395 research outputs found

    Cluster Approximation for the Farey Fraction Spin Chain

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Utilising ideas from dynamical systems, the free energy of the model is derived by means of an effective cluster energy approximation. This approximation is valid for divergent cluster sizes, and hence appropriate for the discussion of the magnetizing transition. We calculate the phase boundaries and the scaling of the free energy. At h=0h=0 we reproduce the rigorously known asymptotic temperature dependence of the free energy. For h0h \ne 0, our results are largely consistent with those found previously using mean field theory and renormalization group arguments.Comment: 17 pages, 3 figure

    Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1.

    Get PDF
    SummaryBlimp-1 is considered an essential regulator of the terminal differentiation of B cells into antibody-secreting plasma cells. We show here that Rag1−/− mice reconstituted with fetal liver cells homozygous for a DNA-binding-deficient mutant of Prdm1 (the gene encoding Blimp-1) lack a defined plasma-cell compartment, yet show detectable amounts of all immunoglobulin isotypes. In vitro analysis revealed that Blimp-1 is not required for the initiation of antibody secretion but is essential for subsequent high immunoglobulin production. Blimp-1-independent differentiation was blocked at a preplasmablast stage characterized by decreased Pax5 expression and the activation of plasma-cell genes. Analysis of Blimp-1-sufficient differentiation revealed a phase prior to Blimp-1 expression in which several genes normally repressed by Pax5 are re-expressed, suggesting that plasma-cell differentiation is initiated by the inhibition of Pax5 function. Our results indicate that full plasma-cell differentiation but not commitment to the plasma-cell fate requires the expression of functional Blimp-1

    Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1.

    Get PDF
    SummaryBlimp-1 is considered an essential regulator of the terminal differentiation of B cells into antibody-secreting plasma cells. We show here that Rag1−/− mice reconstituted with fetal liver cells homozygous for a DNA-binding-deficient mutant of Prdm1 (the gene encoding Blimp-1) lack a defined plasma-cell compartment, yet show detectable amounts of all immunoglobulin isotypes. In vitro analysis revealed that Blimp-1 is not required for the initiation of antibody secretion but is essential for subsequent high immunoglobulin production. Blimp-1-independent differentiation was blocked at a preplasmablast stage characterized by decreased Pax5 expression and the activation of plasma-cell genes. Analysis of Blimp-1-sufficient differentiation revealed a phase prior to Blimp-1 expression in which several genes normally repressed by Pax5 are re-expressed, suggesting that plasma-cell differentiation is initiated by the inhibition of Pax5 function. Our results indicate that full plasma-cell differentiation but not commitment to the plasma-cell fate requires the expression of functional Blimp-1

    The SARS-coronavirus-host interactome

    Get PDF
    Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock

    Human Coronavirus NL63 Open Reading Frame 3 encodes a virion-incorporated N-glycosylated membrane protein

    Get PDF
    Background: Human pathogenic coronavirus NL63 (hCoV-NL63) is a group 1 (alpha) coronavirus commonly associated with respiratory tract infections. In addition to known non-structural and structural proteins all coronaviruses have one or more accessory proteins whose functions are mostly unknown. Our study focuses on hCoV-NL63 open reading frame 3 (ORF 3) which is a highly conserved accessory protein among coronaviruses. Results: In-silico analysis of the 225 amino acid sequence of hCoV-NL63 ORF 3 predicted a triple membranespanning protein. Expression in infected CaCo-2 and LLC-MK2 cells was confirmed by immunofluorescence and Western blot analysis. The protein was detected within the endoplasmatic reticulum/Golgi intermediate compartment (ERGIC) where coronavirus assembly and budding takes place. Subcellular localization studies using recombinant ORF 3 protein transfected in Huh-7 cells revealed occurrence in ERGIC, Golgi- and lysosomal compartments. By fluorescence microscopy of differently tagged envelope (E), membrane (M) and nucleocapsid (N) proteins it was shown that ORF 3 protein colocalizes extensively with E and M within the ERGIC. Using N-terminally FLAG-tagged ORF 3 protein and an antiserum specific to the C-terminus we verified the proposed topology of an extracellular N-terminus and a cytosolic C-terminus. By in-vitro translation analysis and subsequent endoglycosidase H digestion we showed that ORF 3 protein is N-glycosylated at the N-terminus. Analysis of purified viral particles revealed that ORF 3 protein is incorporated into virions and is therefore an additional structural protein. Conclusions: This study is the first extensive expression analysis of a group 1 hCoV-ORF 3 protein. We give evidence that ORF 3 protein is a structural N-glycosylated and virion-incorporated protein.Web of Scienc

    Potential of microbiome-based solutions for agrifood systems

    Get PDF
    Host-associated microbiomes are central to food production systems and human nutrition and health. Harnessing the microbiome may help increase food and nutrient security, enhance public health, mitigate climate change and reduce land degradation. Although several microbiome solutions are currently under development or commercialized in the agrifood, animal nutrition, biotechnology, diagnostics, pharmaceutical and health sectors , fewer products than expected have been successfully commercialized beyond food processing, and fewer still have achieved wider adoption by farming, animal husbandry and other end-user communities. This creates concerns about the translatability of microbiome research to practical applications. Inconsistent efficiency and reliability of microbiome solutions are major constraints for their commercialization and further development, and demands urgent attention

    An extended set of PRDM1/BLIMP1 target genes links binding motif type to dynamic repression

    Get PDF
    The transcriptional repressor B lymphocyte-induced maturation protein-1 (BLIMP1) regulates gene expression and cell fate. The DNA motif bound by BLIMP1 in vitro overlaps with that of interferon regulatory factors (IRFs), which respond to inflammatory/immune signals. At such sites, BLIMP1 and IRFs can antagonistically regulate promoter activity. In vitro motif selection predicts that only a subset of BLIMP1 or IRF sites is subject to antagonistic regulation, but the extent to which antagonism occurs is unknown, since an unbiased assessment of BLIMP1 occupancy in vivo is lacking. To address this, we identified an extended set of promoters occupied by BLIMP1. Motif discovery and enrichment analysis demonstrate that multiple motif variants are required to capture BLIMP1 binding specificity. These are differentially associated with CpG content, leading to the observation that BLIMP1 DNA-binding is methylation sensitive. In occupied promoters, only a subset of BLIMP1 motifs overlap with IRF motifs. Conversely, a distinct subset of IRF motifs is not enriched amongst occupied promoters. Genes linked to occupied promoters containing overlapping BLIMP1/IRF motifs (e.g. AIM2, SP110, BTN3A3) are shown to constitute a dynamic target set which is preferentially activated by BLIMP1 knock-down. These data confirm and extend the competitive model of BLIMP1 and IRF interaction

    A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity

    Get PDF
    Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades
    corecore