278 research outputs found

    Kinematic characteristics of elite men's 50 km race walking.

    Get PDF
    Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= -0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue

    Evaluación de la alteración de biochars utilizados como enmienda de un cultivo de girasol bajo condiciones de clima mediterráneo

    Get PDF
    5 páginas.-- 1 figura.-- 3 tablas.-- 8 referenciasEl biochar es un subproducto de la pirólisis de biomasa, generalmente posee un elevado contenido en carbono y una alta porosidad. El biochar puede mejorar las propiedades físicas y químicas del suelo, y por tanto incrementar la calidad agronómica del mismo. Además se considera una estrategia eficaz para mitigar la emisión de dióxido de carbono a la atmósfera, ya que es rico en carbono recalcitrante funcionando como sumidero de carbono. Diversos factores como el tipo de materia prima, así como las condiciones de pirólisis determinarán la composición, estructura y propiedades de los biochars, lo queocasiona una gran heterogeneidad de los productos. Aún no se conoce suficientemente como afecta la degradación al biochar en condiciones de campo. Es necesario conocer cómo se modifica la composición de esta materia orgánica pirogénica una vez es incorporada al suelo, con este objetivo principal se sometió a cinco tipos diferentes de biochars a un envejecimiento en condiciones de clima Mediterráneo. Para ello, se mezclaron las muestras de biochar con un cambisol de la finca experimental “La Hampa” a modo de enmienda. Posteriormente se sembraron plantas de girasol, que fueron cosechadas a los 6 meses de su germinación. A los 6, 12 y 24 meses de iniciado el experimento se tomaron muestras de suelo y de biochar para su estudio. Con el fin de poder conocer las alteraciones en la composición y propiedades del biochar, se han realizado análisis de C y N, de pH, conductividad eléctrica y la determinación de la fragmentación. Además, el uso de la Resonancia Magnética Nuclear de 13C en estado sólido nos permitió observar los cambios en la funcionalidad de este material.M. Paneque agradece al Ministerio de Educación de España la financiación de la beca FPU 13/05831. Se agradece al MINECO la financiación del proyecto BIOREMEC (CGL2016-76498-R).N

    Chemical and spectroscopic characterization of marine dissolved organic matter isolated using coupled reverse osmosis-electrodialysis

    Get PDF
    The coupled reverse osmosis-electrodialysis (RO/ED) method was used to isolate dissolved organic matter (DOM) from 16 seawater samples. The average yield of organic carbon was 75 ± 12%, which is consistently greater than the yields of organic carbon that have been commonly achieved using XAD resins, C18 adsorbents, and cross-flow ultrafiltration. UV-visible absorbance spectra and molar C/N ratios of isolated samples were consistent with the corresponding properties of DOM in the original seawater samples, indicating that DOM samples can be isolated using the coupled RO/ED method without any bias for/against these two properties. Five of the samples were desalted sufficiently that reliable measurements of their 13C and 1HNMR spectra and their Fourier transform ion cyclotron resonance (FTICR) mass spectra could be obtained. The 13C and 1HNMR spectra of RO/ED samples differed distinctly from those of samples that have been isolated in much lower yields by other methods. In particular, RO/ED samples contained a relatively lower proportion of carbohydrate carbon and a relatively greater proportion of alkyl carbon than samples that have been isolated using cross-flow ultrafiltration. From the FTICR mass spectra of RO/ED samples, samples from the open ocean contained a much lower proportion of unsaturated compounds and a much higher proportion of fatty acids than coastal samples.This material is based upon work supported by the National Science Foundation (NSF) under Grants No. 0425624 and 0425603.Peer Reviewe

    Biochar: pyrogenic carbon for agricultural use: a critical review.

    Get PDF
    O biocarvão (biomassa carbonizada para uso agrícola) tem sido usado como condicionador do solo em todo o mundo, e essa tecnologia é de especial interesse para o Brasil, uma vez que tanto a ?inspiração?, que veio das Terras Pretas de Índios da Amazônia, como o fato de o Brasil ser o maior produtor mundial de carvão vegetal, com a geração de importante quantidade de resíduos na forma de finos de carvão e diversas biomassas residuais, principalmente da agroindústria, como bagaço de cana, resíduos das indústrias de madeira, papel e celulose, biocombustíveis, lodo de esgoto etc. Na última década, diversos estudos com biocarvão têm sido realizados e atualmente uma vasta literatura e excelentes revisões estão disponíveis. Objetivou-se aqui não fazer uma revisão bibliográfica exaustiva, mas sim uma revisão crítica para apontar alguns destaques na pesquisa sobre biochar. Para isso, foram selecionados alguns temaschave considerados críticos e relevantes e fez-se um ?condensado? da literatura pertinente, mais para orientar as pesquisas e tendências do que um mero olhar para o passad

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics

    Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage

    Get PDF
    Amazon Basin forest soils contain considerable soil organic carbon stocks; however, the contribution of soil pyrogenic carbon (PyC) to the total is unknown. PyC is derived from local fires (historical and modern) and external inputs via aeolian deposition. To establish an initial estimate of PyC stocks in non-terra preta forest with no known history of fire, to assess site and vertical variability, as well as to determine optimal sampling design, we sampled 37 one hectare forest plots in the Amazon Basin and analysed PyC via hydrogen pyrolysis of three individual samples per plot and of bulked samples to 200 cm depth. Using our data and published total organic carbon stocks, we present the first field-based estimate of total PyC stock for the Amazon Basin of 1.10 Pg over 0–30 cm soil depth, and 2.76 Pg over 0–100 cm soil depth. This is up to 20 times higher than previously assumed. Three individual samples per 1 ha are sufficient to capture the site variability of PyC in our plots. PyC showed significant, large-scale variability among plots. To capture 50% of the PyC in 200 cm soil profiles, soil must be sampled to a depth of at least 71 cm. PyC represents a significant (11%) portion of total organic carbon in soil profiles 0–200 cm depth. This finding highlights the potentially important role that historical fire has played in modifying soil C stocks. Our data suggest that PyC is an important carbon pool for long-term storage, involved in millennial scale biogeochemical cycling, particularly in the subsurface soil

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology
    corecore