192 research outputs found

    Project finance recent applications and future trends: the state of the art

    Full text link
    This paper provides a review of the state of the art of project finance methodology. The growing body of literature in this field serves to emphasize the increasing use and new areas of application of project finance techniques. The paper attempts to describe the main features of project finance, to explain the role of the participants, and the main contractual arrangements. Reviewing the state of the art of project finance provides a special opportunity to draw attention to the main challenges of this technique and to identify new trends.Garcia-Bernabeu, A.; Mayor Vitoria, F.; Mas Verdú, F. (2015). Project finance recent applications and future trends: the state of the art. International Journal of Business and Economics. 14(2):159-178. http://hdl.handle.net/10251/67894S15917814

    Limits on excited tau leptons masses from leptonic tau decays

    Full text link
    We study the effects induced by excited leptons on the leptonic tau decay at one loop level. Using a general effective lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to the leptonic decays and use the current experimental values of the branching ratios to put limits on the mass of excited states and the substructure scale.Comment: 10 pages, 6 figures, to be published in Phys. Rev.

    Measuring the deviation of the 2-3 lepton mixing from maximal with atmospheric neutrinos

    Get PDF
    The measurement of the deviation of the 2-3 leptonic mixing from maximal, D_23 = 1/2 - sin^2(theta_23), is one of the key issues for understanding the origin of the neutrino masses and mixing. In the three-neutrino context we study the dependence of various observables in the atmospheric neutrinos on D_23. We perform a global three-neutrino analysis of the atmospheric and reactor neutrino data taking into account the effects of both the oscillations driven by the "solar" parameters (Delta_m_21^2 and theta_12) and the 1-3 mixing. The departure from the one-dominant mass scale approximation results into the shift of the 2-3 mixing from maximal by Delta_sin^2(theta_23) ~ 0.04, so that D_23 ~ 0.04 +- 0.07 (1 sigma). Though value of the shift is not statistically significant, the tendency is robust. The shift is induced by the excess of the e-like events in the sub-GeV sample. We show that future large scale water Cherenkov detectors can determine D_23 with accuracy of a few percent, comparable with the sensitivity of future long baseline experiments. Moreover, the atmospheric neutrinos will provide unique information on the sign of the deviation (octant of theta_23).Comment: 20 pages, LaTeX2e file using RevTEX4, 6 figures and 1 table include

    Supersymmetric Electroweak Renormalization of the Z-Width in the MSSM (I)

    Full text link
    Within the framework of the MSSM, we compute the complete set of electroweak one-loop supersymmetric quantum effects on the width ΓZ\Gamma_Z of the ZZ-boson in the on-shell renormalization scheme. Numerical analyses of the corrections to the various partial widths into leptons and quarks are presented. On general grounds, the average size of the electroweak SUSY corrections to ΓZ\Gamma_Z may well saturate the level of the present theoretical uncertainties, even if considering the full supersymmetric spectrum lying in the neighbourhood of the unaccessible LEP 200 range. Remarkably enough, for the present values of the top quark mass, the electroweak SUSY effects could be, globally, very close or even bigger than the electroweak SM corrections, but opposite in sign. Therefore, in the absence of theoretical errors, there are large regions of parameter space where one could find that, effectively, the electroweak SM corrections are ``missing'', or even having the ``wrong'' sign. This should be helpful in discriminating between the SM and the MSSM. However, an accurate prediction of the electroweak quantum effects on ΓZ\Gamma_Z will only be possible, if Δr\Delta r and αs\alpha_s are pinned down in the future with enough precision.Comment: 17 p. in LaTeX. Preprint UAB-FT-343. Error in figure caption #3 corrected. Results unchange

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    Non-resonant leptogenesis in seesaw models with an almost conserved B-L

    Full text link
    We review the motivations and some results on leptogenesis in seesaw models with an almost conserved lepton number. The paper is based on a talk given at the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.Comment: 8 pages, 1 figure. Published in the proceedings of the 5th International Symposium on Symmetries in Subatomic Physics, SSP201

    Probing neutrino non-standard interactions with atmospheric neutrino data

    Get PDF
    We have reconsidered the atmospheric neutrino anomaly in light of the laetst data from Super-Kamiokande contained events and from Super-Kamiokande and MACRO up-going muons. We have reanalysed the proposed solution to the atmospheric neutrino anomaly in terms of non-standard neutrino-matter interactions (NSI) as well as the standard nu_mu -> nu_tau oscillations (OSC). Our statistical analysis shows that a pure NSI mechanism is now ruled out at 99%, while the standard nu_mu -> nu_tau OSC mechanism provides a quite remarkably good description of the anomaly. We therefore study an extended mechanism of neutrino propagation which combines both oscillation and non-standard neutrino-matter interactions, in order to derive limits on flavour-changing (FC) and non-universal (NU) neutrino interactions. We obtain that the off-diagonal flavour-changing neutrino parameter epsilon and the diagonal non-universality neutrino parameter epsilon' are confined to -0.03 < epsilon < 0.02 and |epsilon'| < 0.05 at 99.73% CL. These limits are model independent and they are obtained from pure neutrino-physics processes. The stability of the neutrino oscillation solution to the atmospheric neutrino anomaly against the presence of non-standard neutrino interactions establishes the robustness of the near-maximal atmospheric mixing and massive-neutrino hypothesis. The best agreement with the data is obtained for Delta_m^2 = 2.3*10^{-3} eV^2, sin^2(2*theta) = 1, epsilon = 6.7*10^{-3} and epsilon' = 1.1*10^{-3}, although the chi^2 function is quite flat in the epsilon and epsilon' directions for epsilon, epsilon' -> 0.Comment: 26 pages, LaTeX file using REVTeX4, 1 table and 12 figures included. Added a revised analysis which takes into account the new 1489-day Super-Kamiokande and final MACRO data. The bound on NSI parameters is considerably improve

    Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

    Full text link
    We explore the physics potential of multi-megaton scale ice or water Cherenkov detectors with low (1\sim 1 GeV) threshold. Using some proposed characteristics of the PINGU detector setup we compute the distributions of events versus neutrino energy EνE_\nu and zenith angle θz\theta_z, and study their dependence on yet unknown neutrino parameters. The (Eνθz)(E_\nu - \theta_z) regions are identified where the distributions have the highest sensitivity to the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the maximal one and to the CP-phase. We evaluate significance of the measurements of the neutrino parameters and explore dependence of this significance on the accuracy of reconstruction of the neutrino energy and direction. The effect of degeneracy of the parameters on the sensitivities is also discussed. We estimate the characteristics of future detectors (energy and angle resolution, volume, etc.) required for establishing the neutrino mass hierarchy with high confidence level. We find that the hierarchy can be identified at 3σ3\sigma -- 10σ10\sigma level (depending on the reconstruction accuracies) after 5 years of PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde
    corecore