86 research outputs found

    Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity

    Get PDF
    The promotion of post-ischaemic motor recovery remains a major challenge in clinical neurology. Recently, plasticity-promoting effects have been described for the growth factor erythropoietin in animal models of neurodegenerative diseases. To elucidate erythropoietin's effects in the post-acute ischaemic brain, we examined how this growth factor influences functional neurological recovery, perilesional tissue remodelling and axonal sprouting of the corticorubral and corticobulbar tracts, when administered intra-cerebroventricularly starting 3 days after 30 min of middle cerebral artery occlusion. Erythropoietin administered at 10 IU/day (but not at 1 IU/day), increased grip strength of the contralesional paretic forelimb and improved motor coordination without influencing spontaneous locomotor activity and exploration behaviour. Neurological recovery by erythropoietin was associated with structural remodelling of ischaemic brain tissue, reflected by enhanced neuronal survival, increased angiogenesis and decreased reactive astrogliosis that resulted in reduced scar formation. Enhanced axonal sprouting from the ipsilesional pyramidal tract into the brainstem was observed in vehicle-treated ischaemic compared with non-ischaemic animals, as shown by injection of dextran amines into both motor cortices. Despite successful remodelling of the perilesional tissue, erythropoietin enhanced axonal sprouting of the contralesional, but not ipsilesional pyramidal tract at the level of the red and facial nuclei. Moreover, molecular biological and histochemical studies revealed broad anti-inflammatory effects of erythropoietin in both hemispheres together with expression changes of plasticity-related molecules that facilitated contralesional axonal growth. Our study establishes a plasticity-promoting effect of erythropoietin after stroke, indicating that erythropoietin acts via recruitment of contralesional rather than of ipsilesional pyramidal tract projection

    Transport Critical Current and Magnetization Measurements of Melt-Processed YBa2Cu3O7-X

    Get PDF
    We report magnetic field dependence of the transport critical current and dc magnetic susceptibility measurements on YBa2Cu3O7−x superconductors formed by melt-solid reactions at 950 °C between Ba-Cu-O (or Tb-Ba-Cu-O) and solid nonstoichiometric Y-Ba-Cu-oxide. Four-probe dc critical current measurements at 77, 64, and 4.2 K show strong depression of the critical current density with increasing magnetic field in agreement with a model of weakly linked superconducting regions. Diamagnetic shielding and Meissner flux expulsion measurements in the temperature range 10–300 K show about one third volume fraction of perfect superconductivity. Both shielding and flux expulsion were observed to be approximately temperature independent below 60 K indicating strong coupling between the grains throughout the entire volume below this temperature

    Transport Critical Current and Magnetization Measurements of Melt-Processed YBa2Cu3O7-X

    Get PDF
    We report magnetic field dependence of the transport critical current and dc magnetic susceptibility measurements on YBa2Cu3O7−x superconductors formed by melt-solid reactions at 950 °C between Ba-Cu-O (or Tb-Ba-Cu-O) and solid nonstoichiometric Y-Ba-Cu-oxide. Four-probe dc critical current measurements at 77, 64, and 4.2 K show strong depression of the critical current density with increasing magnetic field in agreement with a model of weakly linked superconducting regions. Diamagnetic shielding and Meissner flux expulsion measurements in the temperature range 10–300 K show about one third volume fraction of perfect superconductivity. Both shielding and flux expulsion were observed to be approximately temperature independent below 60 K indicating strong coupling between the grains throughout the entire volume below this temperature

    O foco da atenção visual em pessoas com deficiência motora através do Eye tracking: uma experiência em ambiente construído público

    Get PDF
    Obter um ambiente construído acessível a todos, incluindo as pessoas com mobilidade reduzida, que ofereça conforto e permita realizar os deslocamentos com segurança é uma necessidade cada vez mais importante para os profissionais. Na procura de aplicar de novas tecnologias que visem implementar os princípios do Desenho Universal, identificasse o Eye Tracking como uma ferramenta que permite conhecer a percepção do usuário e auxiliar os profissionais nos processos de tomada de decisão. Sendo o Eye Tracking uma tecnologia assistiva que permite identificar objetivamente a percepção visual, realizou-se uma experiência que permite analisar as dificuldades na identificação visual interna das edificações. O objetivo deste artigo é identificar o foco de atenção visual em pessoas com deficiência motora usando o eye tracking. Para realizar a experiência utilizaram-se óculos do eye tracking da SensoMotoric Instruments (SMI) e analisam-se os dados com o software BeGaze versão 3.6, com um cadeirante e um usuário de prótese na perna.  Os resultados indicam que a ausência de informação visual dificulta que as pessoas localizem e identifiquem a rota correta para o deslocamento dentro de um edifício, e o uso de tecnologias assistivas diminuem a subjetividade na tomada de decisões para tonar os ambientes acessíveis.  As análises mostram que os participantes não fixaram o olhar em pontos específicos, pois permaneciam procurando a informação visual no prédio, condição que gerou falta de orientação e dificuldades para definir a rota certa no deslocamento. Em esta atividade foi possível validar uma aplicação do equipamento para contribuir na tomada de decisão dos professionais para tonar os ambientes acessíveis. Além disso, reconheceram-se as particularidades no uso da Tecnologia Assistiva, os óculos eye tracker, e a possibilidade de serem usados na análise de diversas tarefas contribuindo no Design, no projeto de Arquitetura e na Engenharia.Make the environment that can be achieved, fires, used and experienced by anyone, including those with reduced mobility, is an increasingly important need for professionals. Being the eye tracking is an assistive technology that enables you to identify objectively the visual perception was held an experiment that allows analyzing the people’s difficulties in internal visual identification on buildings. The article goal is to identify the focus of visual attention in people with motor disabilities using eye tracking glasses. To perform the experiment was used Senso Motoric Instruments (SMI) eye tracking glasses and was did analyses with the BeGaze software version 3.6.  The results indicate the lack of visual information causes difficulties for people to locate and identify the correct route for the offset inside a building, reducing the subjectivity in making decisions to make accessible environments.  The tests show that the participants do not have fixed their gaze on specific points, because it remained looking for visual information into the building generating lack of orientation and difficulties to define the right route at offset. With this experiment was possible to validate an application of the device to contribute to the decision-making process of professionals to make accessible environments. In addition, they recognized the particularities in the use of Assistive Technology, the glasses eye tracker, and the possibility of being used in the analysis of various tasks contributing in the Design, in the Architecture, and the Engineering

    Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS

    Get PDF
    Background Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods MOG35-55 induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results EAE disease course was slightly attenuated in male apoE-deficient (apoE −/− ) mice compared to wildtype mice (cumulative median score: apoE −/−  = 2 [IQR 0.0–4.5]; wildtype = 4 [IQR 1.0–5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE −/− mice compared to wildtype mice (cumulative median score: apoE −/−  = 3 [IQR 2.0–4.5]; wildtype = 3 [IQR 0.0–4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naïve animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease

    Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia

    Get PDF
    Cerebral ischemia stimulates endogenous neurogenesis. However, the functional relevance of this phenomenon remains unclear because of poor survival and low neuronal differentiation rates of newborn cells. Therefore, further studies on mechanisms regulating neurogenesis under ischemic conditions are required, among which ephrin-ligands and ephrin-receptors (Eph) are an interesting target. Although Eph/ephrin proteins like ephrin-B3 are known to negatively regulate neurogenesis under physiological conditions, their role in cerebral ischemia is largely unknown. We therefore studied neurogenesis, brain injury and functional outcome in ephrin-B3−/− (knockout) and ephrin-B3+/+ (wild-type) mice submitted to cerebral ischemia. Induction of stroke resulted in enhanced cell proliferation and neuronal differentiation around the lesion site of ephrin-B3−/− compared to ephrin-B3+/+ mice. However, prominent post-ischemic neurogenesis in ephrin-B3−/− mice was accompanied by significantly increased ischemic injury and motor coordination deficits that persisted up to 4 weeks. Ischemic injury in ephrin-B3−/− mice was associated with a caspase-3-dependent activation of the signal transducer and activator of transcription 1 (STAT1). Whereas inhibition of caspase-3 had no effect on brain injury in ephrin-B3+/+ animals, infarct size in ephrin-B3−/− mice was strongly reduced, suggesting that aggravated brain injury in these animals might involve a caspase-3-dependent activation of STAT1. In conclusion, post-ischemic neurogenesis in ephrin-B3−/− mice is strongly enhanced, but fails to contribute to functional recovery because of caspase-3-mediated aggravation of ischemic injury in these animals. Our results suggest that ephrin-B3 might be an interesting target for overcoming some of the limitations of further cell-based therapies in stroke

    Functional kinomics establishes a critical node of volume-sensitive cation-Cl<sup>-</sup> cotransporter regulation in the mammalian brain

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/33424Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.We thank the excellent technical support of the MRC-Protein Phosphorylation and Ubiquitylation Unit (PPU) DNA Sequencing Service (coordinated by Nicholas Helps), the MRC-PPU tissue culture team (coordinated by Laura Fin), the Division of Signal Transduction Therapy (DSTT) antibody purification teams (coordinated by Hilary McLauchlan and James Hastie). We are grateful to the MRC PPU Proteomics facility (coordinated by David Campbell, Robert Gourlay and Joby Varghese). We thank for support the Medical Research Council (MC_UU_12016/2; DRA) and the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer; DRA). We thank Thomas J. Jentsch (Max-Delbrück-Centrum für Molekulare Medizin) for providing the KCC1/3 double KO mice and his reading of this manuscript. We thank Nathaniel Grey (Harvard) for providing the kinase inhibitor library used in this study (NIH LINCS Program grant U54HL127365). This work was also supported by a Harvard-MIT Neuroscience Grant (to KTK/SJE)

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches
    corecore