22 research outputs found
Application of artificial neural networks to the design of subsurface drainage systems in Libyan agricultural projects
Study region
The study data draws on the drainage design for Hammam agricultural project (HAP) and Eshkeda agricultural project (EAP), located in the south of Libya, north of the Sahara Desert. The results of this study are applicable to other arid areas.
Study focus
This study aims to improve the prediction of saturated hydraulic conductivity (Ksat) to enhance the efficacy of drainage system design in data-poor areas. Artificial Neural Networks (ANNs) were developed to estimate Ksat and compared with empirical regression-type Pedotransfer Function (PTF) equations. Subsequently, the ANNs and PTFs estimated Ksat values were used in EnDrain software to design subsurface drainage systems which were evaluated against designs using measured Ksat values.
New hydrological insights
Results showed that ANNs more accurately predicted Ksat than PTFs. Drainage design based on PTFs predictions (1) result in a deeper water-level and (2) higher drainage density, increasing costs. Drainage designs based on ANNs predictions gave drain spacing and water table depth equivalent to those predicted using measured data. The results of this study indicate that ANNs can be developed using existing and under-utilised data sets and applied successfully to data-poor areas. As Ksat is time-consuming to measure, basing drainage designs on ANN predictions generated from alternative datasets will reduce the overall cost of drainage designs making them more accessible to farmers, planners, and decision-makers in least developed countries
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
European Society of Cardiology: Cardiovascular Disease Statistics 2019
Aims The 2019 report from the European Society of Cardiology (ESC) Atlas provides a contemporary analysis of cardiovascular disease (CVD) statistics across 56 member countries, with particular emphasis on international inequalities in disease burden and healthcare delivery together with estimates of progress towards meeting 2025 World Health Organization (WHO) non-communicable disease targets. Methods and results In this report, contemporary CVD statistics are presented for member countries of the ESC. The statistics are drawn from the ESC Atlas which is a repository of CVD data from a variety of sources including the WHO, the Institute for Health Metrics and Evaluation, and the World Bank. The Atlas also includes novel ESC sponsored data on human and capital infrastructure and cardiovascular healthcare delivery obtained by annual survey of the national societies of ESC member countries. Across ESC member countries, the prevalence of obesity (body mass index ≥30 kg/m2) and diabetes has increased two- to three-fold during the last 30 years making the WHO 2025 target to halt rises in these risk factors unlikely to be achieved. More encouraging have been variable declines in hypertension, smoking, and alcohol consumption but on current trends only the reduction in smoking from 28% to 21% during the last 20 years appears sufficient for the WHO target to be achieved. The median age-standardized prevalence of major risk factors was higher in middle-income compared with high-income ESC member countries for hypertension {23.8% [interquartile range (IQR) 22.5–23.1%] vs. 15.7% (IQR 14.5–21.1%)}, diabetes [7.7% (IQR 7.1–10.1%) vs. 5.6% (IQR 4.8–7.0%)], and among males smoking [43.8% (IQR 37.4–48.0%) vs. 26.0% (IQR 20.9–31.7%)] although among females smoking was less common in middle-income countries [8.7% (IQR 3.0–10.8) vs. 16.7% (IQR 13.9–19.7%)]. There were associated inequalities in disease burden with disability-adjusted life years per 100 000 people due to CVD over three times as high in middle-income [7160 (IQR 5655–8115)] compared with high-income [2235 (IQR 1896–3602)] countries. Cardiovascular disease mortality was also higher in middle-income countries where it accounted for a greater proportion of potential years of life lost compared with high-income countries in both females (43% vs. 28%) and males (39% vs. 28%). Despite the inequalities in disease burden across ESC member countries, survey data from the National Cardiac Societies of the ESC showed that middle-income member countries remain severely under-resourced compared with high-income countries in terms of cardiological person-power and technological infrastructure. Under-resourcing in middle-income countries is associated with a severe procedural deficit compared with high-income countries in terms of coronary intervention, device implantation and cardiac surgical procedures. Conclusion A seemingly inexorable rise in the prevalence of obesity and diabetes currently provides the greatest challenge to achieving further reductions in CVD burden across ESC member countries. Additional challenges are provided by inequalities in disease burden that now require intensification of policy initiatives in order to reduce population risk and prioritize cardiovascular healthcare delivery, particularly in the middle-income countries of the ESC where need is greatest
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
An Integrated Method for Forecasting Well Deliverability in Gas Condensate Reservoirs with Bottom Aquifer Drive
Gas condensate reservoirs constitute a significant portion of global hydrocarbon reserves. In these reservoirs, liquids develop in the pore space once bottomhole pressure falls below dew point. This results in the formation of a liquid bank near the wellbore region which decreases gas mobility, which then reduces gas inflow. In such complex reservoirs, it is important to correctly describe PVT impacts, adjustments to well test analysis and inflow performance, and then combine all effects in the reservoir analysis. The literature contains many references to individual adjustments of PVT analysis, well testing, or inflow performance for gas condensate reservoirs, but few studies demonstrate the complete workflow for reservoir evaluation and production forecasting in gas condensate fields. This research uses a field case study to demonstrate an integrated workflow for forecasting well deliverability in a gas condensate field in North Africa. The workflow incorporates a description of the retrograde behavior that impact the well deliverability. The workflow begins with the interpretation of open-hole log data to identify the production interval net pay and to estimate petrophysical properties. A compositional model is developed and matched to actual reservoir fluids. Several gas condensate correlations are used to obtain the gas deviation factor and gas viscosity in order to count the change in gas properties with respect to pressure. Transient pressure analysis is described and used to identify reservoir properties. Inflow performance relationships (IPRs) are analyzed using three types of back pressure equations. The workflow integrates all data in a numerical simulation model, which includes the effect of bottom water drive. Results show that in this field case study, reservoir behavior is composite radial flow with three regions of infinite acting radial flow (IARF). Using compositional simulation, it is found that the fluid sample for this field is a lean gas condensate since the liquid drop-out represented 1% of the maximum liquid drop-out. In addition, liquid drop-out increases by 0.1% for every 340 psi drop in reservoir pressure, which reduces the AOF by 3.4%. The results provided in this case study demonstrate the importance of an integrated workflow in predicting future well performance in gas condensate fields. The study demonstrates how to implement the workflow in managing or developing these types of reservoirs
Successful Implementation of High Viscosity Friction Reducers from Laboratory to Field Scale: Middle Bakken Case Study
Recent studies have presented successful case studies of using HVFR fluids in the field. Reported cost reductions from using fewer chemicals and less equipment on the relatively small Marcellus pads when replacing linear gel fluid systems by HVFR. The investigation provided a screening guideline of utilizing HVFRs in terms of its viscosity and concentration. The study notes that in field application the average concentration of HVFRs is 2.75 gpt (gal per 1,000 gal) Three different scenarios were selected to study fluid type effect using 3D pseudo simulator; as a first scenario; fracture dimensions as a second scenario; the last scenario was proppant type. The first scenario consists of two cases: utilizing HVFR-B as new fracture fluid in 20% of produced water was investigated in scenario I (base case). Comparison between HVFR and linear gel in the Middle Bakken was investigated in Case II of the first scenario. At the second scenario, fracture half-length was studied. Proppant distribution impact by using HVFR in Bakken formation was analyzed as the third scenario. The final scenario investigated the pumping flow rate influence on proppant transport of using HVFR. The concentration of HVFR-B was 3 gpt and the proppant size was 30/50 mesh. The treatment schedule of this project consists of six stages. The proppant concentration was increased gradually from 0.5 ppt to 6 ppt at the later stage. In the case of using HVFR-B the fracture half-length was approximately 1300 ft while using linear gel created smaller fracture half-length. In contrast, using linear gel makes the fracture growth increase rapidly up to 290 ft as showed. To conclude, using HVFR-B created high fracture length with less fracture height than linear gel. Additionally, in using HVFR-B, the average fracture height was approximately 205 ft while using linear gel created increasing of the fracture growth rapidly up to 360 ft which represent around 43% increasing of the fracture height. In studying the impact of fracture half-length on proppant transport, increasing fracture half-length from 250 ft to 750 ft leads to the fracture growth rapidly up to 205 ft Studying the impact of proppant size effect on proppant transport, we observed changing fracture conductivity across fracture half-length. Thus, the fracture height increasing with decreasing proppant mesh size. Fracture height increased from 193 ft to 206 ft by changing proppant mesh size from 20/40 to 40/70 mesh. With flow rate impact on proppant transport, it was observed that, the fracture height increases by increasing the pump rate. Utilizing HVFR-B in the fracture treatment provides higher absolute open flow rate (AOF) which is around 2000 BPD. On the other hand, the outcomes of using linear gel has less AOF that about 1600 BPD. Also, Increasing the Xf and proppant mesh size leads to increase the AOF. This project describes comparison of the successful implementation of utilizing HVFR as an alternative fracturing system to linear gel
1310 nm wafer fused VCSELs - a new generation of uncooled 10 Gbps telecom lasers
1310 nm-band wafer-fused VCSELs demonstrate record low 10 Gbps modulation current of 6 mA at temperatures from RT to 70 °C. Reliability studies demonstrate the suitability of this technology in commercial photonic systems. © 2012 IEEE