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Abstract. We employ a stochastic dominance (SD) approach to analyze the components that 

contribute to environmental degradation over time. The variables include countries’ greenhouse 

gas (GHG) emissions and water pollution. Our approach is based on pair-wise SD tests. First, we 

study the dynamic progress of each separate variable over time, from 1990 to 2005, within 5-

year horizons. Then, pair-wise SD tests are used to study the major industry contributors to the 

overall GHG emissions and water pollution at any given time, to uncover the industry which 

contributes the most to total emissions and water pollution. While CO2 emissions increased in 

the first-order SD sense over 15 years, water pollution increased in a second-order SD sense. 

Electricity and heat production were the major contributors to the CO2 emissions, while the food 

industry gradually became the major water polluting industry over time. 
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 1. Introduction 

There are various indicators and assessment methodologies for evaluating in practice the 

performance of industries, cities and countries, at global, national and regional level, related to 

economic and environmental sustainability (see e.g. Singh et al. (2012), providing a recent 

overview of a great number of indicators that are already common practice for policy-making; 

Blanchet and Fleurbaey (2013), which favor a dimension by dimension dashboard approach; 

Xepapadeas and Vouvaki, 2008, Agliardi, 2011, Pinar et al., 2014, Agliardi et al., 2015, for 

detailed discussions of environmental sustainability). In this paper we propose a novel 

methodology which allows us to assess temporal trends and industry contributions to air and 

water pollution and to identify the cases where externalities affect the overall pollution. Our 

methodology is sufficiently general and data-driven, so it can be employed to alternative units 

and at different levels. 

 We examine air and water pollution that have been extensively analyzed through their 

linkages to economic development (Dasgupta, 2000; Persson et al., 2006; Tamazian et al., 2009; 

Ordás Criado et al. 2011; Sivakumar and Christakos, 2011; Xepapadeas, 2011; Li et al., 2014; 

Paruolo et al., 2015). Air pollution is a major concern for various environmental policies and is 

perceived as one of the biggest threats to human health and global warming. CO2 emissions, and 

also other greenhouse gases (GHG), affect air quality and have been identified as prime 

contributors. At the same time, water pollution is another major aspect of environmental 

degradation. Some preliminary information about these forms of environmental degradation can 

be obtained by pollution flow accounts. They track the generation of pollution by each industry 

and final demand sector. They also give data about the changes of pollution over time, to monitor 

the interaction between the environment and the economy and the progress toward meeting 



environmental protection goals.  

In this paper we employ a stochastic dominance (SD) approach, which is a pretty general 

method allowing us to have a full picture of the environmental degradation over time and the 

major industry contributions to each polluting factor. It relies on pair-wise SD tests.  Pair-wise 

SD tests are based on comparisons of cumulative distribution functions (CDFs), providing robust 

orderings in terms of welfare levels (e.g., Davidson and Duclos, 2000; Barrett and Donald, 2003; 

Anderson, 2004).  Stochastic orderings are defined on classes of probability distributions and 

represent intuitively, in case of welfare improvements, why one population’s welfare is increased 

more than another, irrespective of the poverty lines (Davidson and Duclos, 2000) or for all 

income levels (Anderson, 2004). Pair-wise SD comparisons among populations allow one to 

ascertain whether there is an improvement, say, in the income levels of a given population over 

another one, for all income groups (i.e., in all parts of the income distribution). For example, 

pair-wise SD is used to assess whether social programs and tax reforms improve social welfare, 

by analyzing the empirical distribution of income levels after and before tax reforms (see e.g., 

Duclos et al., 2005 and 2008). In this respect, one evaluates the income distribution across the 

population before and after tax reforms by looking at its CDFs (and integral of CDFs), and if the 

income distribution after tax reforms dominates the income distribution before tax reforms, then 

one could suggest that there is always a higher proportion of population with higher income 

levels in all parts of the income distribution. More recently, pair-wise SD tests have been used to 

compare male and female earnings in a competitive environment to ascertain whether one group 

has higher earnings at all earnings levels (Ors et al., 2013). Hence, SD tests compare the entire 

probability density function, rather than a finite number of moments, so SD approach can be 

considered less restrictive and more robust in comparisons across populations.   



Although pair-wise SD comparisons are used extensively in well-being and poverty (see, 

e.g., Davidson and Duclos, 2000; Pinar et al., 2013), to our knowledge, only Makdissi and 

Wodon (2004) apply SD analysis to compare CO2 emissions between 1985 and 1998, and find 

that there has been first-order dominance up to a level, however not for all levels of CO2 

emissions. Furthermore, they find that there has been an overall increase in emissions over a 13-

year period. In this paper, we extend the SD applications, both at first-order and second-order, to 

different types of emissions, water pollution and different polluting industries. 

Our methodology is particularly well-suited to answer questions like these: Given that 

GHG emissions or water pollution not only vary over time but also across industries, is there a 

general increase (decrease) in GHG emissions or water pollution over time? If so, which industry 

has been the major contributor to those increases (decreases) in GHG emissions or water 

pollution? One could argue that an increase (or decrease) in GHG emissions over-time could be 

directly ascertained by counting the average GHG emissions. However, as discussed above, SD 

is more informative, considering the entire CDF rather than the average only. Indeed, this 

increase (or decrease) might be driven by a relatively larger increase (or decrease) of emissions 

of some countries (yielding a reallocation of emissions from central masses towards the tails of 

the distribution). For the purpose of distinguishing whether the changes have to be attributed to 

individual units (countries, industries, etc.) or there has been an overall change affecting all units, 

we adopt first-order and second-order SD. First-order SD (SD1 hereafter) would reveal 

information whether there has been a point-wise deterioration (improvement) over time. In this 

respect, SD1 analyzes the marginal CDFs of the environmental degradation at all levels of GHG 

emissions (or water pollution) and suggests whether there has been a proportional increase 

(decrease) in environmental degradation in all parts of the distribution, or not. For example, if 



emissions from industry A first-order dominate the emissions from industry B, this would 

suggest that there are always higher emission levels in industry A compared to B at all levels of 

emissions (i.e., the proportion of countries that emit above a given emission level is always 

higher in industry A than B). In other words, the higher emissions in one industry are not driven 

by some specific countries, but they are higher at all emission levels (or, alternatively, the 

probability of having higher emissions above a given level in industry A is higher than in B, at 

all levels of emissions). Similarly, SD1 over time would suggest that there is always a higher 

proportion of countries that emit more above a given level over time. On the other hand, second-

order SD (SD2 hereafter) would suggest that there is no point-wise deterioration (improvement), 

but an overall deterioration (improvement) over-time. In fact, SD2 does not analyze the CDFs, 

but the integrals of the CDFs (i.e., sum of environmental degradation up to a level of 

environmental degradation). In this case, there might not be a higher proportion of countries that 

emit more above a given level over time, but a higher sum of the emissions above a given level 

by emitters over time. In other words, some countries’ pollution levels might decrease and some 

others might increase over time, but if the sum of the pollution above a given level is higher over 

time, this would suggest that there has been an overall increase in air and/or water pollution for 

all given levels, even though not all countries experienced an increase in their pollution levels.  

SD2 is particularly important when analyzing the possible negative externalities and free-

riding issues in water pollution and overall GHG emissions. Negative externalities are defined as 

the social costs of the market activity (e.g., consumption and production) not covered by the 

private cost of the activity (e.g., Dahlman, 1979). Producers make decisions based on the direct 

cost of production and revenues, but do not take into account the social costs of pollution (see 

Baumol, 1972 for detailed discussion), such as acid precipitation and global warming (Arrow et 



al., 2004; Rezai et al., 2012). Tol (2009) suggests that low-income countries, which contribute 

the least to climate change because of their low production and consumption levels, are most 

vulnerable to its effects, as their adaptation to climate change is limited, due to the shortcomings 

in resources and institutions (e.g., Smit and Wandel, 2006). Thus, even though the gains from 

economic activities linked with emissions are private, the costs associated with emissions are 

global. Therefore, it is not straightforward to identify which countries are responsible for the 

negative externalities of environmental degradation. In particular, CO2 emissions have been 

mainly flowing to other partner countries through international trade (Peters and Hertwich, 

2008). For example, China’s CO2 emissions have been increasing over time due to its exports to 

other countries (Yunfeng and Laike, 2010). Similarly, Dominguez-Faus et al. (2009) point out 

that water pollution increased over time due to major transportation biofuel needs across 

countries. Bernauer and Kuhn (2010) examine water pollution within Europe and analyze 

whether democracies that trade and are bound by international treaties are less likely to harm one 

another environmentally. They find that free-riding incentives are in place. Free-riding occurs 

when some users of the public good use these services without paying for them (see e.g., Gans et 

al., 2012). In this case, free-riding occurs when the cost of water pollution is not paid by some 

countries, even though they are responsible for it. Sigman (2002) found that free riding may 

substantially increase pollution in international rivers, whereas there is less free riding within the 

European Union, suggesting that international institutions might work as mitigating factors (see 

Sullivan, 2011 which provides a multivariate model that assesses water vulnerability).  

When there is no straightforward identification of contributors to water pollution and/or 

GHG emissions, we can employ SD2 to account for aggregate global contribution. Some 

countries’ direct contribution to the environmental degradation might decrease over time (e.g., 



due to lower production), yet their indirect contribution to the aggregate level of environmental 

degradation might increase due to their consumption, as their imports would lead to higher levels 

of GHG emissions in their trading partners. In this case, even though one cannot find an absolute 

increase in environmental degradation for all countries at all levels, one can evaluate the 

aggregate environmental degradation levels at different levels (i.e., sum of environmental 

degradation levels up to a given level) through SD2.  

Here we implement two complementary SD approaches. Firstly, we employ consistent 

SD tests from Barrett and Donald (2003) to examine the dynamic progress of each separate GHG 

emissions (i.e., CO2, methane, nitrous and other greenhouse gas emissions) and water pollution 

over time from 1990 to 2005 within 5-year horizons. In other words, we examine whether there 

has been a general deterioration or improvement in each component. In that regard we will be 

able to obtain information on those environmental quality dimensions that are fast-moving (i.e., 

fast deteriorating or fast improving dimensions) or slow-moving (i.e., dimensions that remain at 

steady levels) for all countries over the period we analyze. Secondly, pair-wise SD tests allow us 

to examine the major industry contributors to the GHG emissions and water pollution at any 

given time. In order words, at a given time, we compare each industry contribution to GHG 

emissions and water pollution with all possible other industries to uncover the industry which 

contributes the most to total emissions and water pollution. The use of statistical tests allows us 

to obtain the level of statistical significance of environmental degradation (or improvement) over 

time.  

Therefore, SD analysis provides a robust comparison of environmental degradation over 

time and industries, disentangles the effects of externalities, and determines the statistical 

significance level for such degradation. As such, it can be a useful guideline for the direction of 



environmental protection and public policy intervention. Fast-moving variables (in the 

components of GHG emissions and water pollution) provide an indication for pollution 

prevention, calling for the redesign of industrial processes and new technologies to reduce 

pollution. At the same time, they offer directions for policy instruments in the form of official 

restrictions and positive incentives designed to control activities that may be harmful to the 

quality of the environment. 

This paper is organized as follows. Section 2 compares the SD method with other 

methods employed in the literature to evaluate spatio-temporal trends. Section 3 describes the 

methods and data and Section 4 discusses our results. Finally, Section 5 contains the main 

conclusions. 

 

2. Comparison between Bayesian approaches and SD 

 

In his section we discuss the advantages of the SD method over alternative Bayesian 

approaches which have been employed to extract the spatio-temporal trends. Bayesian 

approaches have been employed to analyze different types of risk assessments, such as health, 

environmental and burglary risks - by allowing different levels of space-time dependence (Besag 

et al., 1991; Waller et al., 1997; Wikle et al., 1998). Bayesian methods consider specific spatial 

effects, time effects, and an interaction of these two effects (with prior assumptions about their 

interaction) to analyze the evolution of risk over time and to estimate the posterior risk levels. In 

particular, Bayesian approaches have been employed to analyze the environmental risk (Wikle, 

2003), where the spatio-temporal dependence is present, such as increase in PM10 pollution 

(Cocchi et al. 2007), rural ozone levels in the Ohio state (Sahu et al., 2007), risk of earthquake 



(Natvig and Tvete, 2007), extreme precipitation (Sang and Gelfand, 2009) and extreme waves 

(Scotto and Guedes Soares, 2007; Vanem, 2011), among other fields. Bayesian approaches are  

helpful in identifying the posterior risk by taking into account the spatial dependence; 

however, not only they classify risk relatively (prior choice of extreme events or risk 

categorization), but also they seem not to be suitable to analyse the environmental risk when 

there is no clear spatial dependence. In fact, Bayesian methods allocate spatial dependence a 

priori, estimating risk differently if space units share a common border or not. However, when 

dealing with environmental degradation, externalities in GHG emissions have global effects. 

Hence, our view is that the SD approach can be a more suitable method than the Bayesian ones, 

when there is no clear-cut spatial dependence. Table 1 provides a comparison between BHM and 

SD approach, and gives details why SD approach is more suitable in analyzing the 

environmental degradation data than BHM.   

 

Table 1: Comparison between stochastic dominance (SD) and Bayesian hierarchical methods 

(BHM)  

Bayesian hierarchical methods (BHM) Stochastic dominance (SD) 

Takes into account the spatial dependence, 

but is not suitable when there is no clear 

spatial dependence   

Captures global dependence when a priori spatial 

dependence is not a reasonable assumption. SD is 

more suitable if environmental degradation has 

global consequences rather than spatial.  

Takes into account the time-dependence 

(see, e.g., Law et al., 2014a), but time-effect 

is usually driven by the first two moments 

(mean and standard deviation of risk) only. 

Takes into account the time-effect, but  analyses 

the empirical distribution of risk (i.e., all 

moments), and hence provides a more robust 

comparison over-time and across industries 

Provides posterior risk estimations; 

however, comparisons are usually relative 

to the distribution of risk in spatial units 

(see, e.g., Li et al., 2014; Law et al., 2014a 

and 2014b)  

 

Suitable to analyse both absolute and relative risk 

over-time and space.   

It is based on prior probabilistic 

assumptions on the dependent variable for 

posterior risk estimations (Vanem, 2011) 

It is nonparametric as it does not impose any 

restrictions on the functional forms of probability 

distributions.  



3. Methods and data  

3.1. Pair-wise SD tests  

 

Let us define SD pair-wise comparisons of a given variable over two points in time. In 

particular, we examine SD of the GHG emissions and water pollution in a 15-year and 10-year 

period, respectively (from 1990 to 2005 for GHG emissions, and from 1995 to 2005 for water 

pollution) and determine whether there has been a deterioration or improvement in each 

environmental quality indicator over time above a given pollution level. Additionally, SD pair-

wise tests are employed for the sub-industry comparisons for GHG emissions and water 

pollution. In other words, we find major contributing industries to emissions and water pollution 

at a given time, comparing the CDFs of the pollution levels of the various industries. If there is 

SD1, this would suggest that degradation in one industry is clearly higher than in another at all 

levels of pollution. If there is no SD1, then we move to SD2 and analyze whether the sum of the 

pollution levels above a given pollution level is relatively higher in one industry than in another 

one at all levels of pollution. In particular, we apply the consistent SD tests provided by Barrett 

and Donald (2003).   

   Let us consider the pair-wise SD tests for water pollution comparisons over time.  

Denote by Z1 and Z2 the water pollution levels from two samples of countries at either two 

different points in time or different sub-industries at a given time. Suppose that Z1 and Z2 have 

associated cumulative distribution functions (CDFs) given by F1 and F2 respectively. In this 

context, Z1 stochastically dominates Z2 at the first-order if )()( 21 zFzF  for all z level, where z is 

the environmental degradation level (e.g., water pollution level). When this occurs, the water 

pollution level in sample Z1 is at least as large as that in sample Z2, for any utility function U that 

is a decreasing monotonic function of z – i.e., 0)(  zU  since the higher  z (environmental 



degradation), the lower the utility. 

How do we interpret SD1 of  Z1 (e.g., water pollution levels of countries due to activities 

in industry A), over Z2 (e.g., water pollution levels of countries due to activities in industry B), 

i.e., )()( 21 zFzF  ? If the CDF of pollution levels due to activities in industry A is always below 

the CDF of pollution levels due to activities in industry B, then the proportion of countries that 

pollute due to activities in industry A is always greater than that of industry B at all levels of 

pollution, i.e., z. Therefore, industry A stochastically dominates industry B in the first-order 

sense (see Fig. 2 as an example of SD1). In this respect, there is a clear ordering of industries in 

terms of environmental risk they impose.   

If the CDF of pollution levels from one sample does not lie below the CDF of water 

pollution levels from the other sample at all  z levels (i.e., when the two CDF curves intersect), 

then there is no SD1 of one industry over another, and the ordering of industries in terms of 

environmental risk is ambiguous. This leads to an ambiguous situation which makes it necessary 

to test for SD2. SD2 of Z1 (water pollution levels due to activities in industry A) over Z2 (water 

pollution levels due to activities in industry B) corresponds to  dppFdppF
zz

)()( 2
0

1
0    for all z 

level, where p is the pollution level that takes values between 0 and z. It holds for any utility 

function U that is a monotonically decreasing and concave, that is, 0)(  zU  and 0)(  zU . The 

utility function is monotonically decreasing, as pollution reduces welfare, and concave, as it is 

expected that most policy makers would be averse to an increased dispersion of pollution. SD2 

of one sample over another is tested not by comparing the CDFs themselves, but comparing the 

integrals below them. If the area beneath the F1(z) distribution is less than the area beneath F2(z) 

at all levels of z, then F1(z) stochastically dominates F2(z) in the second-order. Thus,  the sum of 

the pollution by countries that pollute above z is always higher in industry A than in industry B. 



In other words, SD2 of industry A over industry B implies that even though the proportion of 

countries that emit above a given pollution level is not higher in one industry than in another one, 

the sum of pollution is always greater in industry A than in B at all degradation levels.  

We can also present the orders of SD using the integral operator, )(.; Fj , as a function 

of F defining  SD of order j-1. Thus:  

,);()(:);(

),(:);(

1
00

2

1

dpFpdppFFz

zFFz
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
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where );(1 Fz  is the CDF of the population Z and );(2 Fz  is the integral counterpart of the 

CDF of the population Z.  

The general hypotheses for testing SD1 of Z1 over Z2 (e.g., pollution levels over-time or 

pollution levels from different industries) with respective CDFs of F1(z) and F2(z) can be written 

as: 

)()(: 210 zFzFH   for all  zz ,0 ,  

)(>)(: 211 zFzFH  for some  zz ,0 , 

where the environmental degradation level, z, ranges between 0 and a finite upper level  

z . If one fails to reject the null hypothesis, then CDF , say in industry A, is always less than in 

industry B, that is,  the proportion of countries that pollute due to activities in industry A is 

always greater than the proportion in industry B at all levels of emission. If there is some 

degradation level z at which the dominance relation between two samples change (i.e., 

alternative hypothesis), then there is no clear ordering of samples compared (i.e., two CDF 

curves intersect at some degradation levels of z), and therefore this is no SD1 of one sample over 

another.  Similarly, we can write the general hypotheses for testing SD2 of Z1 over Z2. In this 

case the areas under the CDF curves of two samples are compared (see section 2 of Barrett and 



Donald, 2003 for asymptotic properties of the tests).  

Let us assume that 1

iZ  and 
2

jZ  are two samples with CDFs F1  and F2 respectively and 

the sample sizes might be different for each sample where i=1,2,...,N and j=1,2,...,M. The 

empirical counterparts of the distributions to construct tests are, respectively:  





N

i

i zZ
N

zF
1

1

1 ),(1
1

)(ˆ  



M

j

j zZ
M

zF
1

2

2 ),(1
1

)(ˆ   (1) 

where )(1 1 zZi  is an  indicator function taking value of 1 if pollution level of spatial unit is less 

than or equal to z , and zero otherwise (Davidson and Duclos, 2000). In other words, the 

empirical counterparts of the distributions calculate the proportion of spatial units in each sample 

that has a degradation level that is less than or equal to z.    

The test statistics for testing the hypotheses can be written compactly using the 

integration operator as follows: 

 )ˆ;()ˆ;(ˆ
21

2/1

sup FzFz
MN

NM
S jj

z

j  









     (2) 

for first-order (second-order) of SD when j=1 (j=2) where sup operator denotes supremum 

difference between CDFs (integrals of CDFs) of samples 1

iZ  and 
2

jZ  at a given degradation level 

of z, respectively.   

  We finally consider tests based on the decision rule: 

reject jH 0  if jc>ˆ
jS      (3) 

 

where jH0  is the null hypothesis for first-order (second-order) dominance of 1

iZ  over 
2

jZ  

when j=1 (j=2)  and jc  are suitably chosen critical values to be obtained by simulation methods.  



To make the result operational, one needs to find an appropriate critical value jc  that 

satisfies )c>( j

1F
jSP  or )c>( j

, 21 FF
jSP  (some desired probability level such as 0.05 or 

0.01). Since the distribution of the test statistic depends on the underlying distribution, we rely 

on bootstrap methods to simulate the p-values (see section 3 of Barrett and Donald, 2003 for the 

related bootstrapping to obtain test statistics for the hypotheses; SD tests are conducted with the 

use of GAUSS codes available on http://garrybarrett.com/research/).  

 

3.2. Data 

 

The dataset consists of different types of GHG emissions (CO2 emissions, methane 

emissions, nitrous oxide emissions, and other GHG emissions) and water pollution, and their 

sub-industry contributions for several countries in various years, between 1990 and 2005. 

Although some types of pollutants have annual data and for longer periods, to keep the analysis 

the same for all variables, we only consider the periods where we have information for all 

variables.  GHG emissions consist of total CO2, methane, nitrous oxide and other GHG 

emissions (i.e., perfluorocarbon, hydrofluorocarbon, and sulfur hexafluoride) at a given year for 

a given country and the latter three emission types are measured in terms of CO2 equivalent 

levels, which allow us to conduct pair-wise comparisons over time. Annual national estimates for 

the total fossil-fuel CO2 emissions and respective fossil-fuel CO2 emissions from solid (coal), 

liquid (oil) and gas (natural gas) consumption come from the Carbon Dioxide Information 

Analysis Center (CDIAC) of the U.S. Oak Ridge National Laboratory (see Boden et al., 2013). 

Data on carbon dioxide emissions by sector are from International Energy Agency (IEA) 

electronic files which are also reported in the World Bank’s World Development Indicators 

(World Bank, 2012). Methane, nitrous oxide and other GHG emissions and their sub-industry 

http://garrybarrett.com/research/


contributions are obtained from the the European Commission, Joint Research Centre 

(JRC)/Netherlands Environmental Assessment Agency (PBL). Emission Database for Global 

Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/. Finally, water pollution is 

measured by biochemical oxygen demand (BOD) which is the amount of oxygen that bacteria in 

water will consume in breaking down waste. These data are initially obtained with the 

methodology of Hettige et al. (2000) where end of pipe discharge of organic emissions are 

measured using different sector information, and updated by the World Bank's Development 

Research Group using the same methodology. All the data sets are categorized and taken from 

the World Bank’s World Development Indicators (World Bank, 2012). Appendix Table A 

provides the list of countries used in our analysis for water pollution, total CO2, methane, nitrous 

oxide and other GHG emissions. Sub-industry contributions to the water pollution and different 

type of emissions also cover the same countries listed under general categories. Appendix Table 

B offers the detailed variable definitions and sources, and provides electronic links to the data 

sources.     

 

4. Results and discussion 

4.1. SD comparisons in air pollution 

4.1.1. CO2 emissions 

 

First, we present our findings from the pair-wise SD1 and SD2 comparisons of CO2 

emissions from 1990 to 2005, based on the bootstrap methods from Barrett and Donald (2003), 

for total, sub-industry and sub-fuel CO2 emissions. We first perform consecutive tests, 

comparing total CO2 emissions, and then CO2 emissions from each individual sector (e.g., 

http://edgar.jrc.ec.europa.eu/


emissions from the electricity and heat production), for each pair of 5-year horizons between 

1990 and 2005. Furthermore, we also test CO2 emissions from different sub-fuel consumptions 

for each pair of 5-year horizons between 1990 and 2005. These consecutive tests allow us to 

analyze whether over time deteriorations (or improvements) have occurred in CO2 emissions 

and, additionally, which sector and/or sub-fuel consumption is mainly responsible for such 

deteriorations (or improvements). 

Table 2 suggests that there has been no clear SD1 and SD2 (i.e., no proportional increase 

or sum of aggregated environmental degradation at all risk levels) from 1990 to 2000 (i.e., SD1 

and SD2 are rejected in all cases). In other words, there has been an increase in some countries’ 

emissions and decrease in some others at some risk levels (i.e., CDF curves and their integrals 

for CO2 emissions from 1990 to 2010 intersect at some risk level).   However, there has been an 

increase in the total CO2 emissions from 1990 to 2005, since there is dominance at first-order at 

the 10% significant level. Therefore, there has been a clear degradation in CO2 emissions within 

15 years by all type of emitters. Clearly,  degradation here means that the proportion of countries 

that emits above a given emission level increased over the 15-year period of time at all emission 

levels, suggesting that distribution of CO2 emissions shifted to the right at all levels. In other 

words, CO2 emissions by low, medium and high emitters have increased significantly. On the 

other side, there has been no dominance in each sub-sector (i.e., electricity and heat production; 

manufacturing industries and construction; other sectors, excluding residential buildings and 

commercial and public services; residential buildings, commercial and public services; and the 

transport sector) over the whole period, suggesting that emissions in each sub-sector have been 

increasing for some countries, and have been decreasing for some others between 1990 and 

2005. We also performed the analysis for CO2 emissions from different sub-fuel consumptions 



(i.e., gaseous, solid and liquid fuel consumption). Given the space limitation, we do not present 

the tables, but results are available from the authors. 

 

 

 

 

 

 

We find that there has been an increase in the CO2 emissions from gaseous fuel 

consumption within a 15-year period (from 1990 to 2005) at all emission levels, since there is 

SD1 at the 5% significance level, suggesting that the emissions from gaseous fuel consumption 

increased for all type of emitters. Finally, we find no dominance over time from solid and liquid 

fuel consumption, suggesting that there is no corresponding decrease or increase in CO2 

emissions from solid and liquid fuel consumption throughout the distribution of emissions. 

Overall, there has been an increase in the total CO2 emissions from 1990 to 2005 at all 

degradation levels, which was mostly driven by a corresponding increase in CO2 emissions from 

the gaseous fuel consumption at all levels between the same periods.  

 Then, we study pair-wise SD comparisons by looking at CO2 emissions from different sub-

sectors in 1990, 1995, 2000 and 2005. Overall, electricity and heat production have been the 

most dominant sectors over the whole period for CO2 emissions, since emissions in these 

industries have always been dominating all other sectors at the first-order. In other words, for 

given CO2 emission level, there is always a higher proportion of countries that emits CO2 above 

this level due to electricity and heat production than the proportion from other industries. This 

Table 2. Pair-wise SD comparisons of total CO2 emissions over time.  

  1990 1995 2000 

1995 SD1 ND - - 

 SD2 ND - - 

2000 SD1 ND ND - 

 SD2 ND ND - 

2005 SD1 10% ND ND 

 SD2 10% ND ND 

Notes: The vertical columns represent the years 1995 to 2005 that are tested for SD 

against years from 1990 to 2000. Percentage levels represent the significance level of 

SD. ND suggests no dominance at that order. 



relationship holds at all CO2 emission levels suggesting that emissions from electricity and heat 

production have been higher for all type of emitters. The transport sector has been the second 

contributor to total CO2 emissions, since this sector significantly dominated all other sectors, 

except the electricity and heat production sector at the first-order. The contributions of other 

sectors to the CO2 emissions are: manufacturing industries and construction; residential buildings 

and commercial and public services; and other sectors, excluding residential buildings and 

commercial and public services respectively from the highest to the lowest contributor. The 

significance level of the dominance of each sector on the other has been different at different 

periods, showing a robust ranking of sectors. (Results are available upon request from the 

authors). 

Table 3. Pair-wise SD comparisons of  CO2 emissions from sub-fuel consumption 

a)Sub-fuel comparisons in 1990 

Industry comparisons Dominance Outcome SD1 SD2 

GAS versus LIQUID LIQUID dominates 1% 1% 

GAS versus SOLID SOLID dominates ND 10% 

LIQUID versus SOLID LIQUID dominates 1% 1% 

b)Sub-fuel comparisons in 1995 

Industry comparisons Dominance Outcome SD1 SD2 

GAS versus LIQUID LIQUID dominates 1% 1% 

GAS versus SOLID ND ND ND 

LIQUID versus SOLID LIQUID dominates 1% 1% 

c)Sub-fuel comparisons in 2000 

Industry comparisons Dominance Outcome SD1 SD2 

GAS versus LIQUID LIQUID dominates 1% 1% 

GAS versus SOLID ND ND ND 

LIQUID versus SOLID LIQUID dominates 1% 1% 

d)Sub-fuel comparisons in 2005 

Industry comparisons Dominance Outcome SD1 SD2 

GAS versus LIQUID LIQUID dominates 1% 1% 

GAS versus SOLID SOLID dominates ND 10% 

LIQUID versus SOLID LIQUID dominates 1% 1% 

Notes: Industry comparisons columns represent all possible sub-industry comparisons at a 

given year. Dominance Outcome column offers the dominating sub-fuel as a result of 

comparisons between different sub-fuels. SD1 and SD2 represent the significance levels for 

the first- and second-order dominance.  ND suggests no dominance at that order. 



Finally, a comparison among CO2 emissions from different types of fuel consumption 

from 1990 to 2005 (see Table 3) suggests that over the whole period the liquid fuel consumption 

has always been the major contributor to CO2 emissions since CO2 emissions from this type 

dominate the emissions from the gaseous and solid fuel consumption at first-order, at 1% 

significance level. On the other hand, CO2 emissions from the solid fuel consumption dominate 

the emissions from the gaseous fuel consumption at the second-order, at 10% significance level 

in 1990 and 2005, but the relationship between these two types of fuel consumption is 

ambiguous in 1995 and 2000.   

 

4.1.2. Methane emissions 

 

We then investigate the evolution of total methane emissions, methane emissions from 

agriculture and the energy sector, respectively, between 1990 and 2005. The findings suggest 

that there has been no general increase or decrease in total methane emissions over the whole 

period. Similarly, no general progress of methane emissions from different sub-sectors is found 

between the same periods. Fig. 1 presents the CDF of methane emissions for 1990, 1995, 2000 

and 2005. Clearly, the CDF curves of methane emissions for different years overlap at almost all 

emission levels and there is no clear dominance at any order. Fig. 2 depicts the CDFs of methane 

emissions released by countries due to the activities in agriculture and energy sectors in 2005. 

Since the CDF of the methane emissions released due to the activities in agriculture sector is 

always below the CDF of the methane emissions released due to the activities in the energy 

sector, this suggests a clear SD1 of the agriculture sector over the energy sector. In other words, 

there is always a higher proportion of countries that emit methane gasses to the atmosphere due 

to the activities taking place in the agriculture sector than in the energy sector at all emission 



levels. Since there is a clear ordering of industries that contribute to the methane gas emissions, 

one could suggest a global action plan to reduce methane emissions released by the agriculture 

sector. It is not that different countries emit higher levels of methane emissions in different 

sectors (hence country-specific actions are required), but agriculture sectors’ contribution is 

always higher than that of energy sector and therefore a global action targeting ways to eliminate 

methane emissions by agriculture sectors would be a more effective strategy.  

 

 

Fig. 1. Cumulative distribution functions of methane emissions in 1990, 1995, 2000 and 2005 

 

 

Fig. 2. Cumulative distribution functions of methane emissions from agriculture and energy sector for 2005 

 



 

We also conduct the pair-wise comparisons of methane emissions from the agriculture 

and the energy sectors in 1990, 1995, 2000 and 2005 (Results are available upon request from 

the authors). For the whole period, methane emissions from the agriculture sector have always 

been higher than from the energy sector. Methane emissions from agriculture dominate the 

energy sector at the first-order at 1% significance level. Thus, for any given methane emission 

level, there have been always more countries emitting above that level in the agriculture sector 

than the energy sector. Therefore, there has been a clear robust ranking of sectors (from the 

highest methane emitting sector to the lowest one) over the period 1990-2005.  

 

4.1.3. Nitrous oxide emissions 

 

We further analyze the progress of total nitrous oxide emissions, nitrous oxide emissions 

from the agriculture, the industrial and the energy sectors between 1990 and 2005 (Results are 

available from the authors). The findings suggest that there has been neither a general increase or 

decrease in total nitrous oxide emissions nor the nitrous oxide emissions from different sub-

sectors over time. This suggests that some countries’ nitrous oxide emission levels increased and 

some other countries’ emissions were decreased. Furthermore, increase in nitrous oxide emission 

levels for some countries was offset by the decrease in emissions by other countries (i.e., there 

was no second-order SD).  In other words, country-specific (or group of country-specific) 

policies will be more suitable to decrease the nitrous oxide emission levels as there is no clear 

increase in emissions for all type of emitters.   

Similarly to the analyses above, we employ the pair-wise comparisons between three sub-

sectors (i.e., agricultural, industrial and energy sectors) to find the major industry which releases 



the highest nitrous oxide emissions over time. For the whole period, nitrous oxide emissions 

from the agriculture sector has always been higher than the other two sectors, while nitrous oxide 

emissions from the energy sector have always been higher than the industrial sector for the 

whole period. Nitrous oxide emissions from agriculture dominate the energy and the industrial 

sectors at first-order at 1% significance level and, similarly, emissions from the energy sector 

dominate those of the industrial sector at first-order at a significance level of 1% over the whole 

period. In other words, for any given nitrous oxide emission level, there have been always more 

countries emitting above that level in agriculture sector than the energy and industrial sector. 

Overall, there has been a clear robust ranking of sectors (from the highest nitrous emitting sector 

to the lowest one) over the period 1990-2005.  

 

4.1.4. Other GHG emissions 

 

Although the other GHG emissions have always been contributing less to the total, we 

still conduct pair-wise SD comparisons for the other GHG emissions and its sub-components 

from 1990 to 2005. The four panels of Table 4 present the results for the evolution of the total 

other GHG emissions, perfluorocarbon (PFC), hydrofluorocarbon (HFC), and sulfur hexafluoride 

(SF6) emissions respectively between 1990 and 2005. HFC emissions are mostly due to use of 

refrigeration, air-conditioning, and insulating foam products (see e.g., Velders et al., 2009). PFC 

emissions are mainly due to aluminum production (see e.g., Marks et al., 2013), whereas SF6 

emissions are due to leakage and venting from the electricity sector, magnesium production, and 

other minor contributions (see e.g., Olivier et al., 2005). 

 

 



 

We conduct our analysis for each type of emission and find that there has been a general 

increase in the total GHG emissions in 5-year horizons between 1990 and 2000 suggesting that 

there is always a higher proportion of countries that emit above a given level in 2000 than in 

1990 for all emission levels, yet no clear indication was detected between 2000 and 2005 

suggesting that increase in other GHG emission by some countries was offset by a decrease in 

other GHG emissions by some other countries. On the other hand, HFC emissions have been 

increasing in 5-year horizons over the whole period as the later 5-year HFC emissions dominate 

the earlier ones at first-order at the 1% significance level supporting the fact that increased 

demand for refrigeration, air-conditioning, and insulating foam products (i.e., main contributors 

of the HFC emissions) and this has been the case for all type of emitters as there is always a 

higher proportion of countries that emit above a given HFC emission level in the following 

period than the previous one. On the other hand, we find no clear result for the SF6 emissions, 

since SD tests provide no dominance in the period as a whole. More interestingly, we find that 

Table 4. Pair-wise SD comparisons other GHG, HFC, PFC and SF6 emissions over time 

a)Total other GHG emissions  b)HFC emissions 

  1990 1995 2000    1990 1995 2000 

1995 SD1 1% - -  1995 SD1 1% - - 

 SD2 1% - -   SD2 1% - - 

2000 SD1 1% 5% -  2000 SD1 1% 1% - 

 SD2 1% 5% -   SD2 1% 1% - 

2005 SD1 1% 1% ND  2005 SD1 1% 1% 1% 

 SD2 1% 1% ND   SD2 1% 1% 1% 

c)PFC emissions  d)SF6 emissions 

  1995 2000 2005    1990 1995 2000 

1990 SD1 5% ND 1%  1995 SD1 ND - - 

 SD2 5% ND 1%   SD2 ND - - 

1995 SD1 - ND ND  2000 SD1 ND ND - 

 SD2 - ND ND   SD2 ND ND - 

2000 SD1 - - ND  2005 SD1 ND ND ND 

 SD2 - - ND   SD2 ND ND ND 

Notes: The vertical columns represent the years 1995 to 2005 that are tested for SD against years 

from 1990 to 2000. Percentage levels give the significance level of SD.  The vertical and horizontal 

axes are reversed for PFC emissions to represent the improvement over time. ND suggests no 

dominance at that order. 



there has been a general decrease of the PFC emissions from 1990 to 1995 and from 1990 to 

2005. In other words, PFC emissions in 1990 dominate the PFC emissions in 1995 and 2005 at 

first-order at the 5% and 1% significance levels respectively. For PFC emissions, years on the 

vertical axis are tested against the horizontal but the years 1990 to 2000 are tested against the 

years 1995 and 2005 respectively. Since there has been a proportional decrease in PFC emissions 

at all emission levels over time, the testing horizon is reversed. Hence, for any given PFC 

emission level, there have been always more countries emitting above that level in 1990 when 

compared with 1995 and 2005. This confirms that there have been good adaptation strategies 

across the globe in reducing PFC emissions over time. 

 

4.1.5. Comparison among GHG emissions 

 

Finally, we performed the pair-wise SD comparisons among CO2, methane, nitrous oxide 

and other GHG emissions in 1990, 1995, 2000 and 2005 (Results are available upon request 

from the authors). Our findings suggest a clear difference between the types of emissions. CO2 

has always been the main component that has been releasing emissions when compared with the 

other type of greenhouse gases. As a result, for any given CO2 equivalent emission level, there 

have been always more countries emitting CO2 above that level when compared with methane, 

nitrous oxide and other GHG emissions. Furthermore, methane emissions dominate the nitrous 

and other GHG emissions between 1990 and 2005 at first order at the 1% significance level 

making it the second major GHG emissions contributor. Similarly, for any given CO2 equivalent 

emission level, there have always been more countries emitting methane above that level when 

compared with nitrous oxide and other GHG emissions. Finally, other GHG emissions (i.e., sum 

of the HFC, PFC and SF6 emissions), have been contributing the least, when compared with the 



other type of greenhouse gases. This result can help identify policies for achieving improvements 

in environmental quality. The implication here is that policies aiming to reduce CO2 emissions 

need to be given priority when compared with the other types of emissions. 

 

4.2. SD comparisons in water pollution 

 

For water pollution the sample period consists only of a 10-year horizon (from 1995 to 

2005). There has been information on water pollution in 1990 for only 12 countries, which 

makes the application impossible before 1995 since the power of tests would not be reliable. The 

eight panels of Table 4 give the pair-wise SD test results for the evolution of total water pollution 

and its sub-industries’ contributors over time. The first panel of Table 5 suggests that there was 

no general increase in water pollution over the whole period. However, there has been an 

increase in water pollution in the 10-year horizon in a second-order sense, suggesting that sum of 

water pollution above a given level is higher in 2005 than in 1995 for all levels of pollution. 

Hence the sum of water pollution up to a given pollution level has always been higher in 2005 

than in 1995 (i.e., some countries’ water pollution decreased, but some others experienced an 

increase in their water pollution, and the sum of the increases in water pollution has been higher 

than the sum of the decreases for a given level of pollution). Fig. 3 depicts the CDFs of the water 

pollutant emissions (measured as BOD levels per day) for 1995, 2000 and 2005. As the CDF 

curves of each year intersect with each other, the tests did not yield any SD1. However, when 

CDFs intersect, one could test whether there is any clear ordering over time when the integrals of 

water pollution at each respective year (i.e., sum of the total water pollution up to a water 

pollution level) are compared. In this case, water pollution in 2005 dominates the water pollution 

in 1995 in the second-order sense at the 10% significance level. The CDFs of water pollution in 



1995 and 2005 do intersect at some point (i.e., no SD1), and yet one can discover that the sum of 

the water pollution up to a given level is always lower in 2005 than in 1995, suggesting SD2, 

where the sum of water pollution above a given level is always higher in 2005 than in 1995 for 

all emission levels. 

 

 

 

 

 

 

Table 5. Pair-wise SD comparisons of total and sub-industry water pollution over time 

a)Total water pollution b)Water pollution from chemistry industry 

  1995 2000   1995 2000 

2000 SD1 ND ND 2000 SD1 ND ND 

 SD2 ND ND  SD2 10% ND 

2005 SD1 ND ND 2005 SD1 ND ND 

 SD2 10% ND  SD2 10% ND 

c)Water pollution from clay and glass industry d)Water pollution from food industry 

  1995 2000   1995 2000 

2000 SD1 ND ND 2000 SD1 ND ND 

 SD2 ND ND  SD2 10% ND 

2005 SD1 ND ND 2005 SD1 ND ND 

 SD2 10% ND  SD2 5% ND 

e)Water pollution from metal industry f)Water pollution from paper and pulp industry 

  1995 2000   1995 2000 

2000 SD1 ND ND 2000 SD1 ND ND 

 SD2 ND ND  SD2 ND ND 

2005 SD1 ND ND 2005 SD1 ND ND 

 SD2 10% ND  SD2 ND ND 

g)Water pollution from textile industry h)Water pollution from wood industry 

  1995 2000   1995 2000 

2000 SD1 ND ND 2000 SD1 ND ND 

 SD2 ND ND  SD2 10% ND 

2005 SD1 ND ND 2005 SD1 ND ND 

 SD2 ND ND  SD2 5% ND 

Notes: The vertical columns represent the years 2000 and 2005 that are tested for SD against years 

from 1995 and 2000. Percentage levels represent the significance level of SD. ND suggests no 

dominance at that order. 



 

Fig. 3. Cumulative distribution functions of water pollutant emissions for 1995, 2000 and 2005 

 

Similarly to total water pollution, there has been no improvement or deterioration in sub-

industry water pollution over the whole period at all emission levels, since there has been no 

dominance in the first-order sense for all industries. However, water pollution levels from 

different industries have shown different progress over time. The sum of water pollution from 

chemical, food and wood industries above a given level is always higher in 2000 than in 1995 

suggesting that even though some countries’ water pollution in these industries decreased, 

increase in water pollution by some other countries were relatively more than the decrease in 

those countries. Furthermore, water pollution from the chemical, food, wood, metal, and clay and 

glass industries increased between 1995 and 2005 in the second-order sense suggesting a similar 

trend as above but within 10-year horizon. Finally, no dominance of any order is found for textile 

and paper and pulp industries. Therefore, one can conclude that the increase in water pollution 

over time is mostly driven by the chemical, food and wood industries as those industries 

experienced an overall increase of water pollution in shorter horizons (i.e., an overall increase 

within 5-year horizons) suggesting that the global action to reduce water pollution in these 

industries should be prioritized. 



Finally, we analyze the sub-industry contributions to the water pollution in 1995, 2000 

and 2005. The three panels of Table 6 present all possible pair-wise comparisons between sub-

industry water pollutions in 1995, 2000 and 2005 respectively. In 1995 the chemical industry 

pollutes water more than the clay and glass, metal and wood industries (i.e., in the first panel of 

Table 5, chemical industry water pollution stochastically dominates the clay and glass metal and 

wood industries in the first-order sense at the 10%, 5% and 1% significance level respectively). 

Furthermore, water pollution from food and textile industries has been more than pollution from 

the clay and glass, metal, paper and wood industries at any pollution level in 1995. Finally, in 

1995, the clay and glass industry was responsible for water pollution more than the metal 

industry and paper industry polluted more than the wood industry. Any further comparisons have 

not suggested any further dominance. Clearly, in 1995, chemical, textile and food industries were 

the major contributors to water pollution, as at any pollution level there have always been more 

countries in those industries polluting water than remaining industries above that any given 

pollution level. 

In 2000 the majority of the dominance relations between industries remain the same, with 

some differences with respect to 1995. Water pollution from the food industry dominates 

pollution from the chemical industry in the first-order sense at the 5% significance level. In 2000 

the major contributors to water pollution are the food and textile industries. However, there is no 

clear SD ordering among food and textile industries, when water pollution is considered. Finally, 

in 2005, water pollution from the food industry contributes more than any other industry (i.e., 

water pollution from the food industry dominates such pollution from any industry in the first-

order sense). Therefore, a global action tackling the increase in water pollution due to activities 

in the food industry should be prioritized.   



 

5. Conclusions 

 

Our methodology based on consistent pair-wise SD tests can provide useful information 

to policy makers in their efforts to design policies that compare the risks from environmental 

degradation. Reducing CO2 emissions needs to be given a priority, with special attention to those 

industrial sectors which are mainly responsible for these emissions. As the agriculture sector is 

the major contributor to the methane emissions and the food sector is becoming the industry that 

is polluting water the most, our findings suggest interlinkages between air and water pollution. 

Table 6. Pair-wise SD comparison of water pollution from industries 

 

 

Industry 

comparisons 

Water pollution industry 

comparisons in 1995 

Water pollution industry 

comparisons in 2000 

Water pollution industry 

comparisons in 2005 

Dominating 

industry 

SD1 SD2 Dominating 

industry 

SD1 SD2 Dominating 

industry 

SD1 SD2 

Chemical vs. Clay Chemical  10% 5% Chemical 10% 5% Chemical  5% 5% 

Chemical vs. Food ND ND ND Food 5% 5% Food  5% 5% 

Chemical vs. Metal Chemical 10% 5% Chemical  5% 5% Chemical 1% 1% 

Chemical vs. Paper ND ND ND ND  ND ND Chemical  10% 10% 

Chemical vs. Textile ND ND ND ND ND ND ND ND ND 

Chemical vs. Wood Chemical  1% 1% Chemical  1% 1% Chemical  1% 1% 

Clay versus Food Food  1% 1% Food  1% 1% Food  1% 1% 

Clay versus Metal Clay  10% 10% Clay  10% 10% Clay  10% 10% 

Clay versus Paper ND ND ND ND ND ND ND ND ND 

Clay versus Textile Textile  10% 1% Textile  5% 1% Textile  5% 5% 

Clay versus Wood ND ND ND ND ND ND ND ND ND 

Food versus Metal Food  1% 1% Food  1% 1% Food  1% 1% 

Food versus Paper Food  10% 5% Food  1% 1% Food  1% 1% 

Food versus Textile ND ND ND ND ND ND Food  10% 10% 

Food versus Wood Food  1% 1% Food  1% 1% Food  1% 1% 

Metal versus Paper ND   Paper  10% 10% Paper  10% 10% 

Metal versus Textile Textile  1% 1% Textile  1% 1% Textile  1% 1% 

Metal versus Wood ND ND ND ND ND ND ND ND ND 

Paper versus Textile Textile  10% 5% Textile  5% 5% Textile  10% 10% 

Paper versus Wood Paper  5% 5% Paper  ND 10% Paper  10% 10% 

Textile versus Wood Textile  1% 1% Textile  1% 1% Textile  1% 1% 

Notes: First column represents all possible sub-industry water pollution comparisons. Second to fourth panels 

present the dominance outcomes between sub-industry comparisons for each respective case for the years 1995, 

2000 and 2005 respectively. SD1 and SD2 represent the significance levels for the first- and second-order 

dominance.  ND suggests no dominance at that order. 



Water pollution will likely be intensified by the increasing demand for biomass-derived fuels for 

transportation biofuel needs, because large quantities of water are needed to grow the fuel crops, 

and water pollution is exacerbated by agricultural drainage containing fertilizers, pesticides, and 

sediment. Potentially, there are major spillovers in environmental degradation across countries, 

and across air and water pollution levels. As Olmstead (2010) claims, water pollution in 

transboundary settings is still a challenge since our analysis find an aggregate increase in water 

pollution even though some countries pollute less over time as relatively lower levels of water 

pollution in these countries could be due to free-riding. In other words, even though some 

countries’ direct contribution to water pollution is decreased (due to their production levels), 

their indirect contribution (i.e., due to increased consumption) might have led to an aggregate 

increase in water pollution levels.   
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Appendix Table A: List of countries used in each respective analysis 

Country Name Country Code Water pollution 

CO2 

emissions 

Methane, nitrous oxide and other 

GHG emissions 

Afghanistan AFG  x  

Albania ALB x x x 

Algeria DZA  x x 

Andorra ADO  x  

Angola AGO  x x 

Antigua and Barbuda ATG  x  

Argentina ARG x x x 

Armenia ARM  x x 

Aruba ABW x x  

Australia AUS  x x 

Austria AUT x x x 

Azerbaijan AZE x x x 

Bahamas, The BHS x x  

Bahrain BHR  x x 

Bangladesh BGD x x x 

Barbados BRB  x  

Belarus BLR  x x 

Belgium BEL x x x 

Belize BLZ  x  

Benin BEN  x x 

Bermuda BMU  x  

Bhutan BTN  x  

Bolivia BOL x x x 

Bosnia and Herzegovina BIH  x x 

Botswana BWA x x x 

Brazil BRA  x x 

Brunei Darussalam BRN  x x 

Bulgaria BGR x x x 

Burkina Faso BFA  x  

Burundi BDI  x  

Cambodia KHM x x x 

Cameroon CMR  x x 

Canada CAN x x x 

Cape Verde CPV  x  

Cayman Islands CYM  x  

Central African Republic CAF  x  

Chad TCD  x  

Chile CHL x x x 

China CHN x x x 

Colombia COL x x x 



Comoros COM  x  

Congo, Dem. Rep. ZAR  x x 

Congo, Rep. COG  x x 

Costa Rica CRI  x x 

Cote d'Ivoire CIV  x x 

Croatia HRV x x x 

Cuba CUB  x x 

Cyprus CYP x x x 

Czech Republic CZE x x x 

Denmark DNK x x x 

Djibouti DJI  x  

Dominica DMA  x  

Dominican Republic DOM  x x 

Ecuador ECU x x x 

Egypt, Arab Rep. EGY  x x 

El Salvador SLV  x x 

Equatorial Guinea GNQ  x  

Eritrea ERI x x x 

Estonia EST x x x 

Ethiopia ETH x x x 

Faeroe Islands FRO  x  

Fiji FJI  x  

Finland FIN x x x 

France FRA x x x 

French Polynesia PYF  x  

Gabon GAB  x x 

Gambia, The GMB x x  

Georgia GEO  x x 

Germany DEU x x x 

Ghana GHA  x x 

Gibraltar GIB  x x 

Greece GRC x x x 

Greenland GRL  x  

Grenada GRD  x  

Guatemala GTM  x x 

Guinea GIN  x  

Guinea-Bissau GNB  x  

Guyana GUY  x  

Haiti HTI x x x 

Honduras HND  x x 

Hong Kong SAR, China HKG  x x 

Hungary HUN x x x 

Iceland ISL  x x 



India IND  x x 

Indonesia IDN x x x 

Iran, Islamic Rep. IRN x x x 

Iraq IRQ  x x 

Ireland IRL x x x 

Israel ISR x x x 

Italy ITA x x x 

Jamaica JAM  x x 

Japan JPN x x x 

Jordan JOR x x x 

Kazakhstan KAZ x x x 

Kenya KEN  x x 

Kiribati KIR  x  

Korea, Dem. Rep. PRK  x x 

Korea, Rep. KOR x x x 

Kuwait KWT  x x 

Kyrgyz Republic KGZ x x x 

Lao PDR LAO  x  

Latvia LVA x x x 

Lebanon LBN  x x 

Lesotho LSO x   

Liberia LBR  x  

Libya LBY  x x 

Lithuania LTU x x x 

Luxembourg LUX x x x 

Macao SAR, China MAC  x  

Macedonia, FYR MKD x x x 

Madagascar MDG x x  

Malawi MWI x x  

Malaysia MYS x x x 

Maldives MDV  x  

Mali MLI  x  

Malta MLT x x x 

Marshall Islands MHL  x  

Mauritania MRT  x  

Mauritius MUS x x  

Mexico MEX  x x 

Micronesia, Fed. Sts. FSM  x  

Moldova MDA x x x 

Mongolia MNG x x x 

Montenegro MNE  x  

Morocco MAR x x x 

Mozambique MOZ  x x 



Myanmar MMR  x x 

Namibia NAM  x x 

Nepal NPL  x x 

Netherlands NLD x x x 

New Caledonia NCL  x  

New Zealand NZL x x x 

Nicaragua NIC  x x 

Niger NER  x  

Nigeria NGA  x x 

Norway NOR x x x 

Oman OMN x x x 

Pakistan PAK  x x 

Palau PLW  x  

Panama PAN x x x 

Papua New Guinea PNG  x  

Paraguay PRY x x x 

Peru PER  x x 

Philippines PHL x x x 

Poland POL x x x 

Portugal PRT x x x 

Qatar QAT x x x 

Romania ROM x x x 

Russian Federation RUS x x x 

Rwanda RWA  x  

Samoa WSM  x  

Sao Tome and Principe STP  x  

Saudi Arabia SAU  x x 

Senegal SEN x x x 

Serbia SRB  x x 

Seychelles SYC  x  

Sierra Leone SLE  x  

Singapore SGP x x x 

Slovak Republic SVK x x x 

Slovenia SVN x x x 

Solomon Islands SLB  x  

Somalia SOM  x  

South Africa ZAF x x x 

Spain ESP x x x 

Sri Lanka LKA  x x 

St. Kitts and Nevis KNA  x  

St. Lucia LCA  x  

St. Vincent and the 

Grenadines VCT  x  



Sudan SDN  x x 

Suriname SUR  x  

Swaziland SWZ  x  

Sweden SWE x x x 

Switzerland CHE  x x 

Syrian Arab Republic SYR x x x 

Tajikistan TJK x x x 

Tanzania TZA x x x 

Thailand THA x x x 

Timor-Leste TMP  x  

Togo TGO  x x 

Tonga TON x x  

Trinidad and Tobago TTO x x x 

Tunisia TUN  x x 

Turkey TUR x x x 

Turkmenistan TKM  x x 

Turks and Caicos Islands TCA  x  

Uganda UGA x x  

Ukraine UKR x x x 

United Arab Emirates ARE  x x 

United Kingdom GBR x x x 

United States USA x x x 

Uruguay URY  x x 

Uzbekistan UZB  x x 

Vanuatu VUT  x  

Venezuela, RB VEN  x x 

Vietnam VNM x x x 

West Bank and Gaza WBG  x  

Yemen, Rep. YEM x x x 

Zambia ZMB  x x 

Zimbabwe ZWE  x x 

 

 

 

 

 

 

 

 

 



Appendix Table B: Variable definitions and sources  

Variable Definition and sources 

CO2 emissions, 

emissions from 

different 

consumption types 

and emissions by 

sectors. 

Carbon dioxide emissions are those stemming from the burning of fossil fuels and the 

manufacture of cement. They include carbon dioxide produced during consumption of 

solid, liquid, and gas fuels and gas flaring. Detailed data set is obtained from the Carbon 

Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge 

National Laboratory, Tennessee, United States. The data set can be accessed from: 

http://cdiac.ornl.gov/. 

 

All emission estimates are expressed in thousand metric tons of carbon, where total 

emissions and emissions from different types of consumptions can be accessed: 

http://cdiac.ornl.gov/ftp/ndp030/nation.1751_2011.ems. 

 

Data on carbon dioxide emissions by sector are from IEA electronic files: 

http://www.iea.org/stats/index.asp which are also reported from the World Bank’s 

World Development Indicators (World Bank, 2012) can be accessed from 

http://data.worldbank.org/data-catalog/world-development-indicators/wdi-2012 

Methane emissions 

(thousand metric 

tons of CO2 

equivalent) and 

sub-sector 

contributions 

Methane emissions are those stemming from human activities such as agriculture and 

from industrial methane production. Total methane emissions and sector contributions 

to methane emission can be accessed from the European Commission, Joint Research 

Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). Emission 

Database for Global Atmospheric Research (EDGAR): http://edgar.jrc.ec.europa.eu/ or 

http://edgar.jrc.ec.europa.eu/overview.php?v=42  which can be also accessed from can 

be accessed from http://data.worldbank.org/indicator/  

Nitrous oxide 

emissions 

(thousand metric 

tons of CO2 

equivalent) and 

sub-sector 

contributions 

Nitrous oxide emissions are emissions from agricultural biomass burning, industrial 

activities, and livestock management. Nitrous oxide emissions and sector contributions 

to nitrous oxide emissions can be accessed from the European Commission, Joint 

Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL). 

Emission Database for Global Atmospheric Research 

(EDGAR): http://edgar.jrc.ec.europa.eu/ or 

http://edgar.jrc.ec.europa.eu/overview.php?v=42 can be also accessed from can be 

accessed from http://data.worldbank.org/indicator/ 

Other greenhouse 

gas emissions:  

perfluorocarbon 

(PFC), 

hydrofluorocarbon 

(HFC), and sulfur 

hexafluoride (SF6) 

(thousand metric 

tons of CO2 

equivalent) 

HFC emissions are mostly due to use of refrigeration, air-conditioning, and insulating 

foam products. PFC emissions are mainly due to aluminum production and SF6 

emissions are due to leakage and venting from the electricity sector, magnesium 

production, and other minor contributions, which can be accessed from the European 

Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment 

Agency (PBL). Emission Database for Global Atmospheric Research 

(EDGAR): http://edgar.jrc.ec.europa.eu/ or 

http://edgar.jrc.ec.europa.eu/overview.php?v=42 can be also accessed from can be 

accessed from http://data.worldbank.org/indicator/ 

 

Water pollution and 

sector contributions 

It is measured by biochemical oxygen demand (BOD) which is the amount of oxygen 

that bacteria in water will consume in breaking down waste. All the data sets are 

categorized and taken from the World Bank’s World Development Indicators (World 

Bank, 2012). Industry shares of emissions of organic water pollutants are emissions 

from manufacturing activities as defined by two-digit divisions of the International 

Standard Industrial Classification revision 3.  

The detailed data on water pollution could be accessed through 

http://data.worldbank.org/data-catalog/world-development-indicators/wdi-2012 
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