20 research outputs found

    Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular alterations occur frequently in T-ALL and the potential impact of those abnormalities on outcome is still controversial. The current study aimed to test whether <it>NOTCH1 </it>mutations and additional molecular abnormalities would impact T-ALL outcome in a series of 138 T-ALL paediatric cases.</p> <p>Methods</p> <p>T-ALL subtypes, status of <it>SIL-TAL1 </it>fusion, ectopic expression of <it>TLX3</it>, and mutations in <it>FBXW7</it>, <it>KRAS</it>, <it>PTEN </it>and <it>NOTCH1 </it>were assessed as overall survival (OS) and event-free survival (EFS) prognostic factors. OS and EFS were determined using the Kaplan-Meier method and compared using the log-rank test.</p> <p>Results</p> <p>The frequencies of mutations were 43.5% for <it>NOTCH1</it>, while <it>FBXW7</it>, <it>KRAS </it>and <it>PTEN </it>exhibited frequencies of 19.1%, 9.5% and 9.4%, respectively. In 78.3% of cases, the coexistence of <it>NOTCH1 </it>mutations and other molecular alterations was observed. In multivariate analysis no statistical association was revealed between <it>NOTCH1 </it>mutations and any other variable analyzed. The mean length of the follow-up was 68.4 months and the OS was 50.7%. <it>SIL-TAL1 </it>was identified as an adverse prognostic factor. <it>NOTCH1 </it>mutation status was not associated with outcome, while the presence of <it>NOTCH1 </it>complex mutations (indels) were associated with a longer overall survival (<it>p </it>= 0.031) than point mutations.</p> <p>Conclusion</p> <p><it>NOTCH1 </it>mutations alone or in combination with <it>FBXW7 </it>did not impact T-ALL prognosis. Nevertheless, complex <it>NOTCH1 </it>mutations appear to have a positive impact on OS and the <it>SIL-TAL1 </it>fusion was validated as a negative prognostic marker in our series of T-ALL.</p

    Mutant Ikzf1, KrasG12D, and Notch1 cooperate in T lineage leukemogenesis and modulate responses to targeted agents

    No full text
    Mice that accurately model the genetic diversity found in human cancer are valuable tools for interrogating disease mechanisms and investigating novel therapeutic strategies. We performed insertional mutagenesis with the MOL4070LTR retrovirus in Mx1-Cre, KrasG12D mice and generated a large cohort of T lineage acute lymphoblastic leukemias (T-ALLs). Molecular analysis infers that retroviral integration within Ikzf1 is an early event in leukemogenesis that precedes KrasG12D expression and later acquisition of somatic Notch1 mutations. Importantly, biochemical analysis uncovered unexpected heterogeneity, which suggests that Ras signaling networks are remodeled during multistep tumorigenesis. We tested tumor-derived cell lines to identify biomarkers of therapeutic response to targeted inhibitors. Whereas all T-ALLs tested were sensitive to a dual-specificity phosphoinosityl 3-kinase/mammalian target of rapamycin inhibitor, biochemical evidence of Notch1 activation correlated with sensitivity to γ-secretase inhibition. In addition, KrasG12D T-ALLs were more responsive to a MAP/ERK kinase inhibitor in vitro and in vivo. Together, these studies identify a genetic pathway involving Ikzf1, KrasG12D, and Notch1 in T lineage leukemogenesis, reveal unexpected diversity in Ras-regulated signaling networks, and define biomarkers of drug responses that may inform treatment strategies

    Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice

    No full text
    Mutations in the tumor-suppressor gene phosphatase and tensin homolog deleted on chromosome 10 (Pten) are associated with multiple cancers in humans, including T cell malignancies. Targeted deletion of Pten in T cells induces both a disseminated “mature phenotype” lymphoma and a lymphoproliferative autoimmune syndrome in mice. Here, we have shown that these two diseases are separable and mediated by T lineage cells of distinct developmental stages. Loss of PTEN was found to be a powerful driver of lymphomagenesis within the thymus characterized by overexpression of the c-myc oncogene. In an otherwise normal thymic environment, PTEN-deficient T cell lymphomas invariably harbored RAG-dependent reciprocal t(14:15) chromosomal translocations involving the T cell receptor alpha/delta locus and c-myc, and their survival and growth was TCR dependent, but Notch independent. However, lymphomas occurred even if TCR recombination was prevented, although these lymphomas were less mature, arose later in life, and, importantly, were dependent upon Notch pathways to upregulate c-myc expression. In contrast, using the complementary methods of early thymectomy and adoptive transfers, we found that PTEN-deficient mature T cells were unable to undergo malignant transformation but were sufficient for the development of autoimmunity. These data suggest multiple and distinct regulatory roles for PTEN in the molecular pathogenesis of lymphoma and autoimmunity

    Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia

    No full text
    Cumulative evidence indicates that MYC, one of the major downstream effectors of NOTCH1, is a critical component of T-cell acute lymphoblastic leukemia (T-ALL) oncogenesis and a potential candidate for targeted therapy. However, MYC is a complex oncogene, involving both fine protein dosage and cell-context dependency, and detailed understanding of MYC-mediated oncogenesis in T-ALL is still lacking. To better understand how MYC is interspersed in the complex T-ALL oncogenic networks, we performed a thorough molecular and biochemical analysis of MYC activation in a comprehensive collection of primary adult and pediatric patient samples. We find that MYC expression is highly variable, and that high MYC expression levels can be generated in a large number of cases in absence of NOTCH1/FBXW7 mutations, suggesting the occurrence of multiple activation pathways in addition to NOTCH1. Furthermore, we show that posttranscriptional deregulation of MYC constitutes a major alternative pathway of MYC activation in T-ALL, operating partly via the PI3K/AKT axis through down-regulation of PTEN, and that NOTCH1mmight play a dual transcriptional and posttranscriptional role in this process. Altogether, our data lend further support to the significance of therapeutic targeting of MYC and/or the PTEN/AKT pathways, both in GSI-resistant and identified NOTCH1-independent/MYC-mediated T-ALL patients
    corecore