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A B S T R A C T   

Study region: The study data draws on the drainage design for Hammam agricultural project 
(HAP) and Eshkeda agricultural project (EAP), located in the south of Libya, north of the Sahara 
Desert. The results of this study are applicable to other arid areas. 
Study focus: This study aims to improve the prediction of saturated hydraulic conductivity (Ksat) to 
enhance the efficacy of drainage system design in data-poor areas. Artificial Neural Networks 
(ANNs) were developed to estimate Ksat and compared with empirical regression-type Pedo-
transfer Function (PTF) equations. Subsequently, the ANNs and PTFs estimated Ksat values were 
used in EnDrain software to design subsurface drainage systems which were evaluated against 
designs using measured Ksat values. 
New hydrological insights: Results showed that ANNs more accurately predicted Ksat than PTFs. 
Drainage design based on PTFs predictions (1) result in a deeper water-level and (2) higher 
drainage density, increasing costs. Drainage designs based on ANNs predictions gave drain 
spacing and water table depth equivalent to those predicted using measured data. The results of 
this study indicate that ANNs can be developed using existing and under-utilised data sets and 
applied successfully to data-poor areas. As Ksat is time-consuming to measure, basing drainage 
designs on ANN predictions generated from alternative datasets will reduce the overall cost of 
drainage designs making them more accessible to farmers, planners, and decision-makers in least 
developed countries.   

1. Introduction 

In the Earth’s terrestrial biosphere, soil plays an essential role in managing the mass and energy transferred between the earth and 
the atmosphere (Amundson et al., 2015; Bittelli et al., 2015). Upper soil horizons have hydraulic properties (governed by pore size 
distribution, water retention and hydraulic conductivity) that regulate the local water balance through, infiltration, evapotranspi-
ration, surface runoff, and groundwater recharge (Zhang and Schaap, 2019). These soil properties have a fundamental effect on local, 
regional and global land surface water and energy balances (Montzka et al., 2017; Vereecken et al., 2016; Verhoef and Egea, 2014). For 
example, approximately 60 % of rainfall is returned to the atmosphere through the soil-plant-atmosphere continuum (Katul et al., 
2012; Oki and Kanae, 2006), and > 50 % of the global biomass production and related carbon cycle depend on soil processes 
(Cleveland et al., 2013). 
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Water for agriculture is often unregulated and overexploited. In spite of this, the general belief is that by 2025 irrigated lands have 
to be extended by 20–30 % in order to meet global food demands (FAO, 2002). However, the world’s arable lands are degrading due to 
soil salinization, desertification, erosion, and urbanisation (FAO, 2002). In arid and semiarid areas water use efficiency is a major issue 
due to increasing cross-sector demand for limited water resources (Elshemy, 2018). Therefore, understanding soil hydrological 
behaviour is essential in the global drive to expand crop production (Abdelbaki et al., 2009). For example, drainage systems in arid and 
semiarid areas have been designed and installed to manage and control soil waterlogging and salinity problems in irrigation schemes. 
However, less than 30 % of all irrigated land needing drainage have been effectively drained (Schultz et al., 2007), and the situation is 
worse in least developed countries (OECD, 2020). According to Smedema et al. (2000), the proportion of agricultural land drained in 
developing countries is 5–10 % as compared to 25–30 % in developed countries. This is primarily due to a fundamental lack of data on 
key soil attributes needed as inputs to design drainage systems (Ayars and Evans, 2015). This paucity of data is often driven by the cost 
of sample collection and laboratory analysis and/or a lack of adequate laboratory resources. Historically, in many countries, soil data 
have been routinely gathered through soil surveys, yet such soil data rarely includes saturated hydraulic conductivity (Ksat), an 
essential parameter in drainage system design (Patil and Singh, 2016). 

Accurate quantification of Ksat, is essential for multiple aspects of agrohydrology (Zhang and Schaap, 2019). Saturated hydraulic 
conductivity, is used to quantify water movement through a unit cross-section of soil per unit time (Aimrun et al., 2004) and is used to 
design subsurface drainage systems, irrigation practices and for modelling agricultural and hydrological processes such as water 
movement and solute transport in the soil (Abdelbaki et al., 2009). Saturated hydraulic conductivity is also used in subsurface drainage 
models to determine drain spacing at specific drain depth (Bicknell et al., 2005; Chung et al., 1992; Ma et al., 2012; Skaggs, 1978; Van 
Dam et al., 1997). Thus, the accurate determination of Ksat is important as it influences the technical and economic feasibility of 
large-scale agricultural drainage projects. 

Saturated hydraulic conductivity can be estimated using either in-situ methods such as the Guelph permeameter (above water-table 
method) (Reynolds and Elrick, 1985) and the auger hole method (below water-table method) (Van Beers, 1958), or laboratory-based 
methods such as the constant head and falling head permeameters (Klute and Dirksen, 1986). However, Ksat is highly spatially variable 
over a range of scales e.g., plot, field and catchment (Hassler et al., 2014). Therefore, a large number of soil samples and measurements 
are required to accurately describe the hydraulic properties of an area of interest (Sobieraj et al., 2004). These measurements often are 
difficult, time-consuming and expensive (Fooladmand, 2011; Patil and Singh, 2016). In addition, due to time and financial constraints, 
researchers, planners and decision-makers in many countries especially in least developed countries are faced with inadequate data to 
work with (Ksat values are simply unavailable) (Patil et al., 2011, 2010). Consequently, multiple researchers have focused on devel-
oping indirect methods for estimating Ksat such as utilising Pedotransfer functions (PTFs) to estimate Ksat from more readily available 
soil measurement information (e.g., soil texture and bulk density) (Arrington et al., 2013; Dashtaki et al., 2010; Khodaverdiloo et al., 
2011). 

PTFs were first represented by empirical regression equations relating water and solute transport parameters to the fundamental 
soil properties that are accessible in soil survey databases (Cosby et al., 1984; Dane and Puckett, 1994; Julia et al., 2004; Puckett et al., 
1985). For example, Ahuja et al. (1986) developed an empirical equation to estimate Ksat from the effective porosity only, while Li et al. 
(2007) developed a PTF to estimate Ksat that required percentage (%) sand, silt and clay, bulk density (BD) and soil organic matter. 
However, Wösten et al. (2001) stated that future developments in PTFs would be derived from more accurate data mining tools such as 
Artificial Neural Networks (ANNs) and group methods of data mining techniques such as K-Nearest Neighbour, and support vector 
machine (SVM). 

K-Nearest Neighbour have been applied to predict precipitation (Huang et al., 2017), groundwater depth (Kombo et al., 2020) and 
crop yield (Jothi et al., 2020). Whereas SVM has also been applied to predict groundwater depth (Mallikarjuna et al., 2020) and the 
discharge coefficient of rectangular side weirs located on trapezoidal channels (Azimi et al., 2019). ANNs have been successfully 
applied to predict water-table depth and groundwater salinity at different drain depths and spacing (Nozari and Azadi, 2017), estimate 
soil salinity (Bouksila et al., 2010), and to predict evapotranspiration from limited meteorological data (Zanetti et al., 2007). ANNs 
have also been applied to predict sediment transport without sedimentation by combining ANNs with the Particle Swarm Optimization 
(PSO), Imperialist Competitive Algorithm (ICA), Genetic Algorithm (GA) and Decision Tree (DT) methods (Ebtehaj et al., 2020, 2018). 

Artificial Neural Networks have been shown to be more flexible and able to deal with multiple sources of input data as compared to 
PTF-based regression equations (Wösten et al., 2001). In the last two decades, ANNs have been utilised as a special class of PTFs using 
feed-forward or radial basis functions to approximate any continuous (nonlinear) function (Sobieraj et al., 2004). Detailed statistical 
and functional reports have been carried out to compare the performance between ANN-based PTFs and regression-type PTFs to 
predict Ksat on different datasets such as soil texture and BD (Agyare et al., 2007; Arshad et al., 2013; Parasuraman et al., 2006). Several 
authors have demonstrated that ANNs outperform regression techniques, especially when uncertainties in the quality of the data are 
small (Baker and Ellison, 2008; Merdun et al., 2006; Minasny and Mcbratney, 2002). Therefore, ANNs have the potential to be a more 
accurate approach to estimating Ksat as compared to more conventional PTF regression equations. 

This study aims to improve the prediction of saturated hydraulic conductivity (Ksat) in order to enhance the efficacy of drainage 
system design in data-poor areas utilising existing and currently under-utilised datasets. It is envisaged that this will reduce the overall 
cost of drainage system design making them more accessible to farmers, planners, and decision-makers in least developed countries. 
The objectives of this study were to: (1) develop ANNs to estimate Ksat, (2) compare the performance of applying ANNs as compare to 
regression-type PTF equations for the estimation of Ksat, and (3) evaluate the performance of drainage systems based on these two 
contrasting methods of estimating Ksat. 
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2. Material and methods 

2.1. Case study 

Data sets were generated for two established agricultural projects in Libya, Hammam Agricultural Project (HAP) and Eshkeda 
Agricultural Project (EAP), using seven years (1974–1981) of archived and under-utilised data from the General Authority of Water 
Resources in Libya. Both study areas are located in the southern part of Libya, north of the Sahara Desert. Both study areas are 
considered to be in the hyper-arid zone (FAO, 1989) with annual rainfall rarely exceeding 100 mm. There are no perennial rivers in the 
area of interest. Consequently, the only water source is paleo-groundwater from two aquifers. The Mezda and Murzuq aquifers are the 
source of irrigation for HAP and EAP respectively (Tantawi, 2000). 

The HAP, is located in the north-east part of Sokna Oasis (29◦04′01′′N 15◦47′05′′E) at an elevation of circa 270 m above sea level 
(asl). The HAP covers 1200 ha and is divided into 182 farms (6− 8 ha for each farm). The work on the project began in 1971, and the 
reclamation was completed in 1985. The HAP project has a drainage system designed in the 1970s. The soil texture in the HAP is highly 
variable with eight soil texture classes (Table 1). According to the USDA textural classification the HAP dataset can be classified as, 
sand (22.3 %), loamy sand (18.3 %), sandy loam (31.4 %), loam (0.6 %), sandy clay loam (21.0 %), clay loam (4.2 %), sandy clay (1.8 
%) and clay (0.4 %) (Soil Survey Division Staff, 1993) (see Table 1 for more details). The other project, EAP, is located north of Sabha 
city (27◦32′45′′N 14◦16′7′′E) at an elevation of 320 m asl. The project was initiated in 1975 and it became operational in the second 
half of 1976, with a drainage system being designed between 1979− 1981. The EAP covers 3000 ha and is divided into three subareas: 
Western Area (2000 ha), Central Area (600 ha) and Eastern Area (370 ha). In accordance with the installed irrigation wells, the area 
comprises 25 districts each with 12 farms of circa 10 ha each. The farms are sub-divided into two farmed plots, each 180 m by 234 m in 
size. Windbreaks have been planted between the farm plots and around the individual farms. The EAP dataset is associated with four 
soil texture classes dominated by sand (88.4 %) with 8.0 %, 3.4 % and 0.2 % of the set represented by loamy sand, sandy loam and 
loam, respectively (Table 1). 

2.2. Dataset description 

The data collected from the two project sites included particle size distribution (%sand (S), %silt (Si) and %clay (C)), bulk density 
(BD) (g cm− 3), %wilting point (WP), %field capacity (FC), and Ksat (m d-1), summarised in Table 1. Soil texture was measured using the 
hydrometer method following Bouyoucos (1927). The soil BD was measured following the methods described by Buckman and Brady 
(1960). Field capacity and wilting point were determined by tensiometers, using the method reviewed by Richards (1949). In the EAP 
Ksat was measured in the field using the average of four replications of the auger-hole method (Van Beers, 1958). In the HAP Ksat was 
measured in the laboratory using undisturbed samples following the constant head method (Klute and Dirksen, 1986). In total, for the 
HAP, there were 770 Ksat measurements (c. 1 measurement for every 2 ha) while for the EAP there were 442 Ksat measurements (c. 1 
measurement for every 5 ha). To facilitate ANN development and validation, in both EAP and HAP an area was randomly selected and 
designated as a ‘data-poor’ area for which Ksat measurements were assumed to be absent. In the EAP a 600 ha area in the central section 
of the scheme (5.0 km x 1.2 km) was selected as the ‘data-poor’ area whilst in the HAP a 500 ha area in the western section of the 
scheme (1.43 km x 3.5 km) was selected. The total number of Ksat measurement points in these designated ‘data-poor’ areas were 82 
and 158, in EAP and HAP respectively, which represent 20 % of the dataset for each site. The remaining areas of EAP and HAP were 
assumed to be ‘data-rich’ areas. The data from ‘data-rich’ areas was used to develop the ANNs to predict the Ksat in the designated 
data-poor areas. Data from the data-rich areas of each scheme were assigned into two groups based on the input requirements for the 
development of ANNs. The first group had limited parameters that included, S, Si, C, and BD as independent variables and Ksat as the 
dependent variable. The second group included the parameters in the first group as well as WP and FC. A statistical summary of the 
dataset used in this study is given in Table 1. 

Table 1 
Statistical summary of the dataset used in this research.   

Sand (%) Silt (%) Clay (%) BD (g cm− 3) FC (%) WP (%) Ksat (m d− 1) 

Project EAP HAP EAP HAP EAP HAP EAP HAP EAP HAP EAP HAP EAP HAP 
Min 66.0 25.0 1.0 1.0 1.0 1.0 1.1 1.6 14.0 2.2 1.5.0 0.7 0.1 0.1 
Max 98.0 98.0 36.0 46.0 10.0 41.0 1.9 2.0 23.0 44.0 14.0 14.0 24.0 38.0 
Average 92.6 73.0 4.7 13.5 2.8 14.0 1.5 1.9 18.5 18.0 8.3 5.6 5.3 7.2 
STDEV 4.0 15.5 3.0 7.8 1.8 10.6 0.2 0.1 1.6 7.0 2.3 2.2 4.5 8.2 
Median 94.0 72.0 4.0 14.0 2.0 11.0 1.5 1.9 18.5 17.5 8.5 5.5 3.7 4.2 

Percentage of samples associated with textural class 
Project S LS SL L SCL CL SC C 
EAP 88.4 % 8.0 % 3.4 % 0.2 % 0.0 % 0.0 % 0.0 % 0.0 % 
HAP 22.3 % 18.3 % 31.4 % 0.6 % 21.0 % 4.2 % 1.8 % 0.4 % 

Where: S is sand, LS is loamy sand, SL is sandy loam, L is loam, SCL is sandy clay loam, CL is clay loam, SC is sandy clay, and C is clay (Soil Survey 
Division Staff, 1993). 
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2.3. ANNs model development 

Artificial neural networks are a mathematical approach used to characterise synthetic neurons to solve complex problems in a 
similar way to that of the human brain (Agatonovic-Kustrin and Beresford, 2000). Since the 1940s, there has been growing interest in 
the study of neurological mechanisms and structures. That interest has led to the development of new computational models, linking 
systems or ANNs, based on biological processes that have been used to solve complex problems such as pattern recognition and rapid 
information processing and adaptation (Huang, 2009). ANNs use machine learning based on the principle of self-adjusting internal 
control parameters and can be used to recognise complex non-linear relationships between input and output datasets (Ayoubi et al., 
2011). 

ANNs are typically formed of three processing layers, namely an ‘input’, ‘hidden’ and ‘output’ layer (Fig. 1) (Chollet and Allaire, 
2017; Ghatak, 2019; More, 2018). The input layer consists of the selected independent variables. Each variable in the input layer is 
connected to the ‘hidden’ layer through a ‘weighting’ algorithm (Bell, 2015; Chollet and Allaire, 2017; Ghatak, 2019). In some cases, 
the weights given to each independent variable are generated randomly, in other cases, they are fine-tuned and trained through a 
process called backpropagation (Bell, 2015; Chollet and Allaire, 2017; Ghatak, 2019). Backpropagation quantifies the error at the 
output by comparing the currently derived outputs to the expected ones and modify the weights to reduce the error (Bell, 2015; Chollet 
and Allaire, 2017; Ghatak, 2019). The layer located between the input and the output layers is called the ‘hidden’ layer. The hidden 
layer may consist of more than one layer with each layer containing a number of units (a grouping of independent variables). These 
units, known also as ‘neurons’, are used to guide the processing of the data contained in the input layer and to generate computational 
connections between the input and the output layer. There is no specific formula to decide the number of units to be included in the 
hidden layer. It is generally problem-dependent, with the error tested by varying the number of units and layers in order to determine 
the appropriate number of units/layers to be used (Bell, 2015). The hidden layer is represented by a group of activation functions 
including linear functions, logistic functions and hyperbolic functions. Logistic and hyperbolic functions are mainly used in classifi-
cation problems, because they range between 0 and 1 or between -1 and 1, while the linear functions (infinity to infinity) are mainly 
used in regression problems (Ghatak, 2019). The output layer consists of a series of inverse functions, which are used to refine the 
training and calculate the difference between the output predictions and the measured Ksat, and to minimise error. One of the most 
widely used algorithms for this purpose is the backpropagation algorithm (Bell, 2015). Backpropagation was applied to develop the 
ANNs in this study. 

For the development of ANNs to predict Ksat in the designated data-poor areas within EAP and HAP, several processing steps were 
undertaken. The first step was to define a training dataset in order to develop the ANNs. The training dataset was based on 80 % of the 
data from the data-rich areas of the EAP and HAP (leaving 20 % of the data as the pseudo ‘data-poor area’ for testing purposes against 
the actual measured Ksat data from both sites). The second step was to define the appropriate network (number of layers and number of 
neurons in each layer). A sequential orthogonal approach (Sun, 2012) was adopted to determine the optimum number of neurons. This 
approach adds a neuron to the ‘hidden layer’ until the ANN with the smallest error is identified (Sun, 2012). The ANN with the smallest 
error in predicting Ksat within the data-rich area was subsequently applied to the data-poor area (using data from EAP and HAP that 
had not been used in the development of the model) to validate and test the performance of ANN by comparing the ANN predicted Ksat 
values with measured Ksat values. Table 2 shows the input parameters used to develop six ANN models to predict Ksat. All ANNs were 
developed for both HAP and EAP using two groups of input parameters. The first group of input parameters included %sand, %silt, % 
clay, bulk density, wilting point and field capacity were applied in ANN1, ANN3, and ANN5. ANN1 and ANN3 used data only from EAP 
and HAP respectively, and ANN5 used the combined data set from both EAP and HAP. The second group of input parameters included 
%sand, %silt, %clay and bulk density were applied in ANN2, ANN4, and ANN6. ANN2 and ANN4 used data only from EAP and HAP 

Fig. 1. Structure of an artificial neural network (based on Khademi and Jamal, 2016).  
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respectively, and ANN6 used the combined data set from both EAP and HAP. The reason for having two groups of input parameters is to 
assess the minimum data set required to predict Ksat accurately. 

The critical evaluation of the ability of the six ANN models developed in this study to accurately predict Ksat was undertaken in five 
steps. Step 1 used the training data (data-rich area) for site-specific ANN model training and the data from the designated data-poor 
areas as testing datasets. The best performing ANN model in terms of predicting Ksat in the designated data-poor areas was selected by 
applying three statistical parameters. These were: (1) coefficient of determination (R2) between the observed and predicted Ksat values 
for the data poor areas (e.g., best performance is equal to 1), (2) mean square error (MSE) and (3) root mean square error (RMSE) (Patil 
and Singh, 2016; Zhang and Schaap, 2019), which can respectively be defined mathematically as: 

R2 = 1 −

∑n

i=1
(Pi − Mi)

2

∑n

i=1

(
Mi − Mi

) (1)  

MSE =
1
n
∑n

i=1
(Pi − Mi)

2 (2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pi − Mi)

2

n

√
√
√
√
√

(3)  

Where n represents the number of soil samples, Mi is the measured Ksat, Pi is the predicted Ksat, and Mi is the mean measured Ksat. 
MSE and RMSE were used to give a quantitative indication of ANN model error in units of Ksat (the best performance value is zero). 

Step 2 tested the four site specific ANN models (Table 2) on data-rich areas only using a K-fold cross-validation technique (Bell, 2015; 
Ghatak, 2019). There are other cross-validation techniques such as, (1) validation set approach (where the data is divided randomly 
into two sets, one set to train the model and the other set to test the model), (2) Leave one out cross-validation (where one sub-set of the 
data point is left out, the model is built on the remaining data, and the model is tested using the ‘left out’ data sub-set) (Bell, 2015; 
Chollet and Allaire, 2017; Ghatak, 2019). In this study, the K-fold cross-validation method was applied. In the K-fold cross-validation 
technique, the training data (data from the pre-defined data-rich areas in both sites) were divided into ten randomly generated 
sub-sets. For EAP and HAP this resulted in ten randomly generated sub-sets of 36 and 61 data points respectively. During each K-fold 
cross-validation, nine sub-sets were combined and used as the ‘training sub-set’ and one part used as the ‘testing sub-set’. This process 
was repeated ten times “rotating out” a testing sub-set each time so that each sub-set used in each ANN was applied in the testing. For 
both EAP and HAP, this K-fold cross-validation process was also repeated, removing 10 data points from the dataset each time until 
only 10 data points remained. 

This approach was used to quantify the performance (ability to accurately predict Ksat) of each of the four site specific ANN models 
(Table 2) against the size of the training set used (Chollet and Allaire, 2017). This technique was used to quantify the ability of the 
ANNs to predict Ksat as the size of training set was reduced randomly and to also determine the ‘minimum’ training set required to 
develop the ANN. Step 3 of performance testing compared the outputs of the ANNs against outputs generated from traditional, widely 
adopted, empirical equations used to predict Ksat (Abdelbaki et al., 2009; Minasny and McBratney, 2000a) (Table 3). Step 4 evaluated 

Table 2 
The ANN models developed for the EAP and HAP study sites.  

ANN Model Inputs required Project name 

ANN1 %Sand, %Silt, %Clay, BD (g cm− 3), %FC, %WP, and Ksat (m d-1) EAP 
ANN2 %Sand, %Silt, %Clay, BD (g cm− 3), and Ksat (m d-1) EAP 
ANN3 %Sand, %Silt, %Clay, BD (g cm− 3), %FC, %WP, and Ksat (m d-1) HAP 
ANN4 %Sand, %Silt, %Clay, BD (g cm− 3), and Ksat (m d-1) HAP 
ANN5 %Sand, %Silt, %Clay, BD (g cm− 3), %FC, %WP, and Ksat (m d-1) EAP + HAP* 
ANN6 %Sand, %Silt, %Clay, BD (g cm− 3), and Ksat (m d-1) EAP + HAP* 

(ANN) Artificial Neural Network, (EAP) Eshkeda Agricultural Project, and (HAP) Hammam Agricultural Project. (WP) wilting point, (FC) 
field capacity, (BD) bulk density, (Ksat) saturated hydraulic conductivity, and *EAP + HAP = combined data set. 

Table 3 
Pedotransfer functions (PTF) widely adopted to predict saturated hydraulic conductivity (Ksat).  

Formula (cm hr− 1) PTF Code References 

Ksat = 15.696 EXP[-0.1975C] PTF-1 (Puckett et al., 1985) 
Ksat = 30.384 EXP[-0.144C] PTF-2 (Dane and Puckett, 1994) 
Ksat = 0.0920e0.0491*S PTF-3 (Julia et al., 2004) 
Ksat = 2.54 * 10(− 0.6+0.012*S – 0.0064*C) PTF-4 (Cosby et al., 1984) 

Where: C is the % clay, S is the % sand. 
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the performance of each developed ANNs to predict Ksat in the other site (non site-specific). For example, ANN1 and ANN2 were 
developed and tested in EAP and were applied to predict Ksat in HAP and ANN3 and ANN4 were developed and tested in HAP and were 
applied to predict Ksat in EAP. This step was added to evaluate the applicability of applying ANNs, developed in specific locations, to 
predict Ksat in new locations in Libya. In this example, the separation distance between ANN development and application was 225 km 
(i.e., the separation distance between EAP and HAP). Step 5 developed ANNs by combining the training datasets from the pre-defined 
data-rich areas of both EAP and HAP to predict Ksat in the pre-defined data-poor areas in EAP and HAP. This step was applied to 
evaluate the accuracy of ANNs based on larger combined datasets from multiple sites, compared to smaller but site-specific data sets, to 
predict Ksat. 

2.4. Application of ANNs to drainage design 

Drainage systems can be designed as either surface, subsurface or a combination of both surface and subsurface, depending on the 
prevailing conditions in the area and crops grown (Luthin, 1978). This study focused on subsurface drainage which is used in both EAP 
and HAP. The determination of appropriate spacing and depth of drains are the main parameters in the design of subsurface drainage 
systems that need to be considered (Luthin, 1978). A number of drainage theories and associated equations for designing subsurface 
drainage systems have been developed (Dagan, 1965; Dumm, 1960, 1954; Hooghoudt, 1940, 1937; Kirkham, 1958; Luthin and 
Worstell, 1959; van Schilfgaarde, 1963). These equations were developed to relate the spacing and depth of drains to water-table depth 
and drawdown rates. Methods have been developed to design drainage systems under steady or non-steady state (see reviews by van 
der Ploeg et al. (1999) and Youngs (1999)). EnDrain (Drainage computer program released by Prof. Oosterbaan in the Netherlands) 
was applied to design drainage systems in the designated data-poor areas of both EAP and HAP using Ksat derived from the ANNs 
developed in this study (Table 2) as compared to widely adopted PTFs (Table 3) and the actual measured Ksat for these data-poor areas. 
EnDrain uses Eq. (4), described by Hooghoudt (1937; cited in Ritzema (1994)), to calculate the distance between drains and the depth 
of the water-table at the midpoint between two drains (Oosterbaan, 1993): 

L2 =
8∙Kb∙d∙h + 4∙Ka∙h2

q
(4)  

Where L is drain spacing (m), q is the steady-state drainage discharge rate (m d− 1), Ka is the hydraulic conductivity of the soil above 
drain level (m d− 1), Kb is the hydraulic conductivity of the soil below drain level (m d− 1), h is the height of water-table above the water 
level in the drain (m), d is the equivalent depth which is a function of the spacing (L), the depth (in m) of impervious layer below the 
drain (Di-Dd in Fig. 2), and the radius (r) of the drain (m). Values for d can be found in tables presented by Hooghoudt (1940).Van der 
Molen and Wesseling (1991) developed this further to calculate series solutions for multiple equivalent depths. 

EnDrain requires two values of Ksat one from above the drain level and one from below the drain level. Therefore, a representative 

Fig. 2. Schematic of subsurface drainage system indicating input parameters for EnDrain and Eq. 4. (Di) depth from the surface to impermeable 
layer, (Dd) depth of drain from surface, (Dm) water-table depth from surface, (h) height of water-table above water level in drain, (Ka) saturated 
hydraulic conductivity above the drain, (Kb) saturated hydraulic conductivity below the drain, (d) drain diameter and (L) is the spacing be-
tween drains. 
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Ksat was required as an input to EnDrain. According to Luthin (1978), the geometric mean (Kg) gives the best representative Ksat for a 
study area. Therefore, representative Kg values for EAP and HAP were generated for input to EnDrain. Eq. (5) illustrates how the 
geometric mean was calculated and Table 4 shows the different calculations of Kg based on the project area and the source of Ksat (e.g., 
Ksat derived from ANNs): 

Kg =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ksat1∙Ksat2∙Ksat3∙KsatN

N
√

(5)  

Where the geometric mean (Kg) is found by multiplying the values of Ksa (Ksat1 is the Ksat value for sample 1, Ksat2 is Ksat value of sample 
2 and so on to N number of values) and then the Nth root of the product of those values is then found (Nth root is equal to the number of 
values). 

Water-table depth based on ANN and PTF generated Kg values (Table 4) was compared with water-table depth based on Kg values 
generated from measured Ksat (Kg1 and Kg 8 in Table 4). The value of R used in EnDrain was the average water requirement for date 
palm (Phoenix dactylifer) and alfalfa (Medicago sativa). Date palm was chosen because it is considered to be the most profitable crop for 
the south of Libya (Elmeer et al., 2016). Alfalfa was adopted as it is grown as a fodder for livestock in both EAP and HAP. The average 
water requirements for date palm is 0.02 m d− 1 in EAP and 0.007 m d− 1 in HAP, and for alfalfa are 0.01 m d− 1 for EAP and 0.006 m d− 1 

for HAP. These values were taken from an unpublished report based on work undertaken by the Libyan Government in 1999 (General 
Water Authority, 1999). Site investigations of soil properties were undertaken at both sites between 1974–1980 in HAP by Danenco 
(1980) and Holzmann-Wakuti (1974) and between 1976–1981 in EAP by ITALCONSULT (1976) and Cornelius-Brochier (1981), to 
design agricultural projects including drainage systems in these areas. The following data were taken from these reports: The average 
depth of the impermeable layer for both EAP and HAP was assumed to be 1.5 m, two soil layers were assumed with two different Ksat 
values with depth, and the depth of water-table was set at 0.5 m. The vertical Ksat and the horizontal Ksat were assumed to be equal 
(Hess et al., 1992). Table 5 shows the input parameters applied in EnDrain. Fig. 2 is a schematic representation of a subsurface drainage 
system and provides an explanation of the input parameters used in Table 5 and Eq. 4. 

Finally, an economic analysis was conducted to calculate the initial cost of installing each drainage system in the designated data- 
poor areas using the measured Kg as well as ANNs and PTFs generated Kg values. The cost of drains installed was assumed to be $2.62/ 
m according to Skaggs (2007). 

2.5. Software used 

The data was analysed using several software packages. The development of the ANNs utilised a neuralnet package in R (Stefan and 
Guenther, 2019). Pedotransfer function equations (Table 3) used to predict Ksat and the representative Ksat (Kg) were calculated in 
Microsoft EXCEL (2016). Finally, subsurface drain spacing, and depth of water-table were calculated using EnDrain (Oosterbaan, 
1993). 

3. Results 

3.1. Performance of site-specific ANNs and cross-validation 

The structure of each of the site-specific ANN models developed in this study, and their Step 1 performance evaluation are pre-
sented in Table 6. All ANNs were able to predict, based on R2, between 0.89− 0.96 of the variability in Ksat in the designated data-poor 
areas of EAP and HAP. As expected, the ANN models performed better when using the training data than when the testing data was 
used. In HAP, the R2 was slightly better in the testing section (R2 = 0.96 and 0.95) than in the training section (R2 = 0.94 and 0.93; 

Table 4 
Ksat geometric means (Kg) derived from the ANN and PTF models evaluated in this study and used as input parameters to design a sub-surface drainage 
system using EnDrain.  

Project name Kg Code Source of Ksat data Kg Above drain level (Adl) Kg Below drain level (Bdl) 

EAP 

Kg1 Measured Ksat Kg-Adl-1 Kg-Bdl-1 
Kg2 Ksat from ANN1 Kg-Adl-2 Kg-Bdl-2 
Kg3 Ksat from ANN2 Kg-Adl-3 Kg-Bdl-3 
Kg4 Ksat from PTF-1 Kg-Adl-4 Kg-Bdl-4 
Kg5 Ksat from PTF-2 Kg-Adl-5 Kg-Bdl-5 
Kg6 Ksat from PTF-3 Kg-Adl-6 Kg-Bdl-6 
Kg7 Ksat from PTF-4 Kg-Adl-7 Kg-Bdl-7 

HAP 

Kg8 Measured Ksat Kg-Adl-8 Kg-Bdl-8 
Kg9 Ksat from ANN3 Kg-Adl-9 Kg-Bdl-9 
Kg10 Ksat from ANN4 Kg-Adl-10 Kg-Bdl-10 
Kg11 Ksat from PTF-1 Kg-Adl-11 Kg-Bdl-11 
Kg12 Ksat from PTF-2 Kg-Adl-12 Kg-Bdl-12 
Kg13 Ksat from PTF-3 Kg-Adl-13 Kg-Bdl-13 
Kg14 Ksat from PTF-4 Kg-Adl-14 Kg-Bdl-14 

(Ksat) saturated hydraulic conductivity, (Kg) geometric mean of Ksat, (PTF) pedotransfer function, (ANN) Artificial Neural Network, (EAP) Eshkeda 
Agricultural Project, and (HAP) Hammam Agricultural Project. 

M.A. Ellafi et al.                                                                                                                                                                                                       



Journal of Hydrology: Regional Studies 35 (2021) 100832

8

Table 6). 
Generally, the ANNs developed in this study showed that there was little difference in performance between the ANNs as R2 ranged 

from 0.89− 0.90 in EAP and 0.95–96 in HAP. According to the performance results in Table 6, models ANN1 and ANN3 performed 
better than both ANN2 and ANN4. Even though, the number of data points in the ANNs developed for EAP (for training and testing) 
were almost half the number used in the ANNs developed for HAP (360 in EAP and 610 in HAP), the RMSE and MSE values for the EAP 
ANNs indicate that they are more accurate. 

The results of the Step 2 K-fold cross-validation are shown in Fig. 3. Fig. 3a shows the median RMSE across the ten randomly 
generated sub-sets (dark line inside the boxplot) when the size of training set is fixed to the maximum size (360 in EAP and 610 in 
HAP). In Fig. 3a it can be noted that the median RMSE for ANN1, ANN2, ANN3, and ANN4, were 1.65, 0.40, 1.80, and 1.40 m d− 1, 
respectively. Also, the minimum and maximum RMSE ranged between 1.37–1.84, 0.10–1.40, 1.30–8.10 and 0.30–2.70 m d− 1 in 
ANN1, ANN2 ANN3 and ANN4, respectively. These results showed that the developed ANNs for both EAP and HAP were in the range of 
the 10-fold cross-validation. Therefore, the training dataset (from the data-rich areas) was effectively used to develop ANNs able to 
predict Ksat. Fig. 3b indicates how RMSE varies with the size of training dataset. As indicated by the low median RMSE values, the best 
performing ANNs were developed when the full dataset was used in the training phase (Fig. 3b). However, for both EAP and HAP, even 
if the training set was reduced to 50, the ANNs were still able to accurately predict Ksat (Fig. 3b). 

3.2. Performance of PTFs and non-site-specific ANNs 

Four PTFs that are widely adopted to predict Ksat were applied to predict Ksat in the designated data-poor areas of EAP and HAP 
(Table 3). In relation to RMSE and MSE, PTF-2 (developed by Dane and Puckett, 1994) performed better than the other PTFs in both 
EAP and HAP (Table 7). However, it is critical to note that all the PTFs were between 2–5 times less accurate at predicting Ksat than the 
site-specific ANNs. For example, the RMSE values of PTF-2 were 4.19 and 12.72 m d− 1 for EAP and HAP, respectively. In contrast, the 
RMSE for all the site-specific ANNs applied to EAP and HAP ranged from 1.92 to 2.82 m d− 1. Further, the MSE for the PTFs applied in 
EAP and HAP ranged from 17.60–225.00 m d− 1. In contrast, the MSE for the site-specific ANNs applied in EAP and HAP ranged from 
3.69 to 7.97 m d− 1. For the combined ANNs (ANN5 and ANN6), the accuracy was better than the PTFs but slightly less (3 times less 
accurate) than the site-specific ANNs. For example, ANN5 in RMSE was 2.11 m d− 1 while in ANN1 was 1.92 m d− 1, while ANN6 was 
6.09 m d− 1 in predicting Ksat in EAP. Finally, for the non-site-specific ANNs, the accuracy was less than all other ANNs and PTFs with 
the highest RMSE and MSE values of 15.88 and 252.23 m d− 1, respectively, in ANN4 for predicted Ksat in EAP. 

Figs. 4 and 5 show the accuracy of the PTFs specific and non-site-specific ANNs in predicting Ksat within the data-poor areas of EAP 
and HAP. The 1:1 line represents the line of perfect agreement between the predicted and the measured values of Ksat. It is of note that 
the predicted Ksat of the site-specific ANNs all closely comply with the 1:1 line. The results indicate that the site-specific ANNs were 
significantly better at predicting the observed Ksat values compared to those predicted by the PTFs and non-site-specific ANNs applied 

Table 5 
Input parameters for EnDrain required to design a subsurface drainage system for EAP and HAP.  

Input parameter Units EAP HAP  

Date palm Alfalfa Date palm Alfalfa 

Time average recharge (R) m d− 1 0.02 0.01 0.007 0.006 
Depth to the impermeable layer from surface (Di) m 1.5 1.5 1.5 1.5 
Depth water level in drain from surface (Dm + h) m 0.9 0.9 0.9 0.9 
Depth of drain bottom from surface (Dd) m 1.0 1.0 1.0 1.0 
Diameter of drain (d) m 0.2 0.2 0.2 0.2 
Depth water-table midway between drains (Dm) m 0.5 0.5 0.5 0.5 

Source of data: (Cornelius-Brochier J.V, 1981; Danenco, 1980; General Water Authority, 1999; Holzmann-Wakuti, 1974; Italconsult, 1976). (EAP) 
Eshkeda Agricultural Project, (HAP) Hammam Agricultural Project. 

Table 6 
Structure performance evaluation of the ANNs implemented in the designated data-poor areas of EAP and HAP.  

Model 
name 

Project 
name 

Model 
Structure* 

Training Testing 

Number of 
samples 

RMSE m 
d− 1 

MSE m 
d− 1 

R2 Number of 
samples 

RMSE m 
d− 1 

MSE m 
d− 1 

R2 

ANN1 EAP 6:1:1 360 1.40 1.98 0.95 82 1.92 3.69 0.90 
ANN2 4:2:1 360 1.53 2.35 0.94 82 2.00 4.03 0.89 
ANN3 

HAP 
6:4:4:1** 610 2.29 5.26 0.94 158 2.78 7.76 0.96 

ANN4 4:5:1 610 2.52 6.36 0.93 158 2.82 7.97 0.95  

* Model structure is the structure of the ANNs, for example 6:4:1, 6 is the number neurons representing the input parameters, 4 is the hidden layer 
neurons, and 1 is the output of the model. 

** 6:4:4:1 means that model has two hidden layers with 4 neurons in each layer. (PTF) Pedotransfer function, (ANN) Artificial Neural Network, 
(EAP) Eshkeda Agricultural Project, (HAP) Hammam Agricultural Project, (R2) coefficient of determination, (RMSE) Root Mean Square Error, and 
(MSE) Mean Square Error. 
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to EAP and HAP. For example, for the highest EAP observed Ksat value in EAP of 21.90 m d− 1, PTF-1, PTF-2, PTF-3 and PTF-4 predicted 
Ksat values of 2.10, 4.70, 2.20 and 2.00 m d− 1, respectively. This is an underprediction of one order of magnitude. In contrast, for the 
same sample (21.90 m d− 1) ANN1 and ANN2 predicted values of 22.40 and 24.50 m d− 1 respectively. While ANN3 and ANN4 
(developed to predict Ksat in HAP) overpredict Ksat in EAP with the highest value of prediction 42.20 and 29.80 m d− 1 respectively. 
Furthermore, in EAP the measured Ksat ranged between 0.60 to 21.90 m d− 1, whereas the prediction values of Ksat for all PTFs ranged 

Fig. 3. (a) Boxplots of the median Root Mean Square Error (RMSE) for the Artificial Neural Networks (ANN1-ANN4) models developed for Eshkeda 
Agricultural Project (EAP) and Hammam Agricultural Project (HAP). (b) The median RMSE for the size of training used in the development of the 
ANNs for EAP and HAP. 
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from 1.20 to 6.30 m d− 1. In contrast, the non-site-specific, Ksat ranged between 7.00 to 42.20 m d− 1. While, in EAP the predicted Ksat 
values for the site-specific ANNs ranged from 0.60 to 25.30 m d− 1. A similar pattern was observed in the HAP (Fig. 5), where the 
measured Ksat ranged between 0.40 to 38.00 m d− 1, whereas the prediction values for all PTFs ranged between 0.03 to 6.30 m d− 1, and 

Table 7 
The comparative performance of PTFs and ANNs in predicting Ksat in the designated data-poor areas of EAP and HAP.  

Model name EAP (82 data points) HAP (158 data points)  

RMSE MSE R2 RMSE MSE R2 

PTF-1 5.38 29.00 0.00 14.80 218.00 0.73 
PTF-2 4.19 17.60 0.00 12.70 162.00 0.74 
PTF-3 5.56 31.00 0.01 14.80 220.00 0.90 
PTF-4 5.72 32.80 0.00 15.00 225.00 0.88 
ANN1 1.92 3.69 0.90 15.14 229.00 ¡0.26 
ANN2 2.00 4.03 0.89 15.47 239.00 0.79 
ANN3 7.26 201.87 0.07 2.78 7.76 0.96 
ANN4 15.88 252.23 0.01 2.82 7.97 0.95 
ANN5 2.11 4.47 0.77 3.39 11.51 0.88 
ANN6 6.09 37.11 0.70 4.42 19.61 0.83 

(PTF) Pedotransfer function, (ANN) Artificial Neural Network, (EAP) Eshkeda Agricultural Project, (HAP) Hammam Agricultural Project, (R2) co-
efficient of determination, (RMSE) Root Mean Square Error, and (MSE) Mean Square Error. 

Fig. 4. Predicted Saturated hydraulic conductivity (Ksat in m d− 1) versus observed Ksat (m d− 1) of Pedotransfer Functions (PTF-1 to PTF-4) and 
Artificial Neural Networks (ANN1 to ANN6) in Eshkeda Agricultural Project (EAP). 
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for non-site-specific ANNs ranged between 0.01 to 3.50 m d− 1. In contrast, the site-specific ANNs Predicted Ksat in HAP ranged in value 
between 0.20 to 27.70 m d− 1. However, the site-specific ANNs used to predict Ksat in HAP were unable to accurately predict Ksat when 
the measured Ksat was ≥ 30.00 m d− 1. These ANNs underestimate the Ksat values ≥30.00 m d-1 by 10–30 %. However, only 6 samples 
(out of 158) had a Ksat value of ≥30.00 m d− 1. It can be noted that the PTFs tend to under-predict the Ksat values when the observed 
measurements exceed 6.00 m d− 1 and 2.00 m d− 1, in EAP and HAP respectively. Additionally, it is of note that ANN1 (Fig. 4) and ANN3 
(Fig. 5) show slightly better compliance with the 1:1 line in comparison to ANN2 (Fig. 4) and ANN4 (Fig. 5). Also, ANN5 and ANN6 
showed a comparable prediction to the ones obtained by the site-specific ANNs where Ksat values ranged between 0.70 to 23.20 m d− 1 

in EAP and 0.50 to 30.80 m d− 1 in HAP. However, ANN6 was slightly less accurate in predicting Ksat especially the observed values of 
>15 m d− 1. 

3.3. Drain spacing and water-table depths 

Eq. 5 was used to estimate the Kg for the different scenarios presented in Table 4, the results of which are given in Table 8. Esti-
mation of Kg was made above (Adl) and below (Bdl) the drain level. These estimated values of Kg were applied in EnDrain to predict the 
drain spacing and water-table depths for the designated data-poor areas of EAP and HAP. Measured Ksat values used to calculate Kg 
(EAP Kg1 and HAP Kg8), resulted in a drain spacing between two drains of 24.7 m (date palm) and 34.9 m (alfalfa), and 56.0 m (date 
palm) and 60.5 m (alfalfa), for EAP and HAP respectively. In general, Kg derived from the four ANNs Ksat predictions had the lowest 
variation in distance between drains compared to the target value based on measured data (Kg1 and Kg8). For EAP, the % variation in 
drain spacing from the target for ANN1 and ANN2 was for date palm, 1.1 and 4.6 % respectively. In contrast, for the PTFs (Kg 4–7) % 
variation in drain spacing from the measured data ranged from 28.6 to 36.8% (Table 8). For HAP, the % variation in drain spacing from 

Fig. 5. Predicted Saturated hydraulic conductivity (Ksat in m d− 1) versus observed Ksat (m d− 1) of Pedotransfer Functions (PTF-1 to PTF-4) and 
Artificial Neural Networks (ANN1 to ANN6) in Hammam Agricultural Project (HAP). 
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Table 8 
Performance of PTF and ANN models in terms of variance (%) from target drain spacing (m) and water-table depth (m) when applied to the designated data poor areas of EAP and HAP.  

Drainage Project Kg Code Data source 

Spacing (m) % variation from the target design Initial installation costs (USD$ 1000′s) Variation in water-table 
depth (cm) with respect 
of spacing and Kg 

measured 

Kg Above drain level (Adl) 
(m d− 1) 

Kg Below drain level 
(Bdl) (m d− 1) Date palm Alfalfa Date palm Alfalfa Date palm Alfalfa 

EAP (600 ha) 

Kg1 Measured Ksat 24.7 34.9 0% 0% 638.0 450.0 50.0* 2.6 5.6 
Kg2 Ksat from ANN1 24.4 34.5 1.3 % 1.1 % 645.0 456.0 51.0 3.0 5.3 
Kg3 Ksat from ANN2 25.7 36.5 4.0% 4.6 % 610.0 431.0 47.0 3.1 6.0 
Kg4 Ksat from PTF-1 16.2 22.9 34.4 % 34.4 % 975.0 685.0 71.3 2.1 2.1 
Kg5 Ksat from PTF-2 17.6 24.9 28.7% 28.6 % 896.0 632.0 68.2 2.1 2.6 
Kg6 Ksat from PTF-3 16.4 23.2 33.6% 33.5 % 962.0 676.0 70.9 2.0 2.2 
Kg7 Ksat from PTF-4 15.6 22.1 36.8 % 36.7 % 1010.0 711.0 72.6 1.8 2.0 

HAP (500 ha) 

Kg8 Measured Ksat 56.0 60.5 0% 0% 238.0 220.0 50.0* 11.2 4.5 
Kg9 Ksat from ANN3 47.0 50.8 16 % 16 % 275.0 257.0 50.3 11.5 4.3 
Kg10 Ksat from ANN4 46.4 50.1 17.1% 17.2 % 284.0 266.0 51.0 11.2 4.2 
Kg11 Ksat from PTF-1 12.8 13.8 77.1% 77.2 % 1027.0 954.0 85.0 1.2 0.2 
Kg12 Ksat from PTF-2 23.4 25.3 58.2 % 58.2 % 559.0 514.0 75.9 3.1 1.0 
Kg13 Ksat from PTF-3 19.2 20.9 65.7% 65.5 % 679.0 624.0 79.7 1.5 0.9 
Kg14 Ksat from PTF-4 20.1 21.6 64.1% 64.3 % 651.0 605.0 79.1 1.5 1.0  

* target depth of water-table (Cornelius-Brochier J.V, 1981; Danenco, 1980; Holzmann-Wakuti, 1974; Italconsult, 1976). (Ksat) saturated hydraulic conductivity, (Kg) geometric mean of Ksat, (PTF) 
pedotransfer function, (ANN) Artificial Neural Network), (EAP) Eshkeda Agricultural Project, and (HAP) Hammam Agricultural Project. 
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the measured data for ANN3 and ANN4 was 16.0 and 17.2 % respectively. In contrast, for the PTFs (Kg 11–14) % variation in drain 
spacing from the measured data ranged from 58.2 to 77.2%. The target depth of water-table for EAP and HAP was 50 cm from the soil 
surface (as obtained by Kg1 and Kg8). Generally, the variation of water depth based on Kg derived from the four ANNs were closer to the 
target water-table depth with % variation ranging between 2.0–6.0% and 0.6–2.0%, in EAP and HAP respectively. In contrast, the % 
variations in water depth for the PTFs compared to the target design ranged from 27.0 to 31.0% in Kg (4–7) and 34.0–41.0% in Kg 
(11–14). 

The estimation of the initial cost of installing a drainage system in the designated data-poor areas of EAP (600 ha) and HAP (500 ha) 
using measured Kg1 and Kg8 (Table 8) was US$ 638,000 and US$ 450,000 in EAF and US$ 238,000 and US$ 220,000 in HAP, for date 
palm and alfalfa, respectively. The results show that for both EAP and HAP, installing drainage schemes based on Ksat derived from 
ANNs is more economical than designs using Ksat derived from PTFs. In EAP Kg2 derived from ANN2 resulted in only a 1.1 and 1.3 % 
increase, compared to measured data, in initial installation costs for date palm and alfalfa, respectively (Table 8). In contrast, Kg3 
derived from ANN3 resulted in a 4.4 % and 4.3 % decrease in initial installation costs, compared to measured data, for date palm and 
alfalfa respectively. In HAP, Kg9 and Kg10 derived from ANN3 and ANN4 result in a 15.5–19.3% and 16.8–20.9% increase in initial 
installation costs, compared to measured data, for date palm and alfalfa respectively. In contrast, Kg11− 14 derived from PTFs 1–4 
result in substantial 234.0–431.0% and 233.0–433.0% increases in initial installation cost, compared to measured data, for date palm 
and alfalfa respectively. 

In comparison to the initial drainage costs calculated based on measured data, the extra initial cost of designing drainage systems in 
EAP and HAP using Kg2, Kg3, Kg9, and Kg10 ranges between $6,000 to $46,000. In contrast, the extra initial cost of designing drainage 
systems in EAP and HAP using Kg values derived from PTFs is an order of magnitude higher ranging from $182,000 to $790,000. 

4. Discussion 

4.1. Development of ANNs 

All site-specific ANNs developed in this study were able to accurately predict Ksat (see Figs. 4 and 5). In this study, to predict Ksat 
values of soils in designated data-poor areas of EAP and HAP, ANNs were developed using selected key input variables. The input 
parameters for models ANN2 and ANN4 (% S, Si and C and BD) do not describe the structure or connectivity of void spaces in soil, 
therefore, they do not explain the connections between soil structures and functions very well (Nemes et al., 2003; Pachepsky et al., 
2006). Anderson and Bouma (1973) found that an excellent prediction (as close as possible to the observed values) of Ksat can be 
obtained when pore space is measured directly. Therefore, the ANNs that also include FC and WP (ANN1 and ANN3) increased the 
accuracy of prediction of Ksat in comparison to ANN2 and ANN4 (see Figs. 4 and 5). 

The K-fold cross-validation was undertaken to estimate the test error rate within the training dataset in order to confirm the 
confidence of applying the developed ANN to the designated data-poor areas. The results presented in Fig. 3b show that for areas with 
similar soil characteristics to EAP and HAP the number of Ksat measurements required to generate an accurate ANN can be reduced to 
circa 50 (taking into account the total area of each scheme ranging between 1000–3000 ha). These results support the findings of Yang 
(1995) where the quality of an ANNs training dataset is more important than the quantity of values used. This can be seen in mis-
prediction of Ksat values of 30.0 m d− 1 or above in ANN3 and ANN4, when the highest measured Ksat value used to develop these ANNs 
was 28.0 m d− 1. In addition, Yang (1995) added that, if the model was trained with a full range of expected situations, then It would 
require fewer input values to develop the training dataset, which means having all the expected values of the dependent variable 
within the training dataset. For example, in this study, Ksat was the dependent variable needed to be predicted for a specific location 
(data-poor area). By having all ranges of Ksat within the training dataset, the developed ANN will be more accurate. 

Generally, the non-site-specific ANNs failed to accurately predict Ksat in EAP and HAP. In EAP, ANN3 and ANN4 over-predict Ksat 
especially the measured values between 0.6 to 10.0 m d− 1. Whereas in HAP, ANN1 and ANN2 under-predict Ksat. These results show 
that an ANN developed in a specific location may not be transferrable to another location even within the same pedoclimatic region. 
However, the combined ANNs (ANN5 and ANN6) illustrate that soil datasets based on more than one location are able to accurately 
predict Ksat. 

4.2. PTFs performance 

The PTFs applied in this study failed to accurately predict Ksat values especially for values ≥10.0 m d− 1, which represent 15.0 % and 
54.0 % of the designated data-poor areas in EAP and HAP respectively. This is due to the PTFs evaluated being developed (trained and 
tested) for very different soils. For example, the dataset sources used to develop PTF-1, PTF-2 and PTF-4 were US soils, while the 
dataset source used to develop PTF-3 was from Spain (Cosby et al., 1984; Dane and Puckett, 1994; Julia et al., 2004; Puckett et al., 
1985). Critically, the soil texture classes used to develop the PTFs were different to the dominant soil textures in EAP and HAP. For 
example, the percentage of the dataset associated with sand and loamy sand in EAP was 96.4 % (Table 1), while the percentage of these 
soil textures in the dataset used to develop PTF-1, PTF-2, PTF-3 and PTF-4 were 14.0 %, 53.0 %, 1.1 % and 3.0 %, respectively. 
Similarly, the combined percentage of sand, loamy sand and sandy loam soils in HAP was 72.0 %. In contrast, the combined percentage 
of these soil texture classes in the dataset used to develop PTF-1, PTF-2, PTF-3 and PTF-4 were, respectively, 38.0 %, 60.0 %, 7.0 % and 
11.6 %. Consequently, the Ksat values predicted using the PTFs were poorly correlated to the measured values of Ksat. In fact, the PTFs 
predicted Ksat with values ranging between 0.002–6.3 m d− 1 while the measured values ranged between 0.4–38.0 m d− 1. The PTFs 
underestimated Ksat by 83.0–99.0%. Consequently, at both EAP and HAP, the Ksat values predicted by the PTFs was significantly less 
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accurate than those predicted using ANNs. These results support the findings of Pringle et al. (2007), who found that all 
regression-based PTFs naturally tend to smooth the predicted values. The underestimation of Ksat by the selected PTFs is predominantly 
due to differences in soil texture. The soil texture classes in the dataset used to develop PTF-1, PTF-2, PTF-3 and PTF-4 were dominated 
by fine textured classes such as loam, sandy clay loam, clay loam, sandy clay and clay (Cosby et al., 1984; Dane and Puckett, 1994; 
Julia et al., 2004; Puckett et al., 1985). 

PTF-2, developed by Dane and Puckett (1994) as compared to the other PTFs had low RMSE (22.0–27.0% and 14.0–15.0% in EAP 
and HAP respectively) and low MSE (39.0–46.0% and 26.0–28.0% in EAP and HAP respectively) in predicted Ksat. This observation 
agrees with the findings of Minasny and McBratney (2000a), where PTF-2 gave better prediction of Ksat for sandy soils compared to 
other PTFs. In addition, this is due to the soil texture classes in the dataset used to develop PTF-2 that comprised 53.0 % sandy and 
loamy sand and 60.0 % sandy, loamy sand and sandy loam. However, it is known that PTFs are not as reliable in their predictions when 
applied to different soils beyond the geomorphological and pedoclimatic region or soil texture from which it was originally derived 
(Minasny and McBratney, 2000b; Tietje and Hennings, 1996). Therefore, it was advised by Wösten (1997); Nemes (2015) and Van 
Looy et al. (2017) that PTFs should only be applied to the same pedoclimatic conditions from where they were developed. Nemes et al. 
(2003) suggested that it is better to use a small set of relevant data to develop PTFs, than to use a large and irrelevant data set for a 
specific area. Moreover, the application of PTFs in estimating Ksat at a specific location that contains different dominant soil textures 
might yield results with very limited accuracy and relevance if these structural features are disregarded (Lin et al., 1999; Vereecken 
et al., 2010). These PTFs will therefore be of limited use for estimating water transport in a specific field and/or a specific zone within a 
field (Parasuraman et al., 2006). The results of the current study corroborate these findings. Therefore, for field-scale application 
purposes, developing PTFs from a small set of relevant site-specific data may turn out to be more successful than using PTFs derived 
from a large but more general dataset where locally specific conditions such as structural features might be missing (Nemes et al., 
2003). For the study areas (EAP and HAP) the developed ANNs are a more appropriate and accurate way of estimating Ksat than 
adoption of existing PTFs. 

4.3. Drainage design implications 

In EnDrain Ksat was the only parameter that varied in each design, all other parameters remained constant. An underestimation of 
Ksat by the PTFs resulted in an underestimation of the geometric mean (Kg) by 31.0%–96.0% from the measured Ksat, in EAP and HAP, 
respectively. The consequence of this was a 29.0–37.0% and 58.0–77.0% shorter predicted distance between drains in EAP and HAP, 
respectively. A drainage design based on these predictions will have: (1) a lower than expected water level, and (2) have a higher 
drainage density. Such a design will incur significant extra initial cost as well as increased maintenance costs, compared to a design 
based on measured data. However, the drainage designs based on ANNs predictions gave drain spacing’s and water-table depth 
equivalent to the target water-table depth, meaning the initial cost and subsequent maintenance costs would be almost equivalent to 
that based on measured data. For EAP this variation ranged between -4.4 – 1.3 % and in HAP between 14.4–17.3% respectively. This 
makes the use of ANNs to design drainage systems significantly more economical than the PTFs. Consequently, the ANNs developed in 
this study have considerable potential to reduce the cost of the design and maintenance of drainage systems as compared to the 
adoption of PTFs and are a less time-consuming alternative to traditional soil sampling and analyses for a specific area. Therefore, so 
long as the increase in installation cost in EAP and HAP is less than the saving made in the sampling and analytical programmes, 
adoption of ANN1–4 is cost-effective. In addition, ANN development indicates that if site-specific ANNs are to be developed, the 
number of soil samples required to create an accurate ANN can be substantially reduced. Finally, the results in Table 8 show that the 
Ksat derived from ANNs can be applied to the design of a drainage system that would maintain the water-table depths at equivalent 
depths to directly measured data (differences from the target designs ranged between 1.0–6.0% in EAP and HAP) providing those 
models are developed using datasets that meet at least the minimum quantity and quality requirements. In contrast, designs based on 
PTFs predictions would result in a water-table depth that differed from the target design. In EAP the difference from the target value 
ranged between 27.0–30.0% and in HAP ranged between 34.0–41.0%. 

5. Conclusions 

ANNs as an indirect method of predicting Ksat have been applied by several researchers (Agyare et al., 2007; More and Deka, 2018; 
Schaap et al., 2001; Sedaghat et al., 2016). As a rapid and reliable method, it shows good potential, but its accuracy is dependent on the 
quality and quantity of the dataset used to develop the ANN. In this research, ANNs were applied to predict Ksat in designated data-poor 
areas of two case study drainage schemes located in the south of Libya. It was possible to demonstrate that ANNs developed using easily 
measured existing and under-utilised data such as the % of sand, silt and clay, bulk density, field capacity and wilting point, were able 
to provide highly accurate predictions of Ksat. It was also shown that Ksat predictions based on ANNs were significantly more com-
parable to measured Ksat results than those predicted using widely adopted PTFs. Only Ksat predicted from ANNs could be used to 
accurately calculate both the target drain spacing as well as water-table depth in a drainage scheme designed using EnDrain. Therefore, 
assuming sampling cost is not considered, initial drainage design costs (based on length and depth of inserted pipe) would be com-
parable between designs based on ANN predictions and those based on measured Ksat. These results also suggest that ANNs can be 
successfully developed using existing and under-utilised datasets. As Ksat is time-consuming to measure, basing drainage designs on 
ANN predictions generated from a minimum dataset will be more cost-effective and therefore more accessible to farmers, planners, and 
decision-makers in least developed countries. However, further research is needed to evaluate the impact of these designs on crop 
production, salinity control and waterlogging, using a simulation model such as DRAINMOD, as well as, calculating the predicted 
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income based on these designs for different cropping systems. 
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Nemes, A., Schaap, M.G., Wösten, J.H.M., 2003. Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. Am. J. 

67, 1093–1102. https://doi.org/10.2136/sssaj2003.1093. 
Nozari, H., Azadi, S., 2017. Experimental evaluation of artificial neural network for predicting drainage water and groundwater salinity at various drain depths and 

spacing. Neural Comput. Appl. https://doi.org/10.1007/s00521-017-3155-9. 
OECD, 2020. DAC List of ODA Recipients Effective for Reporting on 2020 Flows [WWW Document]. URL http://www.oecd.org/dac/financing-sustainable- 

development/development-finance-standards/DAC-List-of-ODA-Recipients-for-reporting-2020-flows.pdf (Accessed 5.20.20). 
Oki, T., Kanae, S., 2006. Global hydrological cycles and world water resources. Science (80-.) 313, 1068–1073. 
Oosterbaan, R., 1993. EnDrain: Software Program for Subsurface Drainage Equations Using the Energy Balance of Groundwater Flow, Permitting Anisotropic and 

Stratified Soils, As Well As Entrance Resistance to Drains. 
Pachepsky, Y.A., Rawls, W.J., Lin, H.S., 2006. Hydropedology and pedotransfer functions. Geoderma 131, 308–316. https://doi.org/10.1016/j. 

geoderma.2005.03.012. 

M.A. Ellafi et al.                                                                                                                                                                                                       

http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0150
https://doi.org/10.1016/j.aej.2017.05.021
https://doi.org/10.1007/s40747-020-00213-9
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0165
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0165
https://doi.org/10.1007/698
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0175
https://doi.org/10.1177/1362361399003003007
https://doi.org/10.5897/AJAR10.1152
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0190
https://doi.org/10.1007/978-981-13-5850-0
https://doi.org/10.1111/ejss.12174
https://doi.org/10.1111/ejss.12174
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0205
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0205
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0210
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0215
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0215
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0220
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0220
https://doi.org/10.3390/algor2030973
https://doi.org/10.3390/algor2030973
https://doi.org/10.1016/j.aei.2017.05.003
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0235
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0240
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0245
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0245
https://doi.org/10.1029/2011RG000366.1.INTRODUCTION
https://doi.org/10.26634/jce.6.2.5936
https://doi.org/10.1016/j.jhydrol.2010.12.040
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0265
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0270
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0270
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0275
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0275
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0280
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0280
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0285
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0285
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0290
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0295
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0300
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0300
https://doi.org/10.1007/s12065-020-00447-z
https://doi.org/10.1007/s12065-020-00447-z
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0310
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0310
https://doi.org/10.2136/sssaj2002.0352
https://doi.org/10.2136/sssaj2002.0352
https://doi.org/10.1071/SR99110
https://doi.org/10.1016/S0016-7061(99)00096-8
https://doi.org/10.1016/S0016-7061(99)00096-8
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0330
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0330
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0335
https://doi.org/10.1080/09715010.2017.1400408
https://doi.org/10.1556/0088.2015.64.2.4
https://doi.org/10.1556/0088.2015.64.2.4
https://doi.org/10.2136/sssaj2003.1093
https://doi.org/10.1007/s00521-017-3155-9
http://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/DAC-List-of-ODA-Recipients-for-reporting-2020-flows.pdf
http://www.oecd.org/dac/financing-sustainable-development/development-finance-standards/DAC-List-of-ODA-Recipients-for-reporting-2020-flows.pdf
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0365
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0370
http://refhub.elsevier.com/S2214-5818(21)00061-6/sbref0370
https://doi.org/10.1016/j.geoderma.2005.03.012
https://doi.org/10.1016/j.geoderma.2005.03.012


Journal of Hydrology: Regional Studies 35 (2021) 100832

17

Parasuraman, K., Elshorbagy, A., Si, B.C., 2006. Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Sci. Soc. 
Am. J. 70, 1851–1859. https://doi.org/10.2136/sssaj2006.0045. 

Patil, N.G., Singh, S.K., 2016. Pedotransfer functions for estimating soil hydraulic properties : a review. Pedosph. An Int. J. 26, 417–430. https://doi.org/10.1016/ 
S1002-0160(15)60054-6. 

Patil, N.G., Rajput, G., Nema, R., Singh, R., 2010. Predicting hydraulic properties of seasonally impounded soils. J. Agric. Sci. Cambridge 148, 159–170. 
Patil, N.G., Pal, D., Mandal, C., Mandal, D., 2011. Soil water retention characteristics of Vertisols and pedotransfer functions based on nearest neighbor and neural 

networks approach to estimate AWC. J. Irrig. Drain. Eng. 138, 177–184. 
Pringle, M.J., Romano, N., Minasny, B., Chirico, G.B., Lark, R.M., 2007. Spatial evaluation of pedotransfer functions using wavelet analysis. J. Hydrol. 333, 182–198. 

https://doi.org/10.1016/j.jhydrol.2006.08.007. 
Puckett, W.E., Dane, J.H., Hajek, B.F., 1985. Physical and mineralogical data to determine soil hydraulic properties 1. Soil Sci. Soc. Am. J. 49, 831–836. 
Reynolds, W., Elrick, D., 1985. In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α parameter using the Guelph Permeameter. Soil Sci. 

140, 172–180. 
Richards, L., 1949. Methods of measuring soil moisture tension. Soil Sci. 68, 95–112. 
Ritzema, H., 1994. Subsurface flow to drains. In: Ritzema, H. (Ed.), Drainage Principles and Applications. International Institute for Land Reclamation and 

Improvement (ILRI), Wageningen, The Netherlands, pp. 236–304. 
Schaap, M.G., Leij, F.J., Van Genuchten, M.T., 2001. Rosetta : a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. 

J. Hydrol. 251, 163–176. 
Schultz, B., Zimmer, D., Voltman, W.F., 2007. Drainage under increasing and changing requirements. Irrig. Drain. 56, S3–S22. https://doi.org/10.1002/ird. 
Sedaghat, A., Bayat, H., Sinegani, A.A.S., 2016. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils. Eurasian 

Soil Sci. 1 (49), 377–387. https://doi.org/10.1134/S106422931603008X. 
Skaggs, R.W., 1978. A Water Management Model for Shallow Water Table Soils. 
Skaggs, R.W., 2007. Criteria for calculating drain spacing and depth. Am. Soc. Agric. Biol. Eng. 50, 1657–1662. 
Smedema, L.K., Abdel-Dayem, S., Ochs, W.J., 2000. Drainage and agricultural development. Irrig. Drain. Syst. Eng. 14, 223–235. https://doi.org/10.1023/A: 

1026570823692. 
Sobieraj, J.A., Elsenbeer, H., Cameron, G., 2004. Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena 55, 49–77. https://doi.org/ 

10.1016/S0341-8162(03)00090-0. 
Soil Survey Division Staff, 1993. Soil Survey Manual. U.S. Department of Agriculture Handbook 18. Natural Resources Conservation Service. 
Stefan, F., Guenther, F., 2019. Package ‘neuralnet’ [WWW Document]. URL https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf (Accessed 5.13.20). 
Sun, J., 2012. Learning algorithm and hidden node selection scheme for local coupled feedforward neural network classifier. Neurocomputing 79, 158–163. https:// 

doi.org/10.1016/j.neucom.2011.09.019. 
Tantawi, A., 2000. Water Resources in Libya. Egyptian Office for the Distribution of Publications, Cairo.  
Tietje, O., Hennings, V., 1996. Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural 

classes. Geoderma 69, 71–84. https://doi.org/10.1016/0016-7061(95)00050-X. 
Van Beers, W.F.J., 1958. The Auger-hole Method. 
Van Dam, J., Huygen, J., Wesseling, J., Feddes, R., Kabat, P., Van Walsum, P.E., Groenendijk, P., van Diepen, C., 1997. Theory of SWAP Version 2.0. Simulation of 

Water Flow, Solute Transport and Plant Growth in the Soil-water-Atmosphere-Plant Environment. Wageningen. 
van der Molen, W.H., Wesseling, J., 1991. A solution in closed form and a series solution to replace the tables for the thickness of the equivalent layer in Hooghoudt’s 

drain spacing formula. Agric. Water Manage. 19, 1–16. https://doi.org/10.1016/0378-3774(91)90058-Q. 
van der Ploeg, R., Horton, R.M., Kirkham, D., 1999. Steady flow to drains and wells. In: Skaggs, R., van Schilfgaarde, J. (Eds.), Agricultural Drainage. Wisc.: SSSA, 

Madison, pp. 213–264. 
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y.A., Padarian, J., Schaap, M.G., Tóth, B., Verhoef, A., 
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