 ul specific TotalSeq™-A Hashtag antibodies and
0.5 ul TotalSeq™-A0133 anti-human CD340 (ERBB2/HER2) protein
expression antibody. Cells were washed three times with 1 ml of 2%
BSA-DPBS and resuspended to a concentration of ~10,000 cells/ul. Equal
volumes of each treatment group were pooled, and cell pool was assessed for
cell concentration and viability. Single-cell cDNA, protein expression
(ADT) and hashtag (HTO) libraries were generated using Chromium Single
Cell 3" version 2 reagents (10x Genomics and BioLegend) as per the

manufacturers’ protocols. Single-end sequencing of libraries was performed
by Novogene on a Novaseq 6000 (Illumina) sequencer with HTO libraries
constituting 5% of the sample.

Single-cell data were run through the 10x Genomics CellRanger
pipeline to produce count tables for gene expression, HTO counts for
sample identification and ADT counts for HER2 expression. Cells
were identified and assigned to a time point using the HTO counts
table and the HTODemux method in Seurat. To exclude cells that did
not respond to the doxycycline induction, treated cells with less than 35
counts of the ERBB2/HER2 expression tag were filtered out. The
remaining gene expression data were run through Seurat’s basic data
processing pipeline. The data were normalised and scaled, and the effects
of the cell cycle were regressed out using Seurat’s cell cycle regression
strategy. The data were then run through PCA. The principal components
were used to identify clusters, and UMAP was run for visualisation. Two
different differential expression analyses were run using Seurat’s
FindAllMarkers function, one across the different clusters and one
across the different time points.

ATAC-seq bioinformatics analysis pipeline

The ATAC-seq data were provided as FASTQ files. Quality control of raw
sequencing read files was performed using FastQC. Illumina adapter
trimming was done using Cutadapt with the following settings: Cutadapt
-a CTGTCTCTTATACACATCT -A CTGTCTCTTATACACATCT -o
out.l.fastq -p out.2.fastq. Trimmed reads were aligned using the human
genome, Genome Reference Consortium Human Build 38 patch release 13
(GRCh38.p13), using bowtie2, and a SAM file was obtained with the
following settings: bowtie2 index —1 trimmed FASTQ file —2 trimmed
FASTQ file —S 1.sam. The resulting SAM files were converted into binary
bam files (setting: Samtools view —Sb in.samfile>out.bamfile), sorted
(setting: Samtools sort in.bamfile -o out.bamfile) and indexed
(setting: Samtools index in.bamfile). To ensure an improved mapping
quality, we removed mitochondrial DNA with the following settings:
Samtools view —h in.bamfile | removeChrom - - chrM | Samtools view - b
->out.bamfile. PCR duplicates were removed from the files using Picard
tools with the following settings: Java -jar picard.jar MarkDuplicates
I=in.bamfile O= out.bamfile M=dups.txt REMOVE_DUPLICATES=true
VALIDATION_STRIGENCY=LENIENT.

For viewing samples on genome bowser or assessing reproducibility
and data exploration, all samples were ‘downsampled’ to the same
number of reads with the following settings: samtools view -b -s
[downsampling_ratio] in.bam>out.downsampled.bam. Peaks calling
was done for each individual non-downsampled file with MACS2
‘callpeak’ with the following settings: MACS2 callpeak -t inbamfile -f
BAMPE -n in.bamfile -g ce —keep-dup all. These files were then analysed
using DiffBind for differential analysis on R. For each sample, a path
to the peaks and the bam file were listed in Microsoft Excel and
loaded in R [setting: db.object=dba(sampleSheet="name_of sample_-
sheet”)]. Then, the next step was to take the alignment files and
compute count information for each of the peaks/regions in the
consensus set with the settings db.object=dba.contrast(db.object, cate-
gories=DBA_TREATMENT, block=DBA_CONDITION, minMem-
bers=2) and db.object=dba.analyze(db.object,bParallel=TRUE,meth-
od=DBA_ALL_METHODS). R was used to plot the differential
changes such as MA plot with an appropriate threshold [setting:
dba.plotMA(db.object,th="0.05",method=DBA_DESEQ2)]. Significant
changes could then be saved from up or down peaks, e.g. with
the setting up_peaks_db.object.SigChanges.0.05FDR <- db.object.Sig-
Changes.“0.05FDR”[db.object.SigChanges.0.05FDR$Fold>0,], and counted
using the command line, and were plotted as percentages in Prism or
Microsoft Excel in the form of a chart/graph. Motif enrichment analysis was
performed using Hypergeometric Optimization of Motif EnRichment
(HOMER) (Heinz et al., 2010).

Acknowledgements

We thank Dr Salvatore Federico Pedicona and Dr Hemalvi Patani for critically
reading the manuscript; Kriszta Kovacs for her assistance in 3D morphology assays;
and the Barts Cancer Institute’s shared FACS and microscopy facilities. Core

10

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%)
©
Q
oA
(@]




RESEARCH ARTICLE

Disease Models & Mechanisms (2023) 16, dmm049894. doi:10.1242/dmm.049894

services are supported by a Cancer Research UK Centre grant to Barts Cancer
Institute (A25137).

Competing interests
The authors declare no competing or financial interests.

Author contributions

Conceptualization: G.F.; Methodology: A.H., E.P.C., RP.G, S.G,, S AT, AQO,;
Software: A.H., HW.K., G.F., AD., P.C.; Validation: A.H., H.M., A.O., AD.; Formal
analysis: A.H., G.F., AD., HWK, S.C.; Resources: A.H., G.F.; Data curation: A.H.,
G.F.,HW.K., H.M,, P.C.; Writing - original draft: A.H., G.F.; Writing - review & editing:
AH, GF,EP.C,HWK,S.G,HM,RP.G.,P.C, S.G,; Visualization: A.H., G.F.,
HW.K., A.D., H.M.; Supervision: G.F.; Project administration: P.C., G.F.; Funding
acquisition: G.F., A.H.

Funding

The authors acknowledge financial support from a Cancer Research UK-Oregon
Health and Science University Spark Award — Early Detection Scheme (application
title: Delineating early transformational events in HER2 positive breast cancer;
application reference: C50210/A27068), awarded to G.F. The authors also
acknowledge financial support from a Leverhulme Trust postgraduate grant,
awarded to A.H., E.P.C. and R.P.G. were supported by Cancer Research UK
(A27781). Open Access funding provided by Queen Mary University of London.
Deposited in PMC for immediate release.

Data availability

The original contributions presented in the study are included in the article and its
supplementary information. The ATAC-seq datasets can be accessed through the
genetics data repository Gene Expression Omnibus (GEO) using accession
GSE205386. The mass spectrometry phosphoproteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE Project accession
PXD034105.

First Person
This article has an associated First Person interview with the first author of the paper.

References

Alajati, A., Sausgruber, N., Aceto, N., Duss, S., Sarret, S., Voshol, H.,
Bonenfant, D. and Bentires-Alj, M. (2013). Mammary tumor formation and
metastasis evoked by a HER2 splice variant. Cancer Res. 73, 5320-5327. doi:10.
1158/0008-5472.CAN-12-3186

Bandela, M., Belvitch, P., Garcia, J. G. N. and Dudek, S. M. (2022). Cortactin in
lung cell function and disease. Int. J. Mol. Sci. 23, 4606. doi: 10.3390/
ijms23094606.

Barker, C. G., Petsalaki, E., Giudice, G., Sero, J., Ekpenyong, E. N., Bakal, C.
and Petsalaki, E. (2022). Identification of phenotype-specific networks from
paired gene expression-cell shape imaging data. Genome Res. 32, 750-765.
doi:10.1101/gr.276059.121

Baron, U., Freundlieb, S., Gossen, M. and Bujard, H. (1995). Co-regulation of two
gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23,
3605-3606. doi:10.1093/nar/23.17.3605

Bellovin, D. I, Das, B. and Felsher, D. W. (2013). Tumor dormancy, oncogene
addiction, cellular senescence, and self-renewal programs. Adv. Exp. Med. Biol.
734, 91-107. doi:10.1007/978-1-4614-1445-2_6

Buenrostro, J. D., Wu, B., Chang, H. Y. and Greenleaf, W. J. (2015). ATAC-seq: a
method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol.
109, 21.29.1-21.29.9. doi:10.1002/0471142727.mb2129s109

Calo, E., Flynn, R. A, Martin, L., Spitale, R. C., Chang, H. Y. and Wysocka, J.
(2015). RNA helicase DDX21 coordinates transcription and ribosomal RNA
processing. Nature 518, 249-253. doi:10.1038/nature 13923

Canzoneri, R., Naipauer, J., Stedile, M., Rodriguez Pefa, A., Lacunza, E.,
Gandini, N. A., Curino, A. C., Facchinetti, M. M., Coso, O. A., Kordon, E. et al.
(2020). Identification of an AP1-ZFP36 regulatory network associated with breast
cancer prognosis. J. Mammary Gland Biol. Neoplasia 25, 163-172. doi:10.1007/
$10911-020-09448-1

Carrier, M., Joint, M., Lutzing, R., Page, A. and Rochette-Egly, C. (2016).
Phosphoproteome and transcriptome of RA-responsive and RA-resistant breast
cancer cell lines. PLoS One 11, e0157290. doi:10.1371/journal.pone.0157290

Carter, E. P., Gopsill, J. A., Gomm, J. J., Jones, J. L. and Grose, R. P. (2017). A
3D in vitro model of the human breast duct: a method to unravel myoepithelial-
luminal interactions in the progression of breast cancer. Breast Cancer Res. 19,
50. doi:10.1186/s13058-017-0843-4

Casado, P. and Cutillas, P. R. (2011). A self-validating quantitative mass
spectrometry method for assessing the accuracy of high-content
phosphoproteomic experiments. Mol. Cell. Proteomics 10, M110.003079.
doi:10.1074/mcp.M110.003079

Casado, P., Rodriguez-Prados, J.-C., Cosulich, S. C., Guichard, S.,
Vanhaesebroeck, B., Joel, S. and Cutillas, P. R. (2013). Kinase-substrate
enrichment analysis provides insights into the heterogeneity of signaling pathway
activation in leukemia cells. Sci. Signal. 6, rs6. doi:10.1126/scisignal.2003573

Ciccarelli, F. D. and Degregori, J. (2020). Approaching cancer evolution from
different angles. iScience 23, 101661. doi:10.1016/j.isci.2020.101661

Clayton, A. L. and Mahadevan, L. C. (2003). MAP kinase-mediated
phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett.
546, 51-58. doi:10.1016/S0014-5793(03)00451-4

Cutillas, P. R. and Vanhaesebroeck, B. (2007). Quantitative profile of five murine
core proteomes using label-free functional proteomics. Mol. Cell. Proteomics 6,
1560-1573. doi:10.1074/mcp.M700037-MCP200

Denny, S. K., Yang, D., Chuang, C.-H., Brady, J. J., Lim, J. S., Griiner, B. M.,
Chiou, S.-H., Schep, A. N., Baral, J., Hamard, C. et al. (2016). Nfib promotes
metastasis through a widespread increase in chromatin accessibility. Cell 166,
328-342. doi:10.1016/j.cell.2016.05.052

Detry, C., Lamour, V., Castronovo, V. and Bellahcéne, A. (2008). CREB-1 and
AP-1 transcription factors JunD and Fra-2 regulate bone sialoprotein gene
expression in human breast cancer cells. Bone 42, 422-431. doi:10.1016/j.bone.
2007.10.016

Fan, C. C., Cheng, W.-C., Huang, Y.-C., Sher, Y.-P., Liou, N.-J., Chien, Y.-C., Lin,
P.-S., Lin, P.-S., Chen, C.-H., Chang, W.-C. et al. (2017). EFHD2 promotes
epithelial-to-mesenchymal transition and correlates with postsurgical recurrence
of stage | lung adenocarcinoma. Sci. Rep. 7, 14617. doi:10.1038/s41598-017-
15186-y

Fang, C., Zhang, J., Yang, H., Peng, L., Wang, K., Wang, Y., Zhao, X, Liu, H.,
Dou, C., Shi, L. et al. (2019). Leucine aminopeptidase 3 promotes migration and
invasion of breast cancer cells through upregulation of fascin and matrix
metalloproteinases-2/9 expression. J. Cell. Biochem. 120, 3611-3620. doi:10.
1002/jcb.27638

Fisler, D. A., Sikaria, D., Yavorski, J. M., Tu, Y. N. and Blanck, G. (2018).
Elucidating feed-forward apoptosis signatures in breast cancer datasets: higher
FOS expression associated with a better outcome. Oncol. Lett. 16, 2757-2763.
doi:10.3892/01.2018.8957

Gangadhara, S., Smith, C., Barrett-Lee, P. and Hiscox, S. (2016). 3D culture of
Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of
therapeutic response. BMC Cancer 16, 345. doi:10.1186/s12885-016-2377-z

Gilcrease, M. Z., Woodward, W. A., Nicolas, M. M., Corley, L. J., Fuller, G. N.,
Esteva, F. J., Tucker, S. L. and Buchholz, T. A. (2009). Even low-level HER2
expression may be associated with worse outcome in node-positive breast
cancer. Am. J. Surg. Pathol. 33, 759-767. doi:10.1097/PAS.0b013e31819437f9

Grundt, K., Haga, I. V., Aleporou-Marinou, V., Drosos, Y., Wanvik, B. and
@stvold, A. C. (2004). Characterisation of the NUCKS gene on human
chromosome 1g32.1 and the presence of a homologous gene in different
species. Biochem. Biophys. Res. Commun. 323, 796-801. doi:10.1016/j.bbrc.
2004.08.153

Hanahan, D. and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation.
Cell 144, 646-674. doi:10.1016/j.cell.2011.02.013

Hardy, K., Wu, F.,, Tu, W,, Zafar, A., Boulding, T., Mccuaig, R., Sutton, C. R,,
Theodoratos, A. and Rao, S. (2016). Identification of chromatin accessibility
domains in human breast cancer stem cells. Nucleus 7, 50-67. doi:10.1080/
19491034.2016.1150392

Hartman, Z., Zhao, H. and Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself
by altering autophosphorylation patterns in a manner that overcomes regulatory
mechanisms and promotes proliferative and transformation signaling. Oncogene
32, 4169-4180. doi:10.1038/0onc.2012.418

Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., Cheng, J. X.,
Murre, C., Singh, H. and Glass, C. K. (2010). Simple combinations of lineage-
determining transcription factors prime cis-regulatory elements required for
macrophage and B cell identities. Mol. Cell 38, 576-589. doi:10.1016/j.molcel.
2010.05.004

Hibi, K., Mizukami, H., Saito, M., Kigawa, G., Nemoto, H. and Sanada, Y. (2012).
FBN2 methylation is detected in the serum of colorectal cancer patients with
hepatic metastasis. Anticancer Res. 32, 4371-4374.

Hong, S. H., Lee, W. J., Kim, Y. D., Kim, H., Jeon, Y.-J., Lim, B., Cho, D.-H.,
Heo, W. D., Yang, D.-H., Kim, C.-Y. et al. (2016). APIP, an ERBB3-binding
partner, stimulates erbB2-3 heterodimer formation to promote tumorigenesis.
Oncotarget 7, 21601-21617. doi:10.18632/oncotarget.7802

Huang Da, W., Sherman, B. T. and Lempicki, R. A. (2009). Systematic and
integrative analysis of large gene lists using DAVID bioinformatics resources. Nat.
Protoc. 4, 44-57. doi:10.1038/nprot.2008.211

Huang, L., Cai, J., Guo, H., Gu, J., Tong, Y., Qiu, B., Wang, C., Li, M., Xia, L.,
Zhang, J. et al. (2019). ID3 promotes stem cell features and predicts
chemotherapeutic response of intrahepatic Cholangiocarcinoma. Hepatology
69, 1995-2012. doi:10.1002/hep.30404

Hwang, Y. C., Lu, T.-Y., Huang, D.-Y., Kuo, Y.-S., Kao, C.-F., Yeh, N.-H., Wu, H.-C.
and Lin, C.-T. (2009). NOLC1, an enhancer of nasopharyngeal carcinoma
progression, is essential for TP53 to regulate MDM2 expression. Am. J. Pathol.
175, 342-354. doi:10.2353/ajpath.2009.080931

11

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



https://journals.biologists.com/dmm/article-lookup/DOI/10.1242/dmm.049894
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE205386
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD034105
https://doi.org/10.1242/dmm.050100
https://doi.org/10.1158/0008-5472.CAN-12-3186
https://doi.org/10.1158/0008-5472.CAN-12-3186
https://doi.org/10.1158/0008-5472.CAN-12-3186
https://doi.org/10.1158/0008-5472.CAN-12-3186
https://doi.org/10.3390/ijms23094606.
https://doi.org/10.3390/ijms23094606.
https://doi.org/10.3390/ijms23094606.
https://doi.org/10.1101/gr.276059.121
https://doi.org/10.1101/gr.276059.121
https://doi.org/10.1101/gr.276059.121
https://doi.org/10.1101/gr.276059.121
https://doi.org/10.1093/nar/23.17.3605
https://doi.org/10.1093/nar/23.17.3605
https://doi.org/10.1093/nar/23.17.3605
https://doi.org/10.1007/978-1-4614-1445-2_6
https://doi.org/10.1007/978-1-4614-1445-2_6
https://doi.org/10.1007/978-1-4614-1445-2_6
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1002/0471142727.mb2129s109
https://doi.org/10.1038/nature13923
https://doi.org/10.1038/nature13923
https://doi.org/10.1038/nature13923
https://doi.org/10.1007/s10911-020-09448-1
https://doi.org/10.1007/s10911-020-09448-1
https://doi.org/10.1007/s10911-020-09448-1
https://doi.org/10.1007/s10911-020-09448-1
https://doi.org/10.1007/s10911-020-09448-1
https://doi.org/10.1371/journal.pone.0157290
https://doi.org/10.1371/journal.pone.0157290
https://doi.org/10.1371/journal.pone.0157290
https://doi.org/10.1186/s13058-017-0843-4
https://doi.org/10.1186/s13058-017-0843-4
https://doi.org/10.1186/s13058-017-0843-4
https://doi.org/10.1186/s13058-017-0843-4
https://doi.org/10.1074/mcp.M110.003079
https://doi.org/10.1074/mcp.M110.003079
https://doi.org/10.1074/mcp.M110.003079
https://doi.org/10.1074/mcp.M110.003079
https://doi.org/10.1126/scisignal.2003573
https://doi.org/10.1126/scisignal.2003573
https://doi.org/10.1126/scisignal.2003573
https://doi.org/10.1126/scisignal.2003573
https://doi.org/10.1016/j.isci.2020.101661
https://doi.org/10.1016/j.isci.2020.101661
https://doi.org/10.1016/S0014-5793(03)00451-4
https://doi.org/10.1016/S0014-5793(03)00451-4
https://doi.org/10.1016/S0014-5793(03)00451-4
https://doi.org/10.1074/mcp.M700037-MCP200
https://doi.org/10.1074/mcp.M700037-MCP200
https://doi.org/10.1074/mcp.M700037-MCP200
https://doi.org/10.1016/j.cell.2016.05.052
https://doi.org/10.1016/j.cell.2016.05.052
https://doi.org/10.1016/j.cell.2016.05.052
https://doi.org/10.1016/j.cell.2016.05.052
https://doi.org/10.1016/j.bone.2007.10.016
https://doi.org/10.1016/j.bone.2007.10.016
https://doi.org/10.1016/j.bone.2007.10.016
https://doi.org/10.1016/j.bone.2007.10.016
https://doi.org/10.1038/s41598-017-15186-y
https://doi.org/10.1038/s41598-017-15186-y
https://doi.org/10.1038/s41598-017-15186-y
https://doi.org/10.1038/s41598-017-15186-y
https://doi.org/10.1038/s41598-017-15186-y
https://doi.org/10.1002/jcb.27638
https://doi.org/10.1002/jcb.27638
https://doi.org/10.1002/jcb.27638
https://doi.org/10.1002/jcb.27638
https://doi.org/10.1002/jcb.27638
https://doi.org/10.3892/ol.2018.8957
https://doi.org/10.3892/ol.2018.8957
https://doi.org/10.3892/ol.2018.8957
https://doi.org/10.3892/ol.2018.8957
https://doi.org/10.1186/s12885-016-2377-z
https://doi.org/10.1186/s12885-016-2377-z
https://doi.org/10.1186/s12885-016-2377-z
https://doi.org/10.1097/PAS.0b013e31819437f9
https://doi.org/10.1097/PAS.0b013e31819437f9
https://doi.org/10.1097/PAS.0b013e31819437f9
https://doi.org/10.1097/PAS.0b013e31819437f9
https://doi.org/10.1016/j.bbrc.2004.08.153
https://doi.org/10.1016/j.bbrc.2004.08.153
https://doi.org/10.1016/j.bbrc.2004.08.153
https://doi.org/10.1016/j.bbrc.2004.08.153
https://doi.org/10.1016/j.bbrc.2004.08.153
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1080/19491034.2016.1150392
https://doi.org/10.1080/19491034.2016.1150392
https://doi.org/10.1080/19491034.2016.1150392
https://doi.org/10.1080/19491034.2016.1150392
https://doi.org/10.1038/onc.2012.418
https://doi.org/10.1038/onc.2012.418
https://doi.org/10.1038/onc.2012.418
https://doi.org/10.1038/onc.2012.418
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.18632/oncotarget.7802
https://doi.org/10.18632/oncotarget.7802
https://doi.org/10.18632/oncotarget.7802
https://doi.org/10.18632/oncotarget.7802
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1002/hep.30404
https://doi.org/10.1002/hep.30404
https://doi.org/10.1002/hep.30404
https://doi.org/10.1002/hep.30404
https://doi.org/10.2353/ajpath.2009.080931
https://doi.org/10.2353/ajpath.2009.080931
https://doi.org/10.2353/ajpath.2009.080931
https://doi.org/10.2353/ajpath.2009.080931

RESEARCH ARTICLE

Disease Models & Mechanisms (2023) 16, dmm049894. doi:10.1242/dmm.049894

Imbalzano, K. M., Tatarkova, I., Imbalzano, A. N. and Nickerson, J. A. (2009).
Increasingly transformed MCF-10A cells have a progressively tumor-like
phenotype in three-dimensional basement membrane culture. Cancer Cell Int.
9, 7-7. doi:10.1186/1475-2867-9-7

Kelley, L. C., Hayes, K. E., Gatesman Ammer, A., Martin, K. H. and Weed, S. A.
(2011). Revisiting the ERK/Src cortactin switch. Commun. Integr. Biol. 4,205-207.
doi:10.4161/cib.4.2.14420

Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P. and
Jorgensen, T. J. D. (2005). Highly selective enrichment of phosphorylated
peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell.
Proteomics 4, 873-886. doi:10.1074/mcp.T500007-MCP200

Leitner, N. R., Lassnig, C., Rom, R., Heider, S., Bago-Horvath, Z., Eferl, R.,
Miiller, S., Kolbe, T., Kenner, L., Riilicke, T. et al. (2014). Inducible, dose-
adjustable and time-restricted reconstitution of Stat1 deficiency in vivo. PloS One
9, €86608. doi:10.1371/journal.pone.0086608

Liu, J., Wang, T., Willson, C. J., Janardhan, K. S., Wu, S.-P., Li, J.-L. and
Demayo, F. J. (2019). ERBB2 Regulates MED24 during cancer progression in
mice with Pten and Smad4 deletion in the pulmonary epithelium. Cells 8, 615.
doi:10.3390/cells8060615

Margaryan, N. V., Seftor, E. A., Seftor, R. E. B. and Hendrix, M. J. C. (2017).
Targeting the stem cell properties of adult breast cancer cells: using combinatorial
strategies to overcome drug resistance. Curr. Mol. Biol. Rep. 3, 159-164. doi:10.
1007/s40610-017-0067-5

Montoya, A., Beltran, L., Casado, P., RodriaGuez-Prados, J.-C. and
Cutillas, P. R. (2011). Characterization of a TiO(2) enrichment method for
label-free quantitative phosphoproteomics. Methods 54, 370-378. doi:10.1016/
j.ymeth.2011.02.004

Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. and Brugge, J. S. (2001).
ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in
epithelial acini. Nat. Cell Biol. 3, 785-792. doi:10.1038/ncb0901-785

Oliveras-Ferraros, C., Vazquez-Martin, A., Martin-Castillo, B., Cufi, S.,
Barco, S. D., Lopez-Bonet, E., Brunet, J. and Menendez, J. A. (2010).
Dynamic emergence of the mesenchymal CD44(pos)CD24(neg/low) phenotype
in HER2-gene amplified breast cancer cells with de novo resistance to
trastuzumab (Herceptin). Biochem. Biophys. Res. Commun. 397, 27-33. doi:10.
1016/j.bbrc.2010.05.041

Ortega-Cava, C. F., Bailey, T. A., Mohapatra, B., Ericsson, A. C., Dimri, M.,
Band, V., Band, H., Ortega-Cava, C. F., Laiq, Z., Luan, H. et al. (2011).
Continuous requirement of ErbB2 kinase activity for loss of cell polarity and lumen
formation in a novel ErbB2/Neu-driven murine cell line model of metastatic breast
cancer. J. Carcinog. 10, 29. doi:10.4103/1477-3163.90443

@stvold, A. C., Norum, J. H., Mathiesen, S., Wanvik, B., Sefland, I. and
Grundt, K. (2001). Molecular cloning of a mammalian nuclear phosphoprotein
NUCKS, which serves as a substrate for Cdk1 in vivo. Eur. J. Biochem. 268,
2430-2440. doi:10.1046/j.1432-1327.2001.02120.x

Park, B. W., Park, S., Koo, J. S., Kim, S. I, Park, J. M., Cho, J. H. and Park, H. S.
(2012). Homeodomain-interacting protein kinase 1 (HIPK1) expression in breast
cancer tissues. Jpn. J. Clin. Oncol. 42, 1138-1145. doi:10.1093/jjco/hys163

Parplys, A. C., Zhao, W., Sharma, N., Groesser, T., Liang, F., Maranon, D. G.,
Leung, S. G., Grundt, K., Dray, E., Idate, R. et al. (2015). NUCKS1 is a novel
RAD51AP1 paralog important for homologous recombination and genome
stability. Nucleic Acids Res. 43, 9817-9834. doi:10.1093/nar/gkv859

Paszek, M. J. and Weaver, V. M. (2004). The tension mounts: mechanics meets
morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9, 325-342.
doi:10.1007/s10911-004-1404-x

Pogna, E. A., Clayton, A. L. and Mahadevan, L. C. (2010). Signalling to chromatin
through post-translational modifications of HMGN. Biochim. Biophys. Acta 1799,
93-100. doi:10.1016/j.bbagrm.2009.11.018

Poli, V., Fagnocchi, L., Fasciani, A., Cherubini, A., Mazzoleni, S., Ferrillo, S.,
Miluzio, A., Gaudioso, G., Vaira, V., Turdo, A. et al. (2018). MYC-driven
epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem
cell-like state. Nat. Commun. 9, 1024. doi:10.1038/s41467-018-03264-2

Pradeep, C. R., Zeisel, A., Késtler, W. J., Lauriola, M., Jacob-Hirsch, J., Haibe-
Kains, B., Amariglio, N., Ben-Chetrit, N., Emde, A., Solomonov, I. et al. (2012).
Modeling invasive breast cancer: growth factors propel progression of HER2-
positive premalignant lesions. Oncogene 31, 3569-3583. doi:10.1038/onc.2011.
547

Pupa, S., Ligorio, F., Cancila, V., Franceschini, A., Tripodo, C., Vernieri, C. and
Castagnoli, L. (2021). HER2 signaling and breast cancer stem cells: the bridge
behind HER2-positive breast cancer aggressiveness and therapy refractoriness.
Cancers 13, 4778. doi:10.3390/cancers13194778

Qu, Y., Han,B., Yu, Y., Yao, W., Bose, S., Karlan, B. Y., Giuliano, A. E. and Cui, X.
(2015). Evaluation of MCF10A as a reliable model for normal human mammary
epithelial cells. PLoS One 10, e0131285. doi:10.1371/journal.pone.0131285

Rudin, C. M., Durinck, S., Stawiski, E. W., Poirier, J. T., Modrusan, Z., Shames,
D. S., Bergbower, E. A., Guan, Y., Shin, J., Guillory, J. et al. (2012).
Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene
in small-cell lung cancer. Nat. Genet. 44, 1111-1116. doi:10.1038/ng.2405

Sacco, F., Silvestri, A., Posca, D., Pirro, S., Gherardini, P. F., Castagnoli, L.,
Mann, M. and Cesareni, G. (2016). Deep proteomics of breast cancer cells
reveals that metformin rewires signaling networks away from a pro-growth state.
Cell Syst. 2, 159-171. doi:10.1016/j.cels.2016.02.005

Schreiber, S. L. and Bernstein, B. E. (2002). Signaling network model of
chromatin. Cell 111, 771-778. doi:10.1016/S0092-8674(02)01196-0

Seton-Rogers, S. E., Lu, Y., Hines, L. M., Koundinya, M., Labaer, J.,
Muthuswamy, S. K. and Brugge, J. S. (2004). Cooperation of the ErbB2
receptor and transforming growth factor beta in induction of migration and invasion
in mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 101, 1257-1262. doi:10.
1073/pnas.0308090100

Sever, R. and Brugge, J. S. (2015). Signal transduction in cancer. Cold Spring

_ Harb. Perspect. Med. 5, a006098. doi:10.1101/cshperspect.a006098

Simedkova, S., Kahounova, Z., Fedr, R., Rems$ik, J., Slabakova, E.,
Suchankova, T., Prochazkova, J., Bouchal, J., Kharaishvili, G., Kral, M.
etal. (2019). High Skp2 expression is associated with a mesenchymal phenotype
and increased tumorigenic potential of prostate cancer cells. Sci. Rep. 9, 5695.
doi:10.1038/s41598-019-42131-y

Stingl, J. (2009). Detection and analysis of mammary gland stem cells. J. Pathol.
217, 229-241. doi:10.1002/path.2457

Thurman, R. E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M. T., Haugen, E.,
Sheffield, N. C., Stergachis, A. B., Wang, H., Vernot, B. et al. (2012). The
accessible chromatin landscape of the human genome. Nature 489, 75-82.
doi:10.1038/nature 11232

Tirinato, L., Marafioti, M. G., Pagliari, F., Jansen, J., Aversa, l., Hanley, R.,
Nistico, C., Garcia-Calderdn, D., Genard, G., Guerreiro, J. F. et al. (2021). Lipid
droplets and ferritin heavy chain: a devilish liaison in human cancer cell
radioresistance. Elife 10, e72943. doi:10.7554/eLife.72943

Treisman, R. (1996). Regulation of transcription by MAP kinase cascades. Curr.
Opin. Cell Biol. 8, 205-215. doi:10.1016/S0955-0674(96)80067-6

Vendrell, J. A., Robertson, K. E., Ravel, P., Bray, S. E., Bajard, A., Purdie, C. A.,
Nguyen, C., Hadad, S. M., Bieche, I., Chabaud, S. et al. (2008). A candidate
molecular signature associated with tamoxifen failure in primary breast cancer.
Breast Cancer Res. 10, R88. doi:10.1186/bcr2158

Voss, T. C. and Hager, G. L. (2014). Dynamic regulation of transcriptional states by
chromatin and transcription factors. Nat. Rev. Genet. 15, 69-81. doi:10.1038/
nrg3623

Wainwright, E. N. and Scaffidi, P. (2017). Epigenetics and cancer stem cells:
unleashing, hijacking, and restricting cellular plasticity. Trends Cancer 3, 372-386.
doi:10.1016/j.trecan.2017.04.004

Walkiewicz, K. W., Girault, J. and Arold, S. T. (2015). How to awaken your
nanomachines: site-specific activation of focal adhesion kinases through ligand
interactions. Prog. Biophys. Mol. Biol. 119, 60-71. doi:10.1016/j.pbiomolbio.2015.
06.001

Wang, J. and Xu, B. (2019). Targeted therapeutic options and future perspectives
for HER2-positive breast cancer. Signal Transduct. Target. Ther. 4, 34-32. doi:10.
1038/s41392-019-0069-2

Wang, J., Xu, R., Yuan, H., Zhang, Y. and Cheng, S. (2019). Single-cell RNA
sequencing reveals novel gene expression signatures of trastuzumab treatment in
HER2+ breast cancer: a pilot study. Medicine 98, e15872. doi:10.1097/MD.
0000000000015872

Wolter, S., Doerrie, A., Weber, A., Schneider, H., Hoffmann, E., Von Der Ohe, J.,
Bakiri, L., Wagner, E. F., Resch, K., Kracht, M. et al. (2008). c-Jun controls
histone modifications, NF-kappaB recruitment, and RNA polymerase Il function to
activate the ccl2 gene. Mol. Cell. Biol. 28, 4407-4423. doi:10.1128/MCB.00535-07

Xiang, B. and Muthuswamy, S. K. (2006). Using three-dimensional acinar
structures for molecular and cell biological assays. Methods Enzymol. 406,
692-701. doi:10.1016/S0076-6879(06)06054-X

Zanin, R., Pegoraro, S., Ros, G., Ciani, Y., Piazza, S., Bossi, F., Bulla, R.,
Zennaro, C., Tonon, F., Lazarevic, D. et al. (2019). HMGA1 promotes breast
cancer angiogenesis supporting the stability, nuclear localization and
transcriptional activity of FOXM1. J. Exp. Clin. Cancer Res. 38, 313-318. doi:10.
1186/s13046-019-1307-8

Zhang, H., Pan, Y.-Z., Cheung, M., Cao, M., Yu, C., Chen, L., Zhan, L., He, Z.-W.
and Sun, C.-Y. (2019). LAMB3 mediates apoptotic, proliferative, invasive, and
metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling
pathway. Cell Death Dis. 10, 230. doi:10.1038/s41419-019-1320-z

Zhang, L., Liu, Z. and Zhu, J. (2021). In silico screening using bulk and single-
cell RNA-seq data identifies RIMS2 as a prognostic marker in basal-like
breast cancer: a retrospective study. Medicine 100, e25414. doi:10.1097/MD.
0000000000025414

12

(%]
S
oA
c
©
<
O
o)
=
3
A
0}
g,
o
=
o)
(%]
©
Q
oA
(@]



https://doi.org/10.1186/1475-2867-9-7
https://doi.org/10.1186/1475-2867-9-7
https://doi.org/10.1186/1475-2867-9-7
https://doi.org/10.1186/1475-2867-9-7
https://doi.org/10.4161/cib.4.2.14420
https://doi.org/10.4161/cib.4.2.14420
https://doi.org/10.4161/cib.4.2.14420
https://doi.org/10.1074/mcp.T500007-MCP200
https://doi.org/10.1074/mcp.T500007-MCP200
https://doi.org/10.1074/mcp.T500007-MCP200
https://doi.org/10.1074/mcp.T500007-MCP200
https://doi.org/10.1371/journal.pone.0086608
https://doi.org/10.1371/journal.pone.0086608
https://doi.org/10.1371/journal.pone.0086608
https://doi.org/10.1371/journal.pone.0086608
https://doi.org/10.3390/cells8060615
https://doi.org/10.3390/cells8060615
https://doi.org/10.3390/cells8060615
https://doi.org/10.3390/cells8060615
https://doi.org/10.1007/s40610-017-0067-5
https://doi.org/10.1007/s40610-017-0067-5
https://doi.org/10.1007/s40610-017-0067-5
https://doi.org/10.1007/s40610-017-0067-5
https://doi.org/10.1016/j.ymeth.2011.02.004
https://doi.org/10.1016/j.ymeth.2011.02.004
https://doi.org/10.1016/j.ymeth.2011.02.004
https://doi.org/10.1016/j.ymeth.2011.02.004
https://doi.org/10.1038/ncb0901-785
https://doi.org/10.1038/ncb0901-785
https://doi.org/10.1038/ncb0901-785
https://doi.org/10.1016/j.bbrc.2010.05.041
https://doi.org/10.1016/j.bbrc.2010.05.041
https://doi.org/10.1016/j.bbrc.2010.05.041
https://doi.org/10.1016/j.bbrc.2010.05.041
https://doi.org/10.1016/j.bbrc.2010.05.041
https://doi.org/10.1016/j.bbrc.2010.05.041
https://doi.org/10.4103/1477-3163.90443
https://doi.org/10.4103/1477-3163.90443
https://doi.org/10.4103/1477-3163.90443
https://doi.org/10.4103/1477-3163.90443
https://doi.org/10.4103/1477-3163.90443
https://doi.org/10.1046/j.1432-1327.2001.02120.x
https://doi.org/10.1046/j.1432-1327.2001.02120.x
https://doi.org/10.1046/j.1432-1327.2001.02120.x
https://doi.org/10.1046/j.1432-1327.2001.02120.x
https://doi.org/10.1093/jjco/hys163
https://doi.org/10.1093/jjco/hys163
https://doi.org/10.1093/jjco/hys163
https://doi.org/10.1093/nar/gkv859
https://doi.org/10.1093/nar/gkv859
https://doi.org/10.1093/nar/gkv859
https://doi.org/10.1093/nar/gkv859
https://doi.org/10.1007/s10911-004-1404-x
https://doi.org/10.1007/s10911-004-1404-x
https://doi.org/10.1007/s10911-004-1404-x
https://doi.org/10.1016/j.bbagrm.2009.11.018
https://doi.org/10.1016/j.bbagrm.2009.11.018
https://doi.org/10.1016/j.bbagrm.2009.11.018
https://doi.org/10.1038/s41467-018-03264-2
https://doi.org/10.1038/s41467-018-03264-2
https://doi.org/10.1038/s41467-018-03264-2
https://doi.org/10.1038/s41467-018-03264-2
https://doi.org/10.1038/onc.2011.547
https://doi.org/10.1038/onc.2011.547
https://doi.org/10.1038/onc.2011.547
https://doi.org/10.1038/onc.2011.547
https://doi.org/10.1038/onc.2011.547
https://doi.org/10.3390/cancers13194778
https://doi.org/10.3390/cancers13194778
https://doi.org/10.3390/cancers13194778
https://doi.org/10.3390/cancers13194778
https://doi.org/10.1371/journal.pone.0131285
https://doi.org/10.1371/journal.pone.0131285
https://doi.org/10.1371/journal.pone.0131285
https://doi.org/10.1038/ng.2405
https://doi.org/10.1038/ng.2405
https://doi.org/10.1038/ng.2405
https://doi.org/10.1038/ng.2405
https://doi.org/10.1016/j.cels.2016.02.005
https://doi.org/10.1016/j.cels.2016.02.005
https://doi.org/10.1016/j.cels.2016.02.005
https://doi.org/10.1016/j.cels.2016.02.005
https://doi.org/10.1016/S0092-8674(02)01196-0
https://doi.org/10.1016/S0092-8674(02)01196-0
https://doi.org/10.1073/pnas.0308090100
https://doi.org/10.1073/pnas.0308090100
https://doi.org/10.1073/pnas.0308090100
https://doi.org/10.1073/pnas.0308090100
https://doi.org/10.1073/pnas.0308090100
https://doi.org/10.1101/cshperspect.a006098
https://doi.org/10.1101/cshperspect.a006098
https://doi.org/10.1038/s41598-019-42131-y
https://doi.org/10.1038/s41598-019-42131-y
https://doi.org/10.1038/s41598-019-42131-y
https://doi.org/10.1038/s41598-019-42131-y
https://doi.org/10.1038/s41598-019-42131-y
https://doi.org/10.1002/path.2457
https://doi.org/10.1002/path.2457
https://doi.org/10.1038/nature11232
https://doi.org/10.1038/nature11232
https://doi.org/10.1038/nature11232
https://doi.org/10.1038/nature11232
https://doi.org/10.7554/eLife.72943
https://doi.org/10.7554/eLife.72943
https://doi.org/10.7554/eLife.72943
https://doi.org/10.7554/eLife.72943
https://doi.org/10.1016/S0955-0674(96)80067-6
https://doi.org/10.1016/S0955-0674(96)80067-6
https://doi.org/10.1186/bcr2158
https://doi.org/10.1186/bcr2158
https://doi.org/10.1186/bcr2158
https://doi.org/10.1186/bcr2158
https://doi.org/10.1038/nrg3623
https://doi.org/10.1038/nrg3623
https://doi.org/10.1038/nrg3623
https://doi.org/10.1016/j.trecan.2017.04.004
https://doi.org/10.1016/j.trecan.2017.04.004
https://doi.org/10.1016/j.trecan.2017.04.004
https://doi.org/10.1016/j.pbiomolbio.2015.06.001
https://doi.org/10.1016/j.pbiomolbio.2015.06.001
https://doi.org/10.1016/j.pbiomolbio.2015.06.001
https://doi.org/10.1016/j.pbiomolbio.2015.06.001
https://doi.org/10.1038/s41392-019-0069-2
https://doi.org/10.1038/s41392-019-0069-2
https://doi.org/10.1038/s41392-019-0069-2
https://doi.org/10.1097/MD.0000000000015872
https://doi.org/10.1097/MD.0000000000015872
https://doi.org/10.1097/MD.0000000000015872
https://doi.org/10.1097/MD.0000000000015872
https://doi.org/10.1128/MCB.00535-07
https://doi.org/10.1128/MCB.00535-07
https://doi.org/10.1128/MCB.00535-07
https://doi.org/10.1128/MCB.00535-07
https://doi.org/10.1016/S0076-6879(06)06054-X
https://doi.org/10.1016/S0076-6879(06)06054-X
https://doi.org/10.1016/S0076-6879(06)06054-X
https://doi.org/10.1186/s13046-019-1307-8
https://doi.org/10.1186/s13046-019-1307-8
https://doi.org/10.1186/s13046-019-1307-8
https://doi.org/10.1186/s13046-019-1307-8
https://doi.org/10.1186/s13046-019-1307-8
https://doi.org/10.1038/s41419-019-1320-z
https://doi.org/10.1038/s41419-019-1320-z
https://doi.org/10.1038/s41419-019-1320-z
https://doi.org/10.1038/s41419-019-1320-z
https://doi.org/10.1097/MD.0000000000025414
https://doi.org/10.1097/MD.0000000000025414
https://doi.org/10.1097/MD.0000000000025414
https://doi.org/10.1097/MD.0000000000025414

Disease Models & Mechanisms: doi:10.1242/dmm.049894: Supplementary information

>

Day O

(v o)

Day 3 Day 6 Day 9

g’ —
>
= 3
o =
i =
o =
= g
E
o g
=
< 5 @
o <
O o
s S
c ¢
s
& < < <
O (%) L) %)
kDa S ~ » & g N
sl -
37 GAPDH
Proteoglycans in cancer ]
MAPK signaling pathway — ———]
Chronic myeloid leukemia A ]
Acute myeloid leukemiaf—————13
Bladder cancer———1
Endometrial cancer_————————1]
Focal adhesion1———1]
mTOR signaling pathway ]
Cell cycle 1 ]
ErbB signaling pathway A ]
Spliceosome A ]
0 1 2 3 4
-log10 (Benjamini)
0 min 5 min 10 min 15 min
g IS IS g & S S S
kDa S S S S S S S
44—

374

i

. -

Principal Component #2 [23%)]

0.2 A

o
=1
1

s
[
L

04 -

® 9
1H oH

[ ]
:. TH asH4H®
H 1H
24H
®
1H
[ ] ®
H L] aH
') [ ] CF10AC™
48H 1H o CF10AHER?
® @oH
24H ™ L
L ]
dél-b [
4H

T
0.15 0.20 025

Principal Component #1 [59%]

B

-
T

-
o
I

v
1

o
c#q Gé?

D

ole = ¢ 7 - T

HER2 (T701) 'I'

I

Raw values (ppindex)

0

EGFR (Y1110)

. I
l%TTT;l

& A & & a0

TS EEEE

700
600
500
400
300

200

Phosphosites

100

0 -

0.5h 4h

Qd“gq
£ R & & &
e S A

X o 3 N A
& B A g ‘»Qp &h &'\
& ¥ ¥

7h

M Increased phosphorylation
Decreased phosphorylation

F

Peptide name
JUN(S73);JUND(5100);
POLR2A(Y1874);
POLR2A(T1880);
POLR2A(T1863);
ZNF281(S658);
NFATC1(5233);
NFKB2(T811);
MED19(5226);
SIRT1(S26);
NCOR1(S989)NCOR1(5990)
NCOR1(51322);
TNIK(S701);
MAP3K9(T915);
JUND(T245);
BRD4(S1117);
BCLAF1(T494);
SLTM(S1002);
TFEB(T330);
POU2F1(S267);
YAP1(R106);YAP1(S109);
GATAD2B(T489);
SOX13(5385);
GTF2I(T687);
ETV6(S203);
ELF4(S186);
SUPT6H(S1528);

GFP GFP GFP HER2HER2 HER2
0.5h 4h 7h 0.5h 4h 7h

--

C
S
)

©

&

-
qC_)
£

>

C

©
+

C

()

£
9

Q

Q

-]
(7p]

[ ]

n

€
o

(-

©
c

O

()
b
%]
i)

()
©

(@)
b

()]

n

©

Q

-

o



Disease Models & Mechanisms: doi:10.1242/dmm.049894: Supplementary information

Fig. S1. HER2 expression is necessary and sufficient for transformational ability and
signalling in vitro.

(A) MCF10AHER2 and control cells were cultured in 3D cell culture over 9 days. Control cells

formed spherical acini which increased in size over time. MCF10AHER?2 cells formed flat
projecting cells of complex masses, typical of transformed cells. Images captured by
confocal, LSM 510 microscope. Scare bars represent 100um. N=3.

8) An internal quality control (QC) for phosphoproteomic analysis. HER2 phosphorylation
modification (T701) increases in atime dependent manner. EGFR [HER1] (Y1110), a
family member of HERZ2, also becomes marginally activated in a time dependent manner
compared to control cells. [* FDR corrected p-value of < 0.05].

(c) Western blot analysis of HER2 protein in a time-dependent manner in the early time-
points upon induction with the same concentration of doxycycline (1ug/ml) from Oh
to 7.5h.

(o) Bar graph depicting the number of detected phosphosites increasing or decreasing in
phosphorylation in the phosphoproteomic analysis at the time-points analysed. Significance
is shown to log2fold change > 0.5, FDR corrected p-value of < 0.05. This graph shows
analysis performed using lower statistical threshold compared to figure 2B.

(e) Signalling pathway analysis of the early immediate changes in transformation. Signalling
pathway analysis using the DAVID KEGG PATHWAY tool of the differentially
phosphorylated events at all time points investigated upon HER?2 protein induction is
shown. To detect ERK activation MCF10ACTRL and MCF10AHER?2 cells were gown in
serum starved cell media for 24 hours and then stimulated with full media for the indicated
time points or left in the serum starved media as a negative control. Detection of phospho-
ERK (Thr202/Tyr204) is shown. After stripping, the same membrane was blotted for total-
ERK (ERK 1/2) and GAPDH was used a loading control. N=2.

(F) ldentification of transcription factors and chromatin regulators. A list of transcription factors
and chromatin regulators becoming differentially phosphorylated upon HER2 expression
in at least one time-point that are not significantly changing in GFP-transduced MCF10A
cells. [* FDR corrected p-value of < 0.05, **FDR corrected p-value of < 0.001, *** FDR
corrected p-value of < 0.001].

(6) Principal component analysis (PCA) of all samples used in this study. Samples are colour-coded

by cell type.
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Fig. S2. Early HER2 expression drives a dramatic increase in chromatin accessibility
compared to normal cells.

(A)

(B)

(€

(D)

(E)

(F)

Differential accessibility (log2 fold change in reads per accessible region) between

MCF10AHERZ and control cells, plotted against the mean reads per region. Cells were grown
in 3D cell culture from 0-48 hours and ATAC-seq performed on their acini. “Early” time-points
represents Oh, 1h, 4h, and 7h data combined. “Late” time point represents 24h and 48h time-
points combined. Each dot represents a region, with the blue dots representing a log2fold
change of at least 0.5.

Proteins that become phosphorylated consistently in at least 2 out of the 3 different time-points
analysed.

Enrichment of transcription factor recognition sequences in differential ATAC-seq peaks
comparing MCF10AHER2 and control cells based on HOMER analysis using the accessible
(up) peaks.

GREAT database analysis showing the number/percentage of genes associated per region

of the common regions found between the early up and late up peaks in the ATAC-seq

data .

Absolute distance to closest transcription start sites (TSSs) of the common differentially
accessible regions in the early up and late up peaks.

Single cell expression of MCF10A cells in UMAP. Cells are colour coded according to the time-

points indicated.
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(A)

(B)
(€

(D)

(E)

(F)

(G)

Fig. S3. Identification of novel genes associated with breast cancer.

UMAP plot showing clustering based on different time points. UMAP plot displaying clusters

of genes with similar features. UMAP plot showing a range of HER2 gene expression.

Bar graph showing Seurat clustering which defines clustering via differential gene expression.
Violin plot shows HER2 levels increase in a time-dependent manner with HER2 expression.
Single cell RNA sequencing was performed on MCF10A cells with HER2 induction from 0 to
72 hours (3 days). Line graph shows R values as a measure of linear relationship between
HER2 expression increase (with time) and some genes of interest that either increase in
expression or decrease in with HER2 expression.

Cells were analysed by flow cytometry and HER2 positive cells were separated into three
subpopulations of low, medium, and high HER2 overexpression as indicated. The enrichment
of stem markers is shown as a proportion of the total number of cells exhibiting MUC1 —ve,
EpCAM —ve and CD24 -ve phenotype.

HER2 expression between low, medium, and high HER2 expressing cells was compared with
two primary human samples (IHC 3+ and IHC 2+). GAPDH was used a loading control. Panel
1 has an exposure time; 35 seconds. Panel 2 has an exposure time of 60 seconds. N=1.
Western blot of the indicated proteins known to have higher expression in cells that have
undergone OIS. Protein lysates were prepared from cells sorted based on HER2 expression.
HER2 was induced in cells for 3 days (MCF10AHER2) and then FACS separated based on
HER2 expression into three different subtypes (low, medium, and high HER2 expressing

cells). GAPDH and Tubulin were used as loading controls. N=3.
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Supplementary Figure 4
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Fig. S4. Analysis pipeline of how HER2 levels were associated with breast stemness by FACS. Cells
were analysed by flow cytometry and HER2 positive cells were separated into three subpopulations of low,
medium, and high HER2 overexpression as indicated. The enrichment of stem markers is shown as a
proportion of the total number of cells exhibiting MUC1 -ve and EpCAM -ve and CD24 -ve phenotype. The
blue arrows indicate step-by-step analysis of the HER2 subpopulations, and the respective enrichment of

breast stem markers in each subtype.

Dataset 1. Phosphoproteomic analysis of HER2 signalling.
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