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The promotion of post-ischaemic motor recovery remains a major challenge in clinical neurology. Recently, plasticity-promoting

effects have been described for the growth factor erythropoietin in animal models of neurodegenerative diseases. To elucidate

erythropoietin’s effects in the post-acute ischaemic brain, we examined how this growth factor influences functional neuro-

logical recovery, perilesional tissue remodelling and axonal sprouting of the corticorubral and corticobulbar tracts, when ad-

ministered intra-cerebroventricularly starting 3 days after 30 min of middle cerebral artery occlusion. Erythropoietin administered

at 10 IU/day (but not at 1 IU/day), increased grip strength of the contralesional paretic forelimb and improved motor coordin-

ation without influencing spontaneous locomotor activity and exploration behaviour. Neurological recovery by erythropoietin

was associated with structural remodelling of ischaemic brain tissue, reflected by enhanced neuronal survival, increased angio-

genesis and decreased reactive astrogliosis that resulted in reduced scar formation. Enhanced axonal sprouting from the ipsile-

sional pyramidal tract into the brainstem was observed in vehicle-treated ischaemic compared with non-ischaemic animals, as

shown by injection of dextran amines into both motor cortices. Despite successful remodelling of the perilesional tissue,

erythropoietin enhanced axonal sprouting of the contralesional, but not ipsilesional pyramidal tract at the level of the red

and facial nuclei. Moreover, molecular biological and histochemical studies revealed broad anti-inflammatory effects of erythro-

poietin in both hemispheres together with expression changes of plasticity-related molecules that facilitated contralesional

axonal growth. Our study establishes a plasticity-promoting effect of erythropoietin after stroke, indicating that erythropoietin

acts via recruitment of contralesional rather than of ipsilesional pyramidal tract projections.
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Introduction
Stroke remains the leading cause of serious motor disabilities in

adults (Bonita et al., 1994). Whereas initially hemiparesis affects

80–90% of patients, 45–60% still exhibit motor deficits in the

post-acute stroke phase (Dobkin, 1996). Thus, neurological recov-

ery is limited. Post-ischaemic endogenous responses of the CNS

go in line with an enhanced responsiveness to rehabilitative

(Biernaskie et al., 2004) and plasticity-promoting (Papadopoulos

et al., 2002; Seymour et al., 2005) treatments, opening a time

window in which ontogenetic brain repair mechanisms may be

reactivated successfully (Cramer and Chopp, 2000; Buchli and

Schwab, 2005).

Stroke recovery is associated with reorganization of neur-

onal circuits both at the cortical and subcortical level. Latent

networks are unmasked or strengthened, assuring the interaction

between perilesional and distant brain areas. In the ischaemic

boundary zone, a cascade of events including angiogenesis

(Chen et al., 2003), inhibition of astrogliosis (Li et al., 2005) and

anti-inflammation (Bacigaluppi et al., 2009) contribute to the

remodelling of brain tissue. In addition, a series of events set the

stage for brain reorganization in the intact hemisphere, such as

increased angiogenesis (Ding et al., 2008) and axonal sprouting

(Papadopoulos et al., 2002; Wiessner et al., 2003). Previous

studies have examined ipsilesional and contralesional recovery

processes independent of each other. There are no studies evaluating

how both processes are coordinated.

Recruitment of contralesional brain areas correlate with a better

recovery from stroke in animal studies (Papadopoulos et al., 2002;

Wiessner et al., 2003). By administering anterograde tract tracers

into the contralesional motor cortex, these authors suggested that

contralateral projections may be recruited by plasticity-promoting

therapies, underlining the relevance of contralesional reorgan-

ization in neurological recovery. However, models of permanent

focal cerebral ischaemia were used in the latter studies, in which

motor cortex tissue was destroyed. Brain plasticity ipsilateral to

the stroke was not systematically assessed in these studies.

Evidence from positron emission tomography, functional mag-

netic resonance imaging, transcranial magnetic stimulation and

magnetoencephalography studies has also supported the relevance

of contralesional brain plasticity for human stroke recovery

(Cramer et al, 1997; Musso et al., 1999; Gerloff et al., 2006; van

der Zijden et al., 2008). However, the implications of contralesional

activation were difficult to interpret as activation patterns in

humans are strongly influenced by severity and inhomogeneity

of strokes. Whether the promotion of functional neurological recov-

ery with growth factors influences contralesional reorganization

processes was not described.

The identification of erythropoietin and its receptor in neurons,

astrocytes and cerebral microvascular endothelial cells, and its

sustained production in the hypoxic-ischaemic CNS (Marti et al.,

1996; Bernaudin et al., 2000; Grimm et al., 2005) has established

erythropoietin as a potent survival-promoting factor that inhibits

neuronal ischaemic injury (Tan et al., 1992; Kilic et al., 2005a;

Li et al., 2007) and prevents infarction (Siren et al., 2001;

Kilic et al., 2005a; Li et al., 2007) by modulating distinct cytosolic

signalling pathways (Siren et al., 2001; Kilic et al., 2005a, b).

In cell culture, erythropoietin also potently induced endothelial

cell proliferation (Bernaudin et al., 1999) and capillary tube for-

mation (Wang et al., 2004), thus also indicating a role in angio-

genesis (Li et al., 2007).

Because erythropoietin is already clinically used with minimal

side effects (e.g. Hudson and Sameri, 2002), experimental studies

rapidly led to clinical trials, in which the growth factor was acutely

administered to stroke patients. In a first proof-of-principle study,

erythropoietin significantly enhanced neurological outcome and

reduced ischaemic injury, indicating that the growth factor is

both safe and beneficial (Ehrenreich et al., 2002). In a subsequent

larger study including 522 patients, in which erythropoietin was

infused intravenously after acute ischaemic stroke both in patients

with (60%) and without (40%) thrombolysis, erythropoietin did

not improve clinical outcome, but unexpectedly increased the risk

of bleeding, brain oedema and thromboembolic events in throm-

bolyzed patients (Ehrenreich et al., 2009). Explorative analysis in

patients not receiving thrombolytics reproduced some of the ear-

lier findings, indicating that erythropoietin alone may be effica-

cious (Ehrenreich et al., 2009). Due to the expansion of the

therapeutic window for intravenous thrombolysis to 4.5 h (Hacke

et al., 2008), acute neuroprotection studies with erythropoietin in

patients not receiving thrombolytics may unfortunately be unfeas-

ible in the near future.

In addition to its survival-promoting activities, erythropoietin ex-

hibits plasticity-promoting actions in models of slowly progressive

neurodegeneration. Erythropoietin increased ventral mesencephalic

fibre outgrowth in a rodent model of Parkinson’s disease (McLeod

et al., 2006) and enhanced axonal sprouting in a model of optic

nerve transection (King et al., 2007). Recently, erythropoietin was

also shown to promote perilesional tissue remodelling in a rat

model of focal cerebral ischaemia (Li et al., 2009). Until now, it

has remained unknown if and how the post-acute delivery of

erythropoietin after stroke influences axonal plasticity processes.

Here, we have investigated this issue, using a strategy of simul-

taneous analysis of pyramidal tract sprouting ipsi- and contralateral

to the stroke in mice, which we combined with a detailed histo-

chemical evaluation of perilesional brain remodelling, thus charac-

terizing how endogenous brain responses are modulated by

erythropoietin.

Materials and methods

Animal groups
Experiments were performed in accordance to National Institutes of

Health Guidelines for the Care and Use of Laboratory Animals with

local government approval (Bezirksregierung Düsseldorf, TSG966/08).

Male C57Bl6/j mice (8–10 weeks; 23–25 g) were submitted to 30 min

of left-sided middle cerebral artery occlusion (Kilic et al., 2005a, 2006,

2008). At 72 h post-ischaemia, animals received implantations of mini

osmotic pumps into the left lateral ventricle that were randomly filled

with 0.9% NaCl (vehicle) or erythropoietin (1 or 10 IU/day diluted in

0.9% NaCl) and were left in place during the subsequent 4 weeks

(Fig. 1).
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In addition to animals undergoing middle cerebral artery occlusion,

sham-operated animals were also studied, in which vehicle filled

pumps were implanted as specified.

One set of mice was used for studies on functional neurological

recovery and for analysis of axonal plasticity (n = 10 animals per

group; Fig. 1A). For this purpose, mice received anterograde tract

tracer injections (see below) in both frontal motor cortices 42 days

after the stroke was induced (Fig. 1A). Ten days later, these animals

were sacrificed (Fig. 1A).

Additional male C57Bl6/j mice were also subjected to 30 min middle

cerebral artery occlusion using the same protocol, followed by implant-

ation of intra-ventricular pumps filled with vehicle or erythropoietin

(10 IU/day in 0.9% NaCl) 3 days later. These animals were sacrificed

at Days 3, 14 and 30 [for reverse transcriptase–polymerase chain re-

action (RT–PCR) studies] or at Days 14, 30 or 52 (for conventional

histochemical studies, immunohistochemistry and western blots) after

the stroke (n = 4 animals per group, survival time and series) (Fig. 1B

and C). For RT–PCR studies, additional sham-operated mice (n = 4)

and control mice submitted to 30 min middle cerebral artery occlusion

without pump implantation (n = 4) were also investigated. The latter

sham operated and untreated mice were sacrificed at 3 days

post-surgery.

Induction of focal cerebral ischaemia
Animals were anaesthetized with 1% isoflurane (30% O2, remainder

N2O). Rectal temperature was maintained between 36.5 and 37.0�C

using a feedback-controlled heating system. Cerebral blood flow was

analysed by laser Doppler flow recordings. Focal cerebral ischaemia

was induced using an intraluminal filament technique (Kilic et al.,

2008). A midline neck incision was made and the left common and

external carotid arteries were isolated and ligated. A microvascular clip

was temporarily placed on the internal carotid artery. A silicon resin-

coated nylon monofilament was introduced through a small incision

into the common carotid artery and advanced to the carotid bifurca-

tion for middle cerebral artery occlusion. Reperfusion was initiated

30 min later by monofilament removal. Laser Doppler flow changes

were monitored up to 30 min after reperfusion onset. In sham-

operated animals, a surgical intervention was performed, in which

the neck was opened and the common carotid artery was exposed,

but left intact, while laser Doppler flow recordings were performed.

After the surgery, wounds were carefully sutured, anaesthesia was

discontinued and animals were returned to their cages. Animal drop-

outs rarely occurred during and following 30 min middle cerebral artery

occlusion (510% of animals) and were related mostly to anaesthesia

complications or surgical mistakes.

Intra-ventricular pump implantation
Three days after surgery animals were re-anaesthetized with 1% isoflur-

ane (30% O2, remainder N2O) and cannulae (Brain infusion kit 3,

Alzet, Cupertino, CA, USA) linked to mini osmotic pumps (Alzet 2004

or 1002; Alzet) filled with 0.9% NaCl or erythropoietin (NeoRecormon,

Roche, Basel, Switzerland) (1 or 10 IU/day in 0.9% NaCl)

Figure 1 Experimental procedures and animal groups. Mice submitted to middle cerebral artery occlusion (MCAO) that were treated with

erythropoietin (Epo) or vehicle from Days 3–30 post-ischaemia were used for (A) tract tracing studies and behavioural analysis, (B) gene

expression studies (RT–PCR) and (C) protein expression studies (immunohistochemistry, western blots) and conventional histochemical

analysis. Numbers of animals evaluated for each group and time points of animal sacrifice are also shown. (Right) The rostrocaudal level,

from which brain sections and tissue samples were harvested. In addition to the animals shown in this scheme, additional sham-operated

animals and ischaemic animals not receiving intra-ventricular pumps were generated as control groups in some of the studies, as outlined

in the ‘Materials and methods’ section. BDA = biotinylated dextran amine; CB = cascade blue-labelled dextran amine; dpi = days post-

ischaemia.
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were implanted into the left-sided lateral ventricle through a burr

hole (Kilic et al., 2010). These pumps administered an infusion volume

of 0.25ml/h. The pumps were left in place until Day 30 post-ischaemia

and then removed. Dropouts during pump implantation were also

rare (510% of animals) and occurred mostly as anaesthesia complica-

tions. Thus, such dropouts did not have significant effects on the results

of this study. Following pump implantation, no intra-cerebral bleedings

and no overt infections were noticed around the needle tracks. Two

animals removed their pumps before Day 30 after ischaemia. These

animals were not included in the data analysis.

Functional neurological tests
Functional neurological recovery was assessed using a battery of tests at

baseline and on Days 3, 14 and 42 after middle cerebral artery occlusion.

Grip strength test

The grip strength test consists of a spring balance coupled with a Newton

meter (Medio-Line Spring Scale, metric, 300 g, Pesola AG, Switzerland)

that is attached to a triangular steel wire, which the animal instinct-

ively grasps. When pulled by the tail, the animal exerts force on the

steel wire (Kilic et al., 2010). Grip strength was evaluated at the

right paretic forepaw, the left non-paretic forepaw being wrapped

with adhesive tape. Grip strength was evaluated five times in each

test, for which mean values were calculated. From these data, per-

centage values (post-ischaemic versus pre-ischaemic) were computed.

Pre-ischaemic and pretreatment results did not differ between groups.

RotaRod test

The RotaRod consists of a rotating drum with a speed accelerating

from 6 to 40 rpm (Ugo Basile, model 47600, Comerio, Italy), to assess

motor coordination skills (Kilic et al., 2010). Maximum speed was

reached after 245 s, and the time at which the animal dropped off

the drum was evaluated (maximum testing time: 300 s). Measurements

were performed five times and for all five measurements, mean values

were computed, from which percentage values (post-ischaemic

versus pre-ischaemic) were calculated. Pre-ischaemic and pretreatment

data did not differ between groups.

Elevated O maze

The elevated O maze consists of a round 5.5 cm wide polyvinyl chlor-

ide runway with an outer diameter of 46 cm that was placed 40 cm

above the floor and detected spontaneous locomotor behaviour and

correlates of fear and anxiety (Kilic et al., 2010). Two opposing 90�

sectors were protected by 16 cm high inner and outer walls made of

polyvinyl chloride (closed sectors). The remaining two 90� sectors were

not protected by walls (open sectors). Animals were released in one of

the closed sectors and observed for 10 min. The total number of zone

entries—as correlate of motor activity—and the time spent in the un-

protected sector—as correlate of exploration behaviour, fear and anx-

iety—were registered whenever the animal moved into a sector with

all four paws. Assessments took place at baseline and at 2 and 6

weeks post-stroke.

Delivery of cascade blue-labelled
dextran amine and biotinylated
dextran amine
The anterograde tract tracer biotinylated dextran amine (BDA) has

previously been used to evaluate pyramidal tract plasticity contra-

lateral to the stroke in rats submitted to permanent focal cerebral

ischaemia (Wiessner et al., 2003). We here adopted this method

to mice, administering two different tracers, cascade blue-labelled

dextran amine (CB) and BDA in the motor cortex both ipsilateral (cas-

cade blue) and contralateral (BDA) to the stroke. For this purpose,

cranial burr holes were drilled 0.5 mm rostral and 2.5 mm lateral to

the bregma, via which deposits of 10% cascade blue or 10% BDA

(both 10 000 molecular weight; Molecular Probes, diluted in 0.01 M

phosphate-buffered saline at pH 7.2) were placed into the motor

cortex by means of microsyringe injections 6 weeks after middle cere-

bral artery occlusion. Therefore, a total volume of 2.1 ml of tracer was

administered to each animal, injected in three equal deposits located

rostrally, medially and caudally of the burr hole inside the motor

cortex. The syringe was inserted into the brain at angles of 45�, 90�

and 135� against the midline at a depth of 1.5 mm (Z’Graggen et al.,

1998). Tract tracer injections did not result in animal dropouts. No

macroscopical bleedings and no overt infections were observed

around the tracer deposits.

Ten days after the tracer injection, mice were transcardially perfused

with 0.1 M phosphate-buffered saline pH 7.4 containing 100 000 IU

heparin and 0.25% NaNO2 followed by 4% paraformaldehyde in

0.1 M phosphate-buffered saline and 5% sucrose. Brains were

removed and post-fixed overnight in 4% paraformaldehyde in 0.1 M

phosphate-buffered saline and 5% sucrose and cryoprotected in

increasing concentrations of sucrose (5, 10 and 30%) over 3 days.

The tissue was then frozen with isopentane and cut into 20 and

40 mm thick coronal cryostat sections that were used for conventional

and tract tracing histochemistry.

Immunohistological stainings at the
level of ischaemic striatum
For conventional immunohistochemistry, four animals from each group

were transcardially perfused with 0.9% NaCl at Days 14, 30 and

52 after the stroke. Brain tissue was frozen on dry ice and cut on a cryostat

into 20 mm coronal sections (Kilic et al., 2010). Brain sections from

the level of the bregma (i.e. midstriatum) were fixed in 4% parafor-

maldehyde in 0.1 M phosphate-buffered saline, rinsed, pretreated

for antigen retrieval with 0.01 M citrate buffer (pH 5.0), rinsed and

immersed for 1 h in 0.1 M phosphate-buffered saline containing 0.3%

Triton X-100 and 10% normal donkey serum. Brain sections were incu-

bated overnight at 4�C with monoclonal mouse anti-NeuN (MAB377;

Chemicon), monoclonal rat anti-CD31 (#557355; BD Biosciences),

monoclonal mouse anti-glial fibrillary acidic protein (GFAP) Alexa Fluor

555 conjugated (#3656; Cell Signalling), monoclonal rat anti-CD45

antigen (#550539; BD Pharmingen) and polyclonal rabbit anti-ionized

calcium binding adaptor protein (Iba-1) (Wako Chemicals, Neuss,

Germany) antibodies (diluted 1:100 in 0.1 M phosphate-buffered

saline) that were detected with Cy3 or Cy2 conjugated secondary

antibodies (Jackson ImmunoResearch, Suffolk, UK). Sections were coun-

terstained with 40-6-diamidino-2-phenylindole (DAPI). In some experi-

ments (CD45, Iba1) biotinylated secondary antibodies were used

that were detected with avidin–biotin kit (Vector Laboratories,

Burlingame, CA, USA) followed by 3,30-diaminobenzidine (DAB)

(#D4418, Sigma, Missouri, USA) staining. Sections were evaluated

under a fluorescence microscope (Olympus BX 41) connected to a

CCD camera (CC12; Olympus). Surviving neurons (NeuN + ), micro-

vascular profiles (CD31 + ), reactive astroglia (GFAP + ), leucocytes

(CD45 + ) and microglia (Iba1 + ) were analysed in a blinded way by count-

ing numbers of cells or profiles in six defined regions of interests

per striatum measuring 62 500mm2, both ipsi- and contralateral to

the stroke (Kilic et al., 2005a, 2006). Two sections were processed for
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each animal. Mean values were calculated for both sections for the

whole striatum. With these data, neuronal survival, capillary density,

astrogliosis, leucocyte infiltration and microglial activation were deter-

mined. In case of glial fibrillary acidic protein stainings, the overall

area of scar tissue was outlined using the Soft Imaging Olympus Cell

F Programme. Stereometric assessments of the degree of post-ischaemic

atrophy of the striatum and corpus callosum were determined using

modified Bielschowsky’s silver stainings as previously described (Ding

et al., 2008).

Immunohistochemistry for cascade
blue-labelled dextran amine and
biotinylated dextran amine
Brain sections of animals that had transcardially been perfused with

paraformaldehyde were rinsed three times for 10 min each in 50 mM

Tris-buffered saline (pH 8.0) containing 0.5% Triton X-100. For de-

tection of cascade blue-labelled dextran amine, sections were

immersed overnight at 4�C with polyclonal rabbit anti-cascade blue

antibody (A-5760; Molecular Probes, 1:100), in 50 mM Tris-buffered

saline (pH 8.0) containing 0.5% Triton X-100, followed by incubation

for 1 h at room temperature with a horseradish peroxidase-labelled

secondary anti-rabbit antibody (1:1000). For detection of BDA, sec-

tions were incubated overnight with avidin–biotin–peroxidase complex

(ABC Elite; Vector Laboratories, Burlingame, CA, USA). Stainings were

revealed with 3,30-diaminobenzidine (DAB) containing 0.4% ammo-

nium sulphate and 0.004% H2O2.

Analysis of corticorubral and
corticobulbar projections
The location of tracer deposits was checked at the levels of the needle

tracks, thus ensuring that the motor cortex had indeed been injected in

all animals. To account for variability in tracer uptake in different mice,

we first evaluated the number of tracer-stained fibres in the cortico-

spinal tract both at the level of the red nucleus and facial nucleus. For

this purpose, two consecutive sections were analysed, counting the

number of fibres crossing the sections in four regions of interest of

2865 mm2 each that had been selected in the dorsolateral, ventrolat-

eral, dorsomedial and ventromedial portion of the corticospinal tract.

By measuring the total area of the corticospinal tract using the Cell

Software image system (Olympus) connected to an Olympus BX42

microscope, we calculated the overall number of labelled pyramidal

tract fibres, as described previously (Z’Graggen et al., 1998).

Analysis of corticorubral projections

Corticorubral projections were evaluated at the level of the parvocel-

lular red nucleus (bregma –3.0 to –3.5 mm). A 500mm long intersec-

tion line was superimposed on the brain midline. Those fibres crossing

into the contralateral hemisphere in the direction of the red nucleus

were quantified. For each animal, the total number of fibres counted

was normalized with the total number of labelled fibres in the corti-

cospinal tract and multiplied by 100, resulting in percent values of

fibres crossing the midline. For both tracers, two consecutive sections

were analysed. For both sections, mean values of labelled fibres were

determined.

Analysis of corticobulbar projections

Corticobulbar projections were assessed at the level of the facial

nucleus (bregma –5.8 to –6.3 mm). Two 500 mm long intersection

lines were superimposed on the sections parallel to the midline, both

representing tangents touching the most lateral extension of the pyr-

amidal tract. Along both lines those fibres crossing in the direction of

the contra- and ipsilateral facial nucleus were quantified. For each

animal, the total number of fibres counted was normalized with the

number of labelled fibres in the corticospinal tract and multiplied by

100, resulting in percent values of fibres originating from the pyram-

idal tract. For both tracers, two consecutive sections were evaluated

and mean values of labelled fibres were calculated.

Gene expression analysis by reverse
transcriptase–polymerase chain reaction
For gene expression studies, mice were sacrificed at three different

time points, i.e. Days 3, 14 and 30 after stroke by transcardiac perfu-

sion with cold sterile 0.1 M phosphate-buffered saline containing

0.01 M EDTA (ethylenediaminetetraacetic acid, pH 7.4). Brains were

immediately removed and dissected on dry ice. Blocks of tissue were

cut from 2 mm rostral to 2 mm caudal to the bregma. From these

blocks, samples were collected from six regions of interest: the

motor cortex, the striatum and the parietal cortex both ipsilateral

and contralateral to the stroke. All regions were processed in RNA-

later� RNA stabilization reagent (#76104; Qiagen, Hilden, Germany)

and stored at �80� until RNA extraction. Brain tissue samples were

homogenized and total RNA was isolated.

One microgram of complementary DNA synthesized from 2 mg of

total RNA was used for RT–PCR using predesigned TaqMan low density

arrays as previously described (Pluchino et al., 2008). Briefly, for

each TaqMan low density array, there were eight separate loading

ports that distributed the complementary DNA into a total of 48 wells,

for a total of 384 different wells per card. Each well contains a specific

primer and probe, capable of detecting a single gene. In our study, we

designed the gene cards for 46 different genes (Supplementary Table 1)

together with two housekeeping genes, glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) and 18S ribosomal RNA. The last one is a

mandatory control provided by the manufacturer. RT–PCR was

processed with samples obtained from individual animals (avoiding

pooling of the tissue) from each of the six regions of interest, each

sample containing 10 ml complementary DNA (1 mg).

RT–PCR was performed using Applied Biosystems 7900HT Fast-

Real-Time PCR System. Gene cards were analysed using the threshold

cycle (CT) relative quantification method. Threshold cycle values were

normalized for endogenous reference [�CT = CT (target gene) � CT

(GAPDH)] and compared with a calibrator using the ��CT formula

[��CT = �CT (sample) – �CT (calibrator)]. In this study, we consist-

ently used GAPDH as endogenous control. As a calibrator sample, we

utilized a brain obtained from an untreated mouse of the same age,

sex and strain. Data were presented using the logarithmic transform-

ation of fold induction ratios between ischaemic vehicle- and non-

ischaemic vehicle-treated mice (middle cerebral artery occlusion

effect) and of ratios between ischaemic erythropoietin 10 IU and

ischaemic vehicle-treated mice (erythropoietin effect).

Western blot analysis
For western blot analysis, we used mice transcardially perfused with

0.9% NaCl at Days 3, 14 and 30 after the stroke. From the brains,

which had also been used for immunohistochemistry, tissue samples

were harvested from the motor cortex ipsilateral and contralateral to

the stroke, immediately adjacent to the level at which cryostat sections

were taken (0–2 mm caudal to bregma). Tissue samples belonging to
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the same group were pooled, homogenized, sonicated and treated

with protease inhibitor cocktail and phosphatase inhibitor cocktail

(Kilic et al., 2010). In these samples, protein content was evaluated

using the Bradford method (Kilic et al., 2010). Equal amounts of pro-

tein were subjected to sodium dodecyl sulphate–polyacrylamide gel

electrophoresis, followed by protein transfer onto a polyvinylidene

fluoride membrane (Bio-Rad, Hercules, CA, USA). Membranes were

blocked in 5% non-fat milk in 50 mM Tris-buffered saline containing

0.1% Tween for 1 h at room temperature, washed in Tris-buffered

saline containing 0.1% Tween and incubated overnight with mouse

monoclonal SPRR1A antibody (provided by Prof. S.M. Strittmatter,

Yale University, CT, USA), diluted 1:1000 in Tris-buffered saline con-

taining 0.1% Tween. On the second day the membranes were washed

and further incubated in blocking solution with peroxidase-conjugated

goat anti-mouse antibody (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) for 1 h at room temperature. Blots were revealed using a chemi-

luminescence kit according to the manufacturer’s protocol. Protein

loading was controlled by stripping the blots and reprobing with

b-actin antibody. Protein abundance was evaluated by analysing the

intensity of the SPRR1A band using the ImageJ program. Three dif-

ferent blots were analysed and mean values were calculated from the

results obtained. The relative level of protein expression was normal-

ized to signal intensities measured in corresponding contralateral tissue

samples harvested Day 3 after the stroke.

Statistical analysis
Behavioural tests were analysed by means of two-way repeated meas-

urement analysis of variance (ANOVA; treatment versus time) at three

different time-points starting with Day 3 post-stroke, at the time of

erythropoietin administration. For those tests in which significant treat-

ment or treatment by time interaction effects were noticed (at 0.05

level), one-way ANOVA were carried out for each time point, using

post hoc least significant differences tests. Tract tracing data were

evaluated by one-way ANOVA. Histochemical data, gene and protein

expression studies were analysed by two-way ANOVA (treatment

versus time). Whenever a treatment effect or treatment by time inter-

action effect was present at the 0.05 level, two-tailed t-tests were

performed for each time point.

Results

Post-acute delivery of erythropoietin
improves post-ischaemic neurological
recovery
To evaluate if erythropoietin influences neurological recovery in the

post-acute stroke phase, mice submitted to 30 min left-sided middle

cerebral artery occlusion were intra-cerebroventricularly treated

with vehicle or erythropoietin (1 or 10 IU/day) starting at Day 3

post-ischaemia. Laser Doppler flow measurements and body

weight did not show any differences between groups (Fig. 2A

and B). In all groups, laser Doppler flow decreased to �15–20%

of baseline during middle cerebral artery occlusion, followed by a

rapid restoration of blood flow after reperfusion (Fig. 2A). Except

for a transient mild reduction in body weight at Day 3

post-ischaemia (510%) that was similarly registered in all groups,

no abnormalities in weight development were seen (Fig. 2B).

Neurological recovery was investigated by grip strength

(Fig. 2C) and Rotarod (Fig. 2D) tests, which assess motor force

of the paretic right forelimb and motor coordination. Significant

reductions in motor force (Fig. 2C) and coordination skills (Fig. 2D)

were noticed in animals submitted to 30 min middle cerebral artery

occlusion. In vehicle-treated ischaemic animals and in animals

receiving erythropoietin at the low dosage (1 IU/day), grip

strength and RotaRod performance remained largely unchanged

over the entire observation period of 42 days (Fig. 2C and D).

Conversely, in animals treated with erythropoietin at the higher

dosage (10 IU/day), progressive improvement of motor force and

coordination was observed at Days 14 and 42 post-ischaemia

(Fig. 2C and D). Elevated O maze tests did not detect any differ-

ences in spontaneous locomotor activity and exploration behaviour

between groups (Fig. 2E and F).

Post-acute delivery of erythropoietin
promotes perilesional tissue
remodelling
In order to assess whether the post-acute delivery of erythropoi-

etin influences the remodelling of ischaemic brain tissue, histo-

chemical studies were performed. Immunohistochemical stainings

for the neuronal marker NeuN revealed slowly progressive degen-

eration in the striatum of vehicle-treated ischaemic mice, reflected

by a continuous decline of surviving neurons (Fig. 3A) and striatal

atrophy (Fig. 3B) that developed between Days 14 and 52 post-

ischaemia. Notably, erythropoietin delivered at the higher dosage

(10 IU/day) significantly increased neuronal survival (Fig. 3A), at

the same time preventing striatal shrinkage (Fig. 3B). The thickness

of the corpus callosum was not changed by erythropoietin

(Fig. 3C).

To define erythropoietin’s impact on angiogenesis, an accom-

paniment of successful neurovascular remodelling (Hermann and

Zechariah, 2009), immunohistochemical stainings for the endothe-

lial marker CD31 were assessed. Focal cerebral ischaemia was fol-

lowed by an increase in the density of CD31 + striatal capillaries to

�200% of baseline in vehicle-treated ischaemic mice that per-

sisted for as long as 30 days after middle cerebral artery occlusion

(Fig. 3D). Erythropoietin further increased the capillary density,

which remained elevated until the end of the experiments,

i.e. at Day 52 post-ischaemia (Fig. 3D).

To evaluate how erythropoietin influences the astroglial re-

sponses to stroke, stainings for the astrocyte marker glial fibrillary

acidic protein were analysed. In vehicle-treated ischaemic mice,

focal cerebral ischaemia went along with reactive astrocytes that

were dispersed throughout the middle cerebral artery territory and

persisted over the observation period of 52 days post-ischaemia

(Fig. 3E). During erythropoietin therapy, reactive astrogliosis was

less pronounced (Fig. 3E). However, this glial-inhibitory effect

disappeared after pump removal, i.e. at Day 52 post-ischaemia,

when reactive astrogliosis returned to values similar to those of

vehicle-treated ischaemic animals (Fig. 3E).

In the most lateral portion of the striatum, a localized scar char-

acterized by densely packed GFAP + astrocytes developed after

Day 30, more clearly distinguishable at Day 52 post-ischaemia in
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vehicle-treated mice (Fig. 3F). Erythropoietin also reduced the size

of this scar (Fig. 3F).

Analysis of lesion-remote plasticity
using anterograde tract-tracers
Since the pyramidal tract crosses the middle cerebral artery territory,

which was affected by ischaemia, we aimed to understand how

erythropoietin influences pyramidal tract degeneration and plasticity

both ipsilateral and contralateral to the stroke. To this end, we

administered two dextran conjugates, cascade blue-labelled dextran

amine and BDA, into both motor cortices. The location of injection

sites revealed no relevant differences between groups. In all mice,

the injection sites covered the more caudal forelimb area and

rostral hindlimb area of the primary motor cortex without relevant

spreading of tracer deposits into subcortical structures.

Figure 2 Delayed delivery of erythropoietin at 10 IU/day, but not 1 IU/day promotes post-ischaemic neurological recovery.

(A) Laser Doppler flow recordings above the core of the middle cerebral artery territory, (B) body weight, (C) grip strength of the

lesion-contralateral right paretic forepaw, (D) coordination skills evaluated by RotaRod tests, (E) locomotor activity and (F) exploration

behaviour, assessed as number of total zone entries and time in open sectors in elevated O maze tests, are shown. Note that motor force

(C) and coordination skills (D), which were compromised by the stroke, do not exhibit any major improvements over time in

vehicle-treated mice and mice receiving erythropoietin at a dosage of 1 IU/kg, but progressively improve over Days 14–42 in animals

treated with erythropoietin at a 10 IU/kg dosage. Spontaneous locomotor activity (E) and exploration behaviour (F) are not influenced

by erythropoietin. Laser Doppler flow recordings (A) and body weight (B) do not differ between groups. Data are mean values �SD.

Data were analysed by two-way repeated measures ANOVA, followed by one-way ANOVA/least significant differences tests for each

timepoint. §P50.05 compared with pre-ischaemic baseline; *P5 0.05/**P5 0.01 compared with vehicle-treated ischaemic mice.

Epo = erythropoietin; MCAO = middle cerebral artery occlusion.
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Figure 3 Erythropoietin (Epo) promotes peri-lesional tissue remodelling and exerts anti-inflammatory actions. (A) Surviving neurons in

ischaemic striatum evaluated by NeuN immunohistochemistry, (B) striatal atrophy and (C) corpus callosum atrophy examined by

Bielschowsky’s stainings, (D) angiogenesis assessed by CD31 immunohistochemistry, (E) diffuse astrocytosis at various time points

and (F) circumscribed scar formation in the most lateral striatum at Day 52 post-ischaemia revealed by glial fibrillary acidic protein (GFAP)

immunohistochemistry. (G) Leucocyte infiltration and (H) microglial activation analysed by CD45 and Iba1 immunohistochemistry.

Note that erythropoietin increases neuronal survival at Day 52 post-ischaemia (A), diminishes progressive brain atrophy (B) without

influencing corpus callosum thickness (C), promotes angiogenesis (D), reduces diffuse astrocytosis (E) and glial scar formation

(F) and inhibits leucocyte infiltration (G), without affecting microglial activation (H). Photomicrographs are also shown that were taken

at Day 52 post-ischaemia (A–D and F) or Day 14 post-ischaemia (E–H). Data are mean values �SD. Data were analysed by two-way

ANOVA followed by two-tailed t-tests for individual time points. *P50.05/**P5 0.01 compared with vehicle-treated ischaemic mice.

Bar = 200 mm (B and F); 50 mm (C); 20 mm (A, D, E, G and H).
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To analyse whether erythropoietin influenced the survival of

corticospinal tract fibres distant to the stroke lesion, we counted

cascade blue-labelled dextran amine-labelled fibres in the cerebral

peduncle both at the level of the red nucleus and facial nucleus.

This quantification did not reveal any differences between vehicle-

and erythropoietin-treated mice (red nucleus level: 44 453 � 9944

versus 44 629 � 5509 fibres/facial nucleus level: 19 188 � 7383

versus 19 943 � 1592 fibres, respectively), thus indicating that

erythropoietin did not influence the survival of descending pyr-

amidal tract axons. Similar to cascade blue-labelled fibres in

the ipsilesional pyramidal tract, BDA-labelled fibres in the contral-

esional corticospinal tract did not differ between vehicle- and

erythropoietin-treated mice. Similar to the total number of fibres,

the overall size of the pyramidal tract, analysed on coronal sec-

tions at the bulbar level, was not changed by erythropoietin, either

ipsilesional (0.06 � 0.02 versus 0.07 � 0.03 mm2), or contrale-

sional (0.07 � 0.01 versus 0.06 � 0.02 mm2) to the stroke. As

such, the corticospinal system was not affected by secondary

degeneration.

Erythropoietin promotes contralesional,
but not ipsilesional corticorubral
plasticity
Cascade blue-labelled and BDA-stained fibres originating from the

cerebral peduncle converted dorsomedially at mesencephalic

levels, terminating as previously described (Z’Graggen et al.,

1998; Brown, 2007) in the parvocellular part of the ipsilateral

red nucleus. At this level, we quantified the number of fibres

crossing the midline towards the contralesional red nucleus. Our

results revealed a moderate (though not significant) increase of

the percentage of cascade blue-labelled midline crossing fibres

derived from the ipsilesional corticospinal tract upon middle cere-

bral artery occlusion. On the other hand, the percentage of BDA-

labelled midline crossing fibres originating from the contralesional

corticospinal tract remained unchanged (Fig. 4). Importantly,

erythropoietin significantly promoted the outgrowth of midline

crossing fibres from the contralesional corticospinal tract, without

influencing the plasticity of ipsilesional corticospinal tract fibres

(Fig. 4).

Erythropoietin enhances contralesional,
but not ipsilesional corticobulbar
plasticity
At the midpontine level, two fibre bundles originating from the

corticospinal tract innervate the ipsilesional and contralesional

facial nucleus. At this level, we counted the fibres leaving the

corticospinal tract in the direction of both facial nuclei, evaluating

fibres crossing two intersection lines. Our data showed that focal

cerebral ischaemia significantly increased the density of fibres ori-

ginating from the cascade blue-labelled ipsilesional corticospinal

tract innervating the ipsilesional facial nucleus, without affecting

the density of fibres derived from the BDA-labelled contralesional

corticospinal tract (Fig. 5). Erythropoietin significantly increased

the sprouting of BDA-labelled contralesional corticospinal tract

axons to the contralesional facial nucleus, at the same time

mildly but non-significantly (P = 0.07) reducing facial nucleus pro-

jections derived from the cascade blue-labelled ipsilesional corti-

cospinal tract (Fig. 5).

Post-ischaemic remodelling
by erythropoietin involves
anti-inflammatory effects
To elucidate the mechanisms underlying erythropoietin’s restora-

tive actions, we performed semi-quantitative RT–PCR-based gene

expression profiling, investigating a series of acute and chronic

inflammation markers in the striatum, motor cortex and parietal

cortex of both hemispheres (for complete list see Supplementary

Table 1). As expected, stroke robustly increased several inflamma-

tion markers in the ischaemic hemisphere, among which there are

interleukin (IL)-1b, tumour necrosis factor (TNF)-a, leukaemia-

inhibitory factor (LIF), transforming growth factor (TGF)-b, IL-6,

glial fibrillary acidic protein and inducible nitric oxide synthase

(Fig. 6). Erythropoietin significantly reduced all these messenger

RNAs in the ipsilesional, and to a lesser extent in the contralesional

brain hemisphere (Fig. 6).

To further explore the immune changes induced by erythro-

poietin, we performed a scatter plot analysis, in which we corre-

lated fold induction values from ischaemic and non-ischaemic

regions for all inflammatory genes both at Days 14 and 30 post-

ischaemia (Supplementary Fig. 1). Regression studies showed

that the slope of the curve correlating fold induction values

from erythropoietin treated with vehicle-treated animals was

51 in both hemispheres (between 0.37 and 0.6; Supplementary

Fig. 1), further supporting the observation that erythropoietin

exerts anti-inflammatory actions both ipsilaterally and contralaterally

to ischaemic stroke.

In order to identify immune cells involved for the anti-

inflammatory action of erythropoietin, immunostainings for the

leucocyte marker CD45 and microglia marker Iba1 were per-

formed. Erythropoietin significantly reduced the brain infiltration

of CD45 + leucocytes (Fig. 3G), but not the presence of Iba1 +

microglia (Fig. 3H) in the ischaemic striatum. In the contralesional

hemisphere, neither Iba1 + microglia nor CD45 + leucocytes were

seen. These data indicate that attenuation of leucocyte recruit-

ment, besides reduced reactive astrogliosis, may contribute to

erythropoietin’s anti-inflammatory actions.

Modulation of pro-plasticity and
anti-plasticity markers by erythropoietin
To better understand how erythropoietin influences brain plasticity

both ipsilateral and contralateral to the stroke, additional RT–PCR

studies were performed, using plasticity-promoting and -inhibitory

genes that were previously described to be induced in the first

days to weeks after stroke (Carmichael and Li, 2006;

Supplementary Table 1). Induction of ischaemia was accompanied

by a robust upregulation of the messenger RNAs of the pro-

plasticity genes small proline-rich protein (SPRR)1, insulin-like

growth factor (IGF)-1, brain-derived neurotrophic factor (BDNF),
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vascular endothelial growth factor receptor-2 (KDR) and myristoy-

lated alanine-rich C-kinase substrate (MARCKS) in the ischaemic

but not the contralesional hemisphere between Days 3 and 30

post-ischaemia (Fig. 7). On the other hand, no comparably un-

equivocal pattern in the regulation of anti-plasticity messenger

RNAs was observed (Fig. 7). Whereas erythropoietin diminished

the expression of different pro-plasticity genes (i.e. SPRR1, IGF-1

and KDR) in the ischaemic hemisphere at Day 14, but not Day 30

post-ischaemia, erythropoietin downregulated the anti-plasticity

messenger RNAs neurocan and ephrin B1 and upregulated the

pro-plasticity SPRR1 messenger RNA in the non-ischaemic hemi-

sphere at Days 14 and 30 post-ischaemia (Fig. 7).

To further explore plasticity-modulating actions of erythropoi-

etin in the stroke brain, we correlated fold induction values of

erythropoietin- and vehicle-treated animals in scatter plots

(Supplementary Figs 2 and 3). Regression studies revealed that

the slope of the curve correlating fold induction values from

erythropoietin- with vehicle-treated animals was 51 for pro-

plasticity and anti-plasticity messenger RNAs in both hemispheres

at Day 14 post-ischaemia (between 0.50 and 0.79; Supplementary

Figs 2 and 3). This slope remained low for anti-plasticity genes at

Day 30 post-ischaemia (0.52–0.70), whereas the slope of pro-

plasticity genes increased at the same time point contralateral to

the stroke (to 1.18). These observations support our finding of a

plasticity-promoting effect of erythropoietin in the contralesional

hemisphere at Day 30 post-ischaemia.

To evaluate whether the expression of plasticity-related messen-

ger RNAs also translates into proteins, we prepared western blots

for the pro-plasticity protein SPRR1A using tissue samples ob-

tained from the motor cortex. These blots revealed that, while

SPRR1A expression was low in the contralesional motor cortex

both in vehicle- and erythropoietin-treated animals (not shown),

SPRR1A was abundant after ischaemia in the ipsilesional motor

cortex (Fig. 8). In line with reduced SPRR1 messenger RNA

levels, erythropoietin markedly diminished the expression of

SPRR1 protein at Days 14 and 30 post-ischaemia (Fig. 8). Our

data suggest that brain plasticity is actively inhibited by erythro-

poietin in the ischaemic hemisphere.

Figure 4 Erythropoietin (Epo) promotes contralesional, but not ipsilesional corticorubral plasticity. Tract tracing analysis of corticorubral

projections ipsilateral and contralateral to the stroke in mice receiving cascade blue (CB) and biotinylated dextran amine (BDA) injections

into the lesion-sided and contralesional motor cortex (for placement of tracer injections see (A). Percent of midline crossing fibres to (B) the

contralesional red nucleus (RN) traced by cascade blue and (C) the ipsilesional, denervated red nucleus traced by BDA. Note that the

percentage of midline crossing fibres after ipsilesional cascade blue injection moderately, but not significantly increases in response to

stroke (B). Interestingly, erythropoietin (Epo) does not further elevate the percentage of midline-crossing fibres of the ipsilesional pyr-

amidal tract (B), but increases contralesional pyramidal tract sprouting across the midline resulting in fibre outgrowth towards the

denervated lesion-sided red nucleus (C). (D) Microphotographs of representative ischaemic vehicle- and erythropoietin-treated mice

illustrating BDA traced corticorubral fibres intersecting the midline (superimposed in blue) in between both red nucleus. Note that the

denervated (left) red nucleus receives more BDA traced fibres after erythropoietin than after vehicle delivery (midline-intersecting fibres

labelled with dots). Data are means �SD. Data were analysed by one-way ANOVA followed by least significant differences tests.
§P50.05 compared with vehicle-treated non-ischaemic mice. *P5 0.05 compared with vehicle-treated ischaemic mice.
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Discussion
Using a comprehensive analysis of (i) motor and coordination

deficits; (ii) reorganization processes of the peri-ischaemic tissue

and (iii) pyramidal tract plasticity both ipsilateral and contra-

lateral to the stroke, we have shown that post-acute delivery

of recombinant human erythropoietin, initiated as late as 72 h

after focal cerebral ischaemia, promotes functional neurological

recovery in mice submitted to transient intraluminal middle

cerebral artery occlusion by mechanisms involving perilesional

tissue remodelling and promotion of contralateral pyramidal tract

plasticity. We used an experimental delivery protocol, in which

erythropoietin was administered into the lateral ventricle from

Days 3–30 post-ischaemia via mini osmotic pumps. In addition

to tract-tracing studies, we performed a detailed analysis of histo-

chemical and molecular biological changes induced by erythropoi-

etin, showing that the growth factor inhibits inflammatory

responses of the brain tissue and at the same time modulates

plasticity genes.

That erythropoietin promotes neurological recovery beyond the

acute stroke phase is noteworthy, and it opens new perspectives

for post-acute therapies. In contrast to acute neuroprotection,

which aims at preserving ischaemic neurons from apoptotic or

necrotic injury and which in case of existing studies can hardly

be expected beyond a time-window of 3–6 h after the stroke

(Minnerup et al., 2009), post-acute therapies aim at the reorgan-

ization of the brain, both in the vicinity (Cramer and Chopp, 2000)

and areas remote (Wiessner et al., 2003) to the stroke lesion.

Figure 5 Erythropoietin (Epo) increases contralesional corticobulbar plasticity without influencing ipsilesional corticobulbar plasticity that

is increased by the stroke. Tract tracing analysis of corticobulbar projections ipsilateral and contralateral to the stroke at the level of the

facial nucleus (FN) in mice receiving cascade blue-labelled (CB) and BDA injections into the ipsilesional and contralesional motor cortex

(placement of tracer injections shown in A). Percent of fibres leaving the pyramidal tract in direction of the ipsilesional and contralesional

facial nucleus traced by (B) cascade blue and (C) BDA. Note that the percentage of fibres projecting to the ipsilesional facial nucleus after

cascade blue injection into the lesion-sided motor cortex significantly increases in response to stroke (B). Interestingly, erythropoietin does

not further strengthen this ipsilesional projection, but rather reduces it (B), simultaneously increasing the percentage of BDA stained

contralesional pyramidal tract fibres innervating the contralesional facial nucleus (C). (D) Microphotographs of representative ischaemic

vehicle- and erythropoietin-treated mice showing BDA-traced corticobulbar fibres crossing the intersection lines (superimposed in blue) on

both sides of the brain. Note that erythropoietin increases fibre outgrowth towards the contralesional facial nucleus (intersecting fibres

labelled with dots). Data are means �SD. Data were analysed by one-way ANOVA followed by least significant differences tests.
§P50.05/§§P5 0.01 compared with vehicle-treated non-ischaemic mice. *P50.05 compared with vehicle-treated ischaemic mice.
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Slowly progressive secondary degeneration takes place in the stri-

atum of vehicle-treated mice submitted to transient intraluminal

middle cerebral artery occlusion, reflected by a continued loss of

neurons and secondary tissue shrinkage, both of which were

reduced by erythropoietin in our study. Our observations are in

line with a previous study (Bacigaluppi et al., 2009), which

reported secondary degeneration of the ipsilesional striatum in

ischaemic mice that was antagonized by adult neural precursor

(i.e. stem) cells. Similar to the present study, this effect was

not evident in the initial recovery phase, but developed within

2–4 weeks after the stroke. Inhibition of caspase-3-dependent

apoptotic cell injury was noticed in the striatum in that study

(Bacigaluppi et al., 2009), indicating that the prevention of shrink-

age represented a delayed neuroprotective effect. That secondary

neurodegeneration in the vicinity of the lesion may be relevant for

stroke recovery has also been proposed by Taguchi et al. (2007),

who reported that administration of granulocyte colony-

stimulating factor after stroke enhances inflammatory response

both ipsi- and contralateral to the ischaemic side, correlating

with a remarkable brain atrophy and an impaired functional

recovery after stroke. In the same study, erythropoietin treatment

after stroke was proved to have beneficial effects by reducing

brain atrophy and accelerating functional recovery after stroke.

This reverse effect of erythropoietin is confirmed in the current

study, in which we show that erythropoietin therapy reduces in-

flammatory response both ipsi- and contralateral to the ischaemic

side, thereby reducing brain atrophy and increasing functional re-

covery after stroke.

Besides preventing delayed neurodegeneration, erythropoietin-

induced angiogenesis and inhibited reactive astrogliosis, at the

same time preventing scar formation of ischaemic tissue. Our

data are in agreement with recent studies by Li et al. (2009),

who observed, with MRI, peri-lesional white matter remodelling

in middle cerebral artery occlusion rats treated with erythropoietin

within 24 h of reperfusion. Inhibition of glial scar formation has

previously been reported in studies evaluating cell-based therapies,

namely bone marrow-derived stem cells (Li et al., 2005) and adult

neural precursor cells (Bacigaluppi et al., 2009), indicating that

erythropoietin shares common mechanisms of action with these

cells. In contrast to erythropoietin, adult neural stem/precursor

Figure 6 Temporospatial analysis of anti-inflammatory effects of erythropoietin (Epo) in the lesion-sided and contralesional hemisphere.

Semi-quantitative RT–PCR analysis summarizing the expression of inflammatory genes in the striatum (STR), motor cortex (MCx) and

parietal cortex (ParCx) at Days 3, 14 and 30 post-ischaemia. Both gene expression changes induced by middle cerebral artery occlusion

(MCAO; A and B) and by erythropoietin (C and D) are depicted. Throughout the time period examined, from Days 3 to 30 post-ischaemia,

focal cerebral ischaemia increased the messenger RNA levels of Il-1b, TNF-a, Lif, TGFb, Il-6, GFAP and iNOS (A and B). Erythropoietin

attenuated the expression of all seven genes at Day 14 post-ischaemia, most strongly in the ischaemic hemisphere (C) but less pronounced

also in the contralesional hemisphere (D). Data are logarithmic ratios of fold inductions after middle cerebral artery occlusion versus sham

surgery (A and B) and erythropoietin versus vehicle treatment (C and D). Data were analysed by two-way ANOVA. *P50.05 compared

with vehicle-treated ischaemic mice. dpi = days post-ischaemia.
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cells did not stimulate angiogenesis (Bacigaluppi et al., 2009). An

advantage of erythropoietin as compared to cell-based therapies,

namely with neural precursor cells, is the lack of malignant tumour

growth, which still remains a risk for the latter cells that cannot

entirely be ruled out (Amariglio et al., 2009).

In our study, induction of focal cerebral ischaemia significantly

increased axonal plasticity ipsilateral to the stroke, namely at the

level of the facial nucleus. Pyramidal tract remodelling was recent-

ly examined by means of manganese-enhanced MRI in rats from 4

to 10 weeks after 90 min middle cerebral artery occlusion (van der

Zijden et al., 2008). In that study, significantly increased manga-

nese transport was observed in lesion-contralateral brain structures

after ipsilesional motor cortex injections, suggesting enhanced

interhemispheric axonal growth (van der Zijden et al., 2008).

Unlike dextran amines, manganese is a combined anterograde

(Canals et al., 2008) and retrograde (Matsuda et al., 2010)

tracer, which is also trans-synaptically transported. Manganese

therefore does not provide more detailed insights into plasticity

processes. It has previously been shown, however, by means of

histochemistry, that focal cerebral ischaemia induces the growth of

short distance fibres (Carmichael et al., 2001) and promotes den-

dritic spine formation (Brown et al., 2007) in the perilesional tissue

ipsilateral to the stroke. Our data confirm that plasticity is induced

and that it not only affects short distance but also long distance

projections.

In view of the enhanced plasticity ipsilateral to the stroke, which

we observed in vehicle-treated ischaemic mice, it is noteworthy that

erythropoietin did not further enhance ipsilesional pyramidal tract

plasticity but rather reduced it (P = 0.07 at the level of the facial

nucleus). Instead, erythropoietin significantly increased the projec-

tions from the contralesional motor cortex towards the denervated

red and facial nuclei. Contralesional sprouting was shown to correl-

ate with functional neurological recovery after antagonization of

the neurite growth inhibitor NogoA (Papadopoulos et al., 2002;

Wiessner et al., 2003) and bone marrow-derived stem cell therapy

(Andrews et al., 2008). In case of neutralizing NogoA antibodies,

close correlations between the degree of functional neurological

recovery and contralateral sprouting have been reported

Figure 7 Temporospatial analysis of plasticity-promoting and -inhibitory effects of erythropoietin (Epo) in the lesion-sided and con-

tralesional hemisphere. Semi-quantitative RT–PCR analysis summarizing the expression of pro-plasticity and anti-plasticity genes that were

regulated by the stroke in the striatum (STR), motor cortex (MCx) and parietal cortex (ParCx) at Days 3, 14 and 30 post-ischaemia. Both

gene expression changes induced by middle cerebral artery occlusion (MCAO; A and B) and by erythropoietin (C and D) are summarized.

Throughout the time period examined, focal cerebral ischaemia elevated the messenger RNA levels of different pro-plasticity genes,

namely of SPRR1 and IGF-1, in the ischaemic hemisphere (A). Interestingly, erythropoietin reduced the expression of SPRR1, IGF-1, BDNF

and KDR at Day 14 post-ischaemia in the ischaemic hemisphere (A), at the same time downregulating the anti-plasticity genes neurocan

and ephrin-B1 more clearly contralateral (B) that ipsilateral (A) to the stroke. Data are logarithmic ratios of fold inductions after middle

cerebral artery occlusion versus sham surgery (A and B) and erythropoietin versus vehicle treatment (C and D). Data were analysed by

two-way ANOVA. *P50.05 compared with vehicle-treated ischaemic mice. dpi = days post-ischaemia.
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(Papadopoulos et al., 2002; Wiessner et al., 2003), demonstrating

that cerebral connectivity represents a useful marker of recovery

processes. Our data confirm that stroke induces plasticity in the

lesioned hemisphere and that erythropoietin shifts plasticity towards

the contralesional hemisphere with a beneficial effect on functional

recovery.

In this study, erythropoietin exhibited pronounced anti-

inflammatory actions, which went along with a reduction of leuco-

cyte infiltration that persisted as long as erythropoietin was

infused. It has already been shown that erythropoietin and its

non-erythropoietic derivatives exhibit anti-inflammatory actions

when delivered in the acute stroke phase. As such, reduced leuco-

cyte infiltration (Villa et al., 2003, 2007), decreased release of

TNF-a, IL-6 and monocyte chemoattractant protein-1 (Villa

et al., 2003) and diminished expression of inducible nitric oxide

synthase (Kilic et al., 2005a) were noticed. In cell culture, astro-

cytes but not leucocytes were shown to be responsive to erythro-

poietin administration (Villa et al., 2003), suggesting that reduced

release of inflammatory signals may be the trigger for the reduced

invasion of blood-borne cells into the brain. By means of RT–PCR,

we revealed that erythropoietin downregulated several pro-

inflammatory genes IL-1b, TNF-a, LIF, TGF-b, IL-6, glial fibrillary

acidic protein and inducible nitric oxide synthase, indicating that

anti-inflammation may represent a mode of action, via which this

growth factor enables brain reorganization. Interestingly, pump

removal in our study resulted in a rebound of leucocyte infiltration

in erythropoietin-treated mice, which did not, however, result in

the re-emergence of neurological deficits. Our data argue in

favour of a critical time window in which inflammatory responses

deteriorate recovery processes in the ischaemic brain.

Further to this, RT–PCR-based profiling of pro-plasticity genes

showed that erythropoietin diminished the expression of pro-

plasticity messenger RNAs SPRR1, IGF-1 and KDR in the ischaemic

hemisphere that were increased by the stroke. At the same time,

erythropoietin downregulated the anti-plasticity messenger RNAs

neurocan and ephrin B1 and upregulated the pro-plasticity SPRR1

in the non-ischaemic hemisphere. In case of SPRR1A, downregu-

lation was also demonstrated on the protein level by means of

western blots. Upregulation of pro-plasticity markers in the

lesion border zone has previously been described after permanent

cortical ischaemia for SPRR1, MARCKS, growth-associated protein

43 and synaptophysin, as well as delayed upregulation of anti-

plasticity markers for neurocan and ephrin B1 (Stroemer et al.,

1995; Carmichael and Li, 2006). In our study, erythropoietin regu-

lated several pro- and anti-plasticity genes especially in the

non-ischaemic hemisphere at Day 30 post-stroke, thus providing

evidence for a specific plasticity modulating action of this growth

factor. This is in accordance to previous studies on plasticity-

promoting actions of erythropoietin in rodent models of

Parkinson’s disease (McLeod et al., 2006) and following optic

nerve transaction (King et al., 2007). We have shown that

erythropoietin’s plasticity effects are relevant for stroke recovery

processes.

After the German multicentre erythropoietin trial, which has

recently shown unfavourable effects of erythropoietin in patients

undergoing thrombolysis (Ehrenreich et al., 2009), presumably via

exacerbation of extracellular matrix degradation by combined

tissue-plasminogen activator/erythropoietin treatment (Zechariah

et al., 2010), further neuroprotection studies with erythropoietin

in the acute stroke phase are unlikely. Our present study offers a

basis for the prolongation of timeframes far into the sub-acute

stroke phase, thus paving the way for plasticity-promoting trials

with erythropoietin, its non-erythropoietic derivatives (Leist et al.,

2004) or with small molecule agonists of erythropoietin receptors

(Pankratova et al., 2010). The latter compounds, for which the

utility for systemic delivery still has to be shown, may specifically

be tailored to bind to erythropoietin’s CNS receptors. Non-

erythropoietic derivatives of erythropoietin do not induce haema-

toglobin or coagulation changes, and thus do not bear an elevated

risk of thromboembolic events, which has recently been discussed

in the context of chronic kidney disease trials (Pfeffer et al., 2009).

With these considerations, proof-of-concept studies in human pa-

tients are promising.
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Figure 8 Erythropoietin (Epo) downregulates SPRR1A protein

in the lesion-sided motor cortex. Western blot analysis showing

reduced abundance of SPRR1A in erythropoietin- as compared

with vehicle-treated mice at Days 14 and 30 post-ischaemia.

Protein loading was controlled by reprobing the blots with

a b-actin antibody. SPRR1A levels were densitometrically

analysed. Data are mean values �SD. Data were evaluated

by two-way ANOVA followed by two-tailed t-tests for

both time points. **P5 0.01 compared with vehicle-treated

ischaemic mice.
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Kilic E, Kilic Ü, Soliz J, Bassetti CL, Gassmann M, Hermann DM. Brain-

derived erythropoietin protects from focal cerebral ischemia by dual

activation of ERK-1/-2 and Akt pathways. FASEB J 2005a; 19: 2026–8.
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