243 research outputs found

    Quasi Free 238U (e,e'f)-Cross Section in Macroscopic-Microscopic Approach

    Get PDF
    We present the result of a theoretical study of inclusive quasi free electrofission of 238^{238}U. The off-shell cross sections for the quasi free reaction stage have been calculated within the Plane Wave Impulse Approximation (PWIA), using a Macroscopic -Microscopic description of the proton and neutron single particle momentum distributions. Electron wave function distortion corrections were included using the effective momentum approximation, and the Final State Interaction (FSI) effects were calculated using an optical potential. The fissility for the proton single hole excited states of the residual nucleus 237^{237}Pa was calculated both without and with contributions of the pre-equilibrium emission of the particles. The fissility for 237,238U^{237,238}U residual nuclei was calculated within the compound nucleus model. The (e,eâ€Čf)−(e,e^{\prime}f)-cross sections thus obtained were compared with available experimental data.Comment: 26 pages, 7 figure

    Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich 132^{132}Sn on 64^{64}Ni

    Full text link
    Evaporation residue cross sections have been measured with neutron-rich radioactive 132^{132}Sn beams on 64^{64}Ni in the vicinity of the Coulomb barrier. The average beam intensity was 2×1042\times 10^{4} particles per second and the smallest cross section measured was less than 5 mb. Large subbarrier fusion enhancement was observed. Coupled-channels calculations taking into account inelastic excitation and neutron transfer underpredict the measured cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure

    Spectroscopy of 194^{194}Po

    Get PDF
    Prompt, in-beam γ\gamma rays following the reaction 170^{170}Yb + 142 MeV 28^{28}Si were measured at the ATLAS facility using 10 Compton-suppressed Ge detectors and the Fragment Mass Analyzer. Transitions in 194^{194}Po were identified and placed using γ\gamma-ray singles and coincidence data gated on the mass of the evaporation residues. A level spectrum up to J≈\approx10ℏ\hbar was established. The structure of 194^{194}Po is more collective than that observed in the heavier polonium isotopes and indicates that the structure has started to evolve towards the more collective nature expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques

    Angular anisotropy of the fusion-fission and quasifission fragments

    Full text link
    The anisotropy in the angular distribution of the fusion-fission and quasifission fragments for the 16^{16}O+238^{238}U, 19^{19}F+208^{208}Pb and 32^{32}S+208^{208}Pb reactions is studied by analyzing the angular momentum distributions of the dinuclear system and compound nucleus which are formed after capture and complete fusion, respectively. The orientation angles of axial symmetry axes of colliding nuclei to the beam direction are taken into account for the calculation of the variance of the projection of the total spin onto the fission axis. It is shown that the deviation of the experimental angular anisotropy from the statistical model picture is connected with the contribution of the quasifission fragments which is dominant in the 32^{32}S+208^{208}Pb reaction. Enhancement of anisotropy at low energies in the 16^{16}O+238^{238}U reaction is connected with quasifission of the dinuclear system having low temperature and effective moment of inertia.Comment: 17 pages 8 figures. Submitted to Euro. Phys. Jour.

    Very high rotational frequencies and band termination in 73Br

    Get PDF
    Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid Communicatio

    Neutrino-induced neutron spallation and supernova r-process nucleosynthesis

    Get PDF
    In order to explore the consequences of the neutrino irradiation for the supernova r-process nucleosynthesis, we calculate the rates of charged-current and neutral-current neutrino reactions on neutron-rich heavy nuclei, and estimate the average number of neutrons emitted in the resulting spallation. Our results suggest that charged-current Îœe\nu_e captures can be important in breaking through the waiting-point nuclei at N=50 and 82, while still allowing the formation of abundance peaks. Furthermore, after the r-process freezes out, there appear to be distinctive neutral-current and charged-current postprocessing effects. A subtraction of the neutrino postprocessing effects from the observed solar r-process abundance distribution shows that two mass regions, A=124-126 and 183-187, are inordinately sensitive to neutrino postprocessing effects. This imposes very stringent bounds on the freeze-out radii and dynamic timescales governing the r-process. Moreover, we find that the abundance patterns within these mass windows are entirely consistent with synthesis by neutrino interactions. This provides a strong argument that the r-process must occur in the intense neutrino flux provided by a core-collapse supernova.Comment: 34 pages, 4 PostScript figures, RevTe

    Prompt dipole radiation in fusion reactions

    Get PDF
    The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. We show that the prompt radiation, which appears to be still effective at such a high beam energy, has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published
    • 

    corecore