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Functional kinomics establishes a 
critical node of volume-sensitive 
cation-Cl− cotransporter regulation 
in the mammalian brain
Jinwei Zhang1,2, Geng Gao3, Gulnaz Begum4, Jinhua Wang5,6, Arjun R. Khanna7, 
Boris E. Shmukler8,9, Gerrit M. Daubner1, Paola de los Heros1,†, Paul Davies1, Joby Varghese1, 
Mohammad Iqbal H. Bhuiyan4, Jinjing Duan2,10, Jin Zhang10, Daniel Duran2, Seth L. Alper8,9, 
Dandan Sun4,11, Stephen J. Elledge12, Dario R. Alessi1 & Kristopher T. Kahle13

Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. 
While the ensemble of ion transport proteins involved in cell volume regulation is well established, the 
molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics 
approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor 
screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase 
regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory 
volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, 
required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation 
of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). 
This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 
and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in 
response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition 
of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that 
WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− 
cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.

Vertebrate cells lack rigid cell walls and are highly permeable to water; as such, they face the continuous threat of 
swelling or shrinkage in response to external or internal osmotic challenges1–3. Increases in intracellular osmo-
lality (as occurs in actively-transporting epithelia, metabolically-active cells, or ischemic cells), or decreases in 
extracellular osmolality (e.g., due to hyponatremia) induce rapid water influx1,4. The resulting cellular swelling, 
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if unopposed, can rapidly lead to breakdown of cytoskeletal and membrane integrity and subsequent cell death4. 
Even in the absence of osmotic challenge, cells must tightly regulate their volume during cell division, growth, 
and migration3,5.

Cell volume regulation involves the rapid adjustment of the activities of plasmalemmal channels and trans-
porters that mediate flux of K+, Na+, Cl−, and small organic osmolytes3. This solute transport generates osmotic 
gradients, which drive water into or out of cells via aquaporin water channels6, and perhaps other water-permeant 
solute transporters7. Cell swelling triggers regulatory volume decrease (RVD), which promotes solute and water 
efflux to restore normal cell volume4. Swelling-activated K+ and Cl− channels (e.g., volume-regulated anion chan-
nel (VRAC), formed by LRRC8 heteromers)8–10 and the K+-Cl− cotransporters (KCCs, such as KCC3)11 mediate 
RVD in most cell types. In contrast, cell shrinkage triggers regulatory volume increase (RVI), which involves the 
parallel activation of the Na+/H+ exchangers NHE1 and Cl−/HCO3

− exchanger AE2, and/or the stimulation of 
the Na+-K+-2Cl− cotransporter NKCC1 – a close relative of the KCCs in the cation-Cl− cotransporter family 
(CCC)12. Regulation of RVD and RVI must be tightly coordinated11. Whereas the ion transporting “effectors” of 
RVD and RVI are well characterized, the “sensor” and “transducer” mechanisms that regulate them are less well 
understood.

The canonical volume-regulated KCCs (KCC1, KCC3, and KCC4) are largely inactive in isotonic condi-
tions, but rapidly activated by cell swelling13–15. Swelling-induced KCC activation is abolished by inhibition of 
protein phosphatase 1A (PP1) and PP2 with calyculin A, demonstrating an essential regulatory role for serine 
(Ser)-threonine (Thr) kinases/phosphatases in this process16,17. Conversely, phosphorylation of the KCCs in the 
setting of cell shrinkage inhibits their activity. Interestingly, the activities of the KCCs and NKCC1 are reciprocally 
regulated by phosphorylation at structurally homologous Thr residues induced by low intracellular Cl− con-
centration [Cl−]i or hypotonic cell swelling18,19. In these volume-regulated contexts, protein phosphorylation 
activates NKCC1 but inhibits KCCs, whereas dephosphorylation produces the reciprocal effects13,14,20–23. These 
characteristics have long suggested that the same Cl− and/or volume-sensitive kinase cascade regulates both 
NKCC1 and the KCCs, but the identities of such molecules has not been systematically examined, nor established 
in vivo.

Two C-terminal Thr residues in human KCC3, Thr991 and Thr1048, are robustly phosphorylated in isotonic 
conditions in which the transporter is quiescent, but undergo rapid dephosphorylation in response to cell swell-
ing conditions, which activates the transporter18,19,24. Homologous sites undergo phosphorylation in all human 
KCCs, including KCC2, and engineered alanine (Ala) substitutions, which prevent phosphorylation at these sites, 
result in constitutive transporter activity18,19,24. The STE20/SPS1-related proline/alanine-rich kinase (SPAK)12,25,26, 
known to directly phosphorylate NKCC1 at NKCC1 Thr203/Thr207/Thr212 27,28, also directly phosphorylates KCC3 
Thr1048 in vitro, but not Thr991 24. However, the molecules that regulate KCC3 Thr991/Thr1048 phosphorylation in 
vitro have not been systematically examined, or identified in vivo. Moreover, the importance of KCC3 Thr991/
Thr1048 phosphorylation for cell volume regulation in the brain remains unknown.

We utilized a functional kinomics approach comprising a kinome-wide siRNA-phosphoproteomic screen, 
a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systemat-
ically identify genes and pathways that regulate KCC3 Thr991/Thr1048 phosphorylation. The specific goal of our 
screens was to identify kinases that, when inhibited, would stimulate KCC3 activity by promoting Thr991/Thr1048 
dephosphorylation. Our data converged upon the WNK3-SPAK kinase complex as an essential regulator of KCC3 
Thr991/Thr1048 phosphorylation in vitro and in vivo in the mammalian brain. Antagonism of WNK3-SPAK sig-
naling was found to facilitate cellular Cl− extrusion by simultaneously decreasing NKCC1 Thr203/Thr207/Thr212 
phosphorylation and KCC3 Thr991/Thr1048 phosphorylation. Accordingly, WNK3-SPAK inhibition prevents acute 
cell swelling in response to osmotic stress, and ameliorates brain swelling after ischemic stroke. Our data provide 
evidence that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the 
cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.

Results
An RNAi screen for kinases essential for KCC3 Thr991 phosphorylation.  We carried out a kinome-
wide RNAi screen in human HEK293 cells with doxycycline (dox)-inducible expression of MYC-tagged human 
KCC318,19 to identify genes required for KCC3 Thr991 phosphorylation (herein “KCC3 P-Thr991”). We employed a 
phospho-specific antibody that recognizes KCC3 P-Thr991 as a reporter for the screen24. We reasoned that kinases 
regulating KCC3 P-Thr991 might also regulate P-Thr1048, since the phosphorylation of these sites are induced by 
the same stimuli with similar kinetics19. The signal of KCC3 P-Thr991 antibody is robust in isotonic conditions, 
inversely correlates with the activity of KCC3, and is significantly decreased in response to hypotonic cell swelling 
conditions that stimulate KCC3 activity, or when Thr991 is mutated to alanine (Ala) to prevent phosphoryla-
tion18,19 (Fig. 1A,B).

In the primary screen of HEK293-KCC3 cells, we depleted individual proteins using the human Dharmacon 
SMARTpool siRNA kinome library, which targets 720 kinases and associated proteins, including nearly all ser-
ine, threonine, tyrosine, and lipid kinases, using pools of 4 independent siRNA oligonucleotides target different 
regions of each gene. Knockdown by each siRNA was performed in triplicate in 24-well plates. After induction 
of MYC-KCC3 expression by dox in siRNA-transfected cells, we harvested cell lysates and subjected them to 
SDS-PAGE gel fractionation and Western blot analysis with anti-KCC3 P-Thr991 antibody24. The KCC3 P-Thr991 
immuno-signal on Western blots was quantitated as described in Methods (Fig. 1C).

Negative control firefly (FF) luciferase siRNAs had no effect on KCC3 P-Thr991; in contrast, positive con-
trol siRNAs targeting KCC3 itself knocked down the KCC3 P-Thr991 signal almost entirely. The primary screen 
resulted in the identification of multiple siRNA pools that led to a consistent and significant (>​50%, p <​ 0.01) 
decrease in KCC3 P-Thr991 signal. We performed robust z-score analysis29 of the data from the primary 
screen (Fig. 1D), and candidates with highly negative z-scores (i.e., siRNAs that decreased the KCC3 P-Thr991 
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Figure 1.  An RNAi screen to identify kinases essential for KCC3 Thr991 phosphorylation. (A) Characterization 
of HEK293 cells with doxycycline (dox)-inducible MYC-KCC3 expression used in the RNAi screen. KCC3 wild 
type (WT) and KCC3 Thr991Ala/Thr1048Ala protein expression was induced by 0.1 μ​g/ml doxycycline in the 
culture medium for 24 hours19. Cell lysates were subjected to Western immunoblot (IB) analysis with the indicated 
antibodies (B) Characterization of anti-KCC3 P-Thr991 and anti-KCC3 P-Thr1048 phospho-specific antibodies. 
36 hours post-transfection with the indicated FLAG-tagged constructs, HEK293 cells were treated for 30 min with 
either isotonic conditions or hypotonic high K+ conditions. Total cell extracts were subjected to IB analysis with 
the indicated antibodies. Mutation of these residues to alanine (Ala991 and Ala1048) prevented phosphorylation 
and eliminated the phospho-specific antibody signal at both sites. (C) Scheme of the RNAi screen using the 
human Dharmacon SMARTpool siRNA kinome library to identify essential kinase regulators of KCC3 Thr991 
phosphorylation. (D) Example of results from the primary siRNA screen. Band density of KCC3 P-Thr991 from 
Western blots was quantitated by ImageJ software, and these values were used to calculate the magnitude of KCC3 
P-Thr991 increase or decrease by comparing to values derived from Firefly (FF) luciferase negative controls. The 
heat map depicts the average scores for each kinase siRNA pool in the screen that decreased (green) or increased 
(red) the signal of KCC3 P-Thr991 relative to that of the FF siRNA. See Methods for further details. (E) Scattered 
and sorted robust z-scores of kinase hits from the siRNA primary screen. Several siRNA pools led to a significant 
decrease in the KCC3 P-Thr991 signal (>​50%, p <​ 0.01 compared to FF siRNA negative control). (F) Summary of 
kinase hits from the secondary siRNA screen. siRNAs targeting primary screen hits were analyzed for their ability 
to decrease KCC3 P-Thr991 without affecting total KCC3 level. The (KCC3 P-Thr991)/(total MYC-KCC3) ratio was 
calculated for each target based on the quantification of immuno-reactive signals in triplicate Western blots, with 
a value of 100% for FF. Ratios were compared by one-way ANOVA (n =​ 3, mean ±​ SEM), with p <​ 0.01 considered 
statistically significant.
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immuno-signal more than two standard deviations below the mean of the buffer-alone and the negative control 
FF siRNAs) These hits included serine-threonine kinases, tyrosine kinases, and lipid kinases (ITPKC, AKT1, 
FRAP1, EPHA10, DGKK, PRKCM, CIB2, PRKWNK3, MATK, HRI, PI4K2B, ROR1, TGFBR3, LOC390226, NME2, 
JIK, ROCK2, SGK1, MYLK, and AK2), and were considered for further analysis by a secondary screen.

The secondary screen analyzed siRNAs targeting the above candidates for their ability to specifically decrease 
KCC3 P-Thr991 without altering total KCC3 protein expression, as detected by anti-MYC antibody. For each can-
didate siRNA pool, we calculated the ratio of anti-KCC3 P-Thr991 and anti-MYC immunoblot signals. Given that 
KCC3 Thr991 is strongly phosphorylated in isotonic conditions, this ratio for negative control FF luciferase siRNA 
was normalized to 1. Thirteen genes yielded significantly decreased “KCC3 P-Thr991-to-MYC” ratios, including 
EPHA10, PRKCM, JIK, ROR1, ROCK2, CIB2, MATK, AK2, WNK3, AKT1, PI4K2B, SGK1, and DGKK; Fig. 1E). 
Analysis of these hits using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database 
revealed several protein-protein interactions (http://string-db.org), including clusters of kinases known to partic-
ipate in the regulation of ion transport, cell volume regulation, and cell size (Fig. 1F).

These targets were further validated and siRNA off-target signals minimized30 by employing a tertiary screen 
that investigated the effects of genomic knockout (KO) of candidate kinases on KCC3 P-Thr991 in cell lines (see 
Methods). This strategy allowed validation of our findings in other cell types, including mouse embryonic fibro-
blasts (MEFs) and mouse embryonic stem cells (mESCs). To identify kinases that might directly phosphorylate 
KCC3, we limited the tertiary (validation) screen to only serine-threonine kinases. We examined KCC3 P-Thr991 
using phospho-antibodies in cell lines knocked out for WNK3, PRKD1 (i.e., encoding Protein Kinase D1 [PKD1], 
also known as PKC-Mu), AKT1, ROCK2, and TSC1 and TSC2 (as models harboring significantly decreased 
AKT1 and SGK1 activity31–34. KCC3 P-Thr1048 and NKCC1 P-Thr203/Thr207/Thr212 were also monitored with 
phospho-antibodies24,28 (Fig. 1A). In hypotonic low Cl− conditions, NKCC1 activity is stimulated via phosphoryl-
ation at Thr203/Thr207/Thr212; in the same conditions, KCC3 activity is inhibited due to phosphorylation at Thr991/
Thr1048 24,28. KCC3 Thr991 and NKCC1 Thr212 are located in highly homologous sequence contexts, suggesting a 
common phospho-motif19.

In conditions promoting CCC phosphorylation, WNK3 KO cells exhibited apparently decreased levels of 
KCC3 P-Thr991 (>​1.5-fold, p <​ 0.01), KCC3 P-Thr1048 (>​1.4-fold, p <​ 0.05), and NKCC1 P-Thr203/Thr207/Thr212 
(>​1.4-fold, p <​ 0.01) (Fig. 2A and Supplementary Figure 1A). PKD1 KO cells also exhibited decreases of KCC3 
P-Thr991 (>​2 fold, p <​ 0.001), P-Thr1048 (>​1.8, p <​ 0.01) and NKCC1 P-Thr203/Thr207/Thr212 (>​1.4 fold, p <​ 0.05) 
(Fig. 2B and Supplementary Figure 2A). In contrast, AKT1 KO and ROCK2 KO cells exhibited no apparent 
change in either KCC3 P-Thr991/Thr1048 or NKCC1 P-Thr203/Thr207/Thr212. Moreover, TSC1 KO and TSC2 KO cells 
(containing reduced levels of activated AKT1 and SGK131–34, showed apparently increased levels of KCC3 P-Thr991/
Thr1048 (>​1.3-2 fold, p <​ 0.05; Fig. 2C and Supplementary Figure 2B). These data show WNK3 and PDK1, but not 
AKT1, SGK1, or ROCK2, are essential for KCC3 P-Thr991/Thr1048 and NKCC1 P-Thr203/Thr207/Thr212.

A screen to identify kinase inhibitors that antagonize KCC3 Thr991/Thr1048 phosphorylation.  To 
corroborate and extend findings from our RNAi screen, we performed a high content drug screen of a library 
containing >​220 well-characterized, cell-permeable protein kinase inhibitors to identify individual kinases or 
signaling pathways required for phosphorylation of KCC3 Thr991/Thr1048 (Fig. 3A; see Methods for details).

In the primary screen, dox-induced HEK293 KCC3 cells were exposed to 20 μ​M kinase inhibitor for 2 hours 
in 24-well plates, followed by lysate harvest, gel fractionation, and semi-quantitative Western blot analysis of 
KCC3 P-Thr991 and total KCC3 protein. Negative control DMSO had no effect on KCC3 P-Thr991; in contrast, 
positive controls Torin 1 and Rapamycin robustly decreased pS6K P-Thr389. Of 220 kinase inhibitors tested, 32 
different drugs significantly decreased KCC3 P-Thr991 when assayed at 20 μ​M for 2 hours in isotonic conditions 
(Fig. 3A). These hits included the WNK-SPAK kinase CCT domain inhibitor STOCK1S-50699 35; multiple 
drugs targeting the PI3K-AKT-mTOR pathway, including GDC-0941, ZSTK474, AS605240, and AZD-6482 
(PI3K); KIN001-102, MK2206, and SB590885 (AKT), and Rapamycin, AZD8055, PP242, and Torin1/2 
(mTOR); and several drugs targeting MAPK-associated pathways including HER2 (CP724714, HKI-272, 
and GW-572016); PLK1 (GSK461364, GW843682, and BI-2536); B-Raf (PLX4032 and PLX-4720); and p38  
(TAK-715 and SB 239063) (Fig. 3A).

In the secondary drug screen, we tested representative positive primary screen candidates of specific path-
ways at lower concentrations and with decreased incubation times to promote increased drug specificity (1 μ​M 
for 30 min; see Methods). We assessed the effects of drugs on endogenous KCC3 P-Thr991 to avoid non-specific 
effects of protein over-expression. We also tested drugs in the presence or absence of hypotonic, low Cl− condi-
tions to select for phosphorylation events specific for cell volume homeostasis24. Of all kinase inhibitors tested 
in the secondary screen, only STOCK1S-50699 substantially decreased KCC3 P-Thr1048 (Fig. 3B). In addition, 
STOCK1S-50699 was the only compound that substantially decreased NKCC1 P-Thr203/Thr207/Thr212 (Fig. 3C).

We characterized the effect of STOCK1S-50699 on SPAK P-Ser373, KCC3 P-Thr991/Thr1048, and NKCC1 
P-Thr203/Thr207/Thr212 in dose-response experiments (Fig. 3C,D). STOCK1S-50699 showed a graded inhibitory 
effect on SPAK P-Ser373, consistent with SPAK inhibition (Fig. 3C,D)24. STOCK1S-50699 also had a graded inhib-
itory effect on KCC3 P-Thr991 with doses between 3–10 μ​M in activating conditions. In contrast, STOCK1S-50699 
treatment eliminated KCC3 P-Thr1048 and NKCC1 P-Thr203/Thr207/Thr212 even when tested at a concentration 
of 1 μ​M (Fig. 3C,D). These data show STOCK1S-50699 simultaneously inhibits KCC3 P-Thr1048 and, with less 
potency, KCC3 P-Thr991, as well as NKCC1 P-Thr203/Thr207/Thr212. These results also show KCC3 Thr991/Thr1048 
phosphorylation is a specific event, not affected by a panel of common kinase inhibitors, when tested at physio-
logically relevant doses and short incubation times.

Kinase trapping-Orbitrap mass spectroscopy to identify kinase regulators of KCC3.  Proteins 
responsible for KCC3 Thr991/Thr1048 phosphorylation might differentially bind to the KCC3 C-terminus 

http://string-db.org


www.nature.com/scientificreports/

5Scientific Reports | 6:35986 | DOI: 10.1038/srep35986

depending on transporter exposure to activating (dephosphorylating) cell swelling conditions, or inhibitory 
(phosphorylating) isotonic control conditions. To identify protein kinases that interact with and potentially regu-
late KCC3 P-Thr991/Thr1048, we performed kinase trapping coupled with Orbitrap MS36; see Methods for details).

Briefly, HEK293 cells expressing FLAG-tagged KCC3 were exposed to either control isotonic buffer (KCC3 
P-Thr991/Thr1048) or cell swelling hypotonic buffer (KCC3 deP-Thr991/Thr1048). Lysates incubated with or with-
out phosphatase inhibitors were purified by affinity chromatography in two separate columns, to “trap” KCC3 
phospho-regulatory elements. Both KCC3 P-Thr991/Thr1048and (de)P-Thr991/Thr1048 were immunoprecipitated by 
FLAG antibody and analyzed by Orbitrap MS.

Only several different kinases were found to associate with the phosphorylated and/or dephosphorylated spe-
cies of KCC3. SPAK, microtubule associated serine/threonine kinase-like (MASTL), the serine/threonine-protein 
kinase tousled-like 2 (TLK2), and mTOR interacted with both phosphorylated and de-phosphorylated KCC3 
with very high Mascot scores (Table 1). The SPAK ortholog OSR1 and phosphoglycerate kinase 1 (PGK1) selec-
tively interacted with only the dephosphorylated KCC3.

Figure 2.  Assessment of RNAi screen hits on volume-regulated KCC3 and NKCC1 phosphorylation.  
(A) Assessment of candidate kinase WNK3. We validated secondary siRNA screen hits using cell lines harboring 
specific knockout (KO) of the target gene of interest to avoid off-target effects of siRNA. WT and WNK3 KO 
cells60 were incubated 30 min in the absence or presence of STOCK1S-50699 (IN), a SPAK conserved carboxy-
terminal (CCT) docking domain inhibitor (see Methods). The lysates were immunoprecipitated (IP) and/or 
immunoblotted (IB) with the indicated antibodies (see also Supplementary Figure 1A,B). The ratio (KCC3 
P-Thr991)/(total KCC3) ratio was calculated for each kinase KO lysate. Ratios were compared by unpaired t-test 
(n =​ 3, mean ±​ SD). ***p <​ 0.001; **p <​ 0.01; *p <​ 0.05; ns, non-significant. (B) Assessment of candidate kinase 
PDK1. WT and PDK1 KO cells74 were treated and analyzed as in (A). See also Supplementary Figure 2A,C,D. 
(C) Assessment of candidate kinases AKT1/SGK1. TSC1 or TSC2 KO cells were used as models of down-regulated 
AKT1 and SGK1 activity75, and treated and analyzed as in (A). See also Supplementary Figure 2B,C.
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We assessed whether identified candidate kinases from our screens directly phosphorylated KCC3. We tested 
whether purified (and active) SPAK, WNK3, WNK1 (an ortholog of WNK3), PDK1, SGK1, or TLK2, directly 
phosphorylate the KCC3 N-terminus (aa 1–175) or C-terminus (aa 886–1141, containing Thr991 and Thr1048) in 
in vitro kinase assays (Supplementary Figure 3). SPAK, in the presence or absence of its regulatory MO25α​ sub-
unit37, phosphorylated KCC3 Thr1048 but not KCC3 Thr991 24. In contrast, WNK3, WNK1, PDK1, TLK2, or SGK1 
did not result in phosphorylation of the KCC3 N-terminus, or the C-terminus encompassing Thr991 and Thr1048 
(Supplementary Figure 3). These results demonstrate SPAK directly phosphorylates KCC3 Thr1048 but not Thr991, 
and that WNK3 and PDK1, while essential for full KCC3 Thr991 and Thr1048 phosphorylation, likely indirectly 
regulate these sites.

WNK3 inhibition facilitates KCC3-dependent Cl− extrusion by decreasing Thr991 and Thr1048 
phosphorylation.  We analyzed endogenous KCC3 activity in WNK3 wild type (WT) and WNK3 KO mES 
cells by measuring 86Rb+ uptake in isotonic control conditions, hypotonic high K+ conditions (KCC3 Thr991/
Thr1048 dephosphorylated and active), and hypotonic low Cl− conditions (KCC3 Thr991/Thr1048 phosphorylated 
and inactive) (see Methods; Fig. 4A and Supplementary Figure 1A and Supplementary Figure 4A). Exposure of 
WT WNK3 cells to hypotonic high K+ conditions activated 86Rb+ uptake by ~1.5-fold24. WNK3 mES KO cells 

Figure 3.  A screen to identify kinase inhibitors that antagonize KCC3 Thr991/Thr1048 phosphorylation. 
(A) Results from the primary kinase inhibitor screen. We performed a screen to identify kinase inhibitors that 
decreased KCC3 P-Thr991 using a library of >​220 well-characterized, cell-permeable protein kinase inhibitors 
(see Methods). Dox-induced HEK293-KCC3 WT cells were exposed to 20 μ​M of kinase inhibitor for 2 hours in 
24-well plates. Lysates were harvested, subjected to SDS-PAGE, and Western blot with the indicated antibodies. 
Quantitative measurement of the KCC3 P-Thr991: MYC signal ratio (MYC) was performed as described in 
Methods. Top hits from the screen are listed below a representative blot from the screen. Drugs showed overlap 
under several different signaling pathways listed in different colors. (B) Results from the secondary kinase 
inhibitor screen. We tested representative drugs targeting pathways that scored positively in the primary screen 
at lower concentrations and with decreased incubation times (1 μ​M for 30 min) to promote inhibitor specificity 
for the intended target kinase. HEK293 cells expressing N-terminal FLAG epitope tagged KCC3 were treated 
30 min with isotonic low Cl− and hypotonic low Cl− conditions, then treated in the same conditions with 
the indicated inhibitor concentrations for an additional 30 min. (C) Concentration-response experiments of 
STOCK1S-50699 on KCC3 P-Thr991/Thr1048. HEK293 cells were transfected with DNA construct encoding 
wild type N-terminal FLAG-tagged KCC3. 36 h post-transfection, cells were exposed 30 min to either control 
isotonic conditions or hypotonic low Cl− conditions, then treated in the same conditions with STOCK1S-50699 
at the indicated concentrations for an additional 30 min. Lysates were and subjected to SDS-PAGE and Western 
blotting with the indicated antibodies (lower panel). (D) Quantitation of immunoblot data from (C) presented 
as ratios of phospho-KCC3/total KCC3. ***p <​ 0.001, **p <​ 0.01, *p <​ 0.05, ns: non-significant.
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displayed a significantly increased level of basal 86Rb+ uptake in isotonic control conditions that was further stim-
ulated by hypotonic high K+ conditions (p <​ 0.001), but not hypotonic low Cl− conditions. These results are con-
sistent with increased KCC3 activity secondary to Thr991/Thr1048 dephosphorylation (Supplementary Figure 4A).

We next examined activities of WT KCC3, KCC3Thr991Ala, and KCC3Thr1048Ala in HEK293T WT, WNK1 KO and 
WNK3 KO cells (generated by Crispr/CAS9) by measuring 86Rb+ uptake in control isotonic and hypotonic low 
Cl− conditions (Fig. 4B). Under hypotonic low Cl− conditions, both WNK1 KO cells and WNK3 KO cells showed 
decreased phosphorylation of both endogenous and heterologously-expressed KCC3 at Thr991 (p <​ 0.001) and 
Thr1048 (p <​ 0.001). HEK293T WNK1 KO cells and WNK3 KO cells also showed apparently decreased NKCC1 
P-Thr203/Thr207/Thr212, SPAK P-Ser373, and OSR1 P-Ser325 (p <​ 0.05 for each; Fig. 4D,E, Supplementary Figure 4D,E).  
Individual mutation of either KCC3 Thr991 or Thr1048 to Ala apparently activated KCC3, and each single mutant 
was apparently further stimulated by hypotonic low Cl− conditions or by hypotonic high K+ conditions in both 
WNK1-KO (p <​ 0.05) and WNK3-KO cells (p <​ 0.05) (Fig. 4B). STOCK1S-50699 treatment of cells expressing 
KCC3Thr991Ala, KCC3Thr1048Ala or the double mutant KCC3Thr991Ala/Thr1048Ala did not change KCC3 activity, suggesting 
that Ala mutation of these Thr residues abolishes WNK3-SPAK-mediated inhibitory phosphorylation (Fig. 4C 
and Supplementary Figure 4C). These results together suggest that WNK3 inhibition facilitates KCC3-dependent 
Cl− extrusion by decreasing KCC3 P-Thr991/Thr1048.

WNK3-SPAK inhibition prevents acute cell swelling by stimulating KCC3 activity.  The impor-
tance of KCC3 P-Thr991 and P-Thr1048 in RVD18,19 prompted the speculation that WNK3-SPAK inhibition might 
alter the acute cell swelling response induced by osmotic stimuli. We therefore assessed the relative change 
in cell water content to acute hypotonic swelling in HEK293 cells (see Methods) expressing WT WNK3 or 
kinase-dead (KD) WNK3 in the presence or absence of STOCK1S-50699 (Fig. 5). Stimulation of WNK3-WT 
cells with hypotonic HEPES-MEM (150 mOsm/kg H2O) swelled cells ~3 ±​ 0.2-fold in volume (Fig. 5A), whereas 
WNK3-KD cells swelled only 1.2 ±​ 0.1-fold (, p <​ 0.05). Hypotonically-stressed WNK3-WT cells swelled at 
1.03 ±​ 0.1% cell volume/min (Fig. 5A), whereas WNK3-KD cells swelled at only 0.4 ±​ 0.1% cell volume/min. 
Exposure of WNK3-WT cells to STOCK1S-50699 prevented cells from swelling in response to acute hypotonic 
stress (Fig. 5B). WNK3-KD cells treated with STOCK1S-50699 showed no additional reduction in cell swelling 
(Fig. 5C). Treatment of cells with 2 mM furosemide, which at this concentration inhibits KCC3, abrogated the 
effect of WNK3-KD on hypotonic cell swelling (Fig. 5D). These results demonstrate WNK3-SPAK inhibition 
prevents acute cell swelling in response to osmotic stress by stimulating KCC3 activity.

A WNK3/SPAK complex regulates NKCC1/KCC3 phosphorylation in the ischemic brain.  In 
the mammalian brain, glia outnumber neurons and significantly contribute to total brain volume. Unlike neu-
rons, glia express aquaporin water channels, rendering them more sensitive to osmotic perturbation11. As such, 
impaired glial cell volume homeostasis disproportionately contributes to the cerebral edema11. NKCC1 and KCC3 
are highly expressed in astrocytes and endothelial cells of the blood-brain-barrier (BBB)38,39. Brain ischemia, as 
modeled experimentally by middle cerebral artery occlusion (MCAO), causes the NKCC1-dependent cytotoxic 
edema of astrocytes38,40 and BBB endothelial cells41–43. These collectively contribute to BBB breakdown, vasogenic 
edema, and brain swelling44,45. WNK3 KO mice develop significantly less cerebral edema and infarct volume after 
MCAO, and exhibit accelerated neurobehavioral recovery, but the mechanisms of these effects remain incom-
pletely understood46.

We examined KCC3 P-Thr991/Thr1048 and NKCC1 P-Thr203/Thr207/Thr212 in WNK3 WT and KO mice 
post-MCAO using phospho-specific antibodies (Fig. 6A). At 6 and 24 hours post-MCAO, WNK3 KO mice 

Target
Mascot 

Protein Score
Peptide Match 

(unique peptides)
Sequence 
Coverage

Phosphorylated KCC3

Basic Lysate

PRMT5 (O14744) 192 5 10%

MASTL (Q96GX5) 105 3 5%

TLK2 (Q86UE8) 79 3 5%

Hypotonic Lysate

STK39 (Q9UEW8) 63 2 7%

PRMT5 (O14744) 85 3 6%

MTOR (P42345) 83 2 1%

Dephosphorylated KCC3

Basic Lysate

STK39 (Q9UEW8) 161 2 7%

TLK2 (Q86UE8) 86 3 5%

CALM1 (P62158) 49 2 35%

MTOR (P42345) 115 5 2%

PRMT5 (O14744) 256 6 12%

Hypotonic Lysate

STK39 (Q9UEW8) 91 3 9%

PRMT5 (O14744) 84 3 5%

MTOR (P42345) 98 4 2%

PGK1 (P00558) 151 2 6%

Table 1.   A kinase trapping-Orbitrap mass spectroscopy screen to identify kinase regulators of KCC3. 
Accession numbers are from SwissProt. Data only contains peptides whose ion score in Mascot was greater than 
26 and hence with p <​ 0.05.
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Figure 4.  WNK3-SPAK regulates the phosphorylation and function of KCC3. (A) 86Rb+ uptake assays 
in WNK3 WT and KO ES cells. WT and WNK3 KO cells60 were incubated with the indicated isotonic and 
hypotonic conditions (see Methods) for 30 min in the presence of 1 mM ouabain and 0.1 mM bumetanide. 
86Rb+ uptake proceeded for 10 min and was quantified by scintillation counting. Results are presented as 
means ±​ SEM for triplicate samples. ***p <​ 0.001; **p <​ 0.01; *p <​ 0.05, when compared to WT values under 
the same conditions. (B) 86Rb+ uptake assays in WNK3 and WNK1 KO HEK293 cells. The indicated cells were 
transfected with constructs encoding a Flag empty vector or the indicated WT or mutant constructs (against 
KCC3 Thr991 and Thr1048) of N-terminal FLAG-tagged KCC3. 36 h post-transfection, cells were treated for 
30 min with the indicated conditions and 86Rb+ uptake assays were then carried out in the presence of 1 mM 
ouabain and 0.1 mM bumetanide and quantitated by scintillation counting. Results are presented as in (A). Cell 
lysates from in parallel experiment were also subjected to immunoblot analysis (Supplementary Figure 4D,E). 
(C) 86Rb+ uptake assays in the presence of STOCK1S-50699. HEK293 cells were transfected and treated as in 
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exhibited a 2.0–2.5-fold apparent decrease in NKCC1 P-Thr203/Thr207/Thr212 (p <​ 0.01) and a 2.0–2.7-fold 
apparent decrease in KCC3 P-Thr1048 (p <​ 0.05; Fig. 6A) compared to WNK3 WT mice. SPAK CCT domain 
knock-in mice (SPAK502A/502A) harbor a genetic mutation that inhibits in vivo WNK kinase-dependent SPAK 
kinase activation47. This mutation disrupts a physical interaction between the RFXV/I motifs of WNKs and 
CCCs with the conserved carboxyl-terminal (CTT) docking domain in SPAK47, thus genetically mimicking the 
effect of STOCK1S-5069935. We examined KCC3 P-Thr991/Thr1048 and NKCC1 P-Thr203/Thr207/Thr212 in WT and 
SPAK502A/502A mice using phospho-specific antibodies (Fig. 6C,D).

Similar to WNK3 KO mice, SPAK502A/502A mice exhibited an apparent 2.5~3.0-fold decrease in NKCC1 
P-Thr203/Thr207/Thr212 (p <​ 0.01) and KCC3 P-Thr1048 (p <​ 0.001) (Fig. 6C,D). Moreover, SPAK502A/502A mice also 
exhibited an apparent 2.5~3.0-fold decrease in KCC2 P-Thr906/Thr1007 (p < 0.01), sites homologous to KCC3 
Thr991/Thr1048 (Fig. 6C,D).

We also tested the physical interaction of WNK3 and SPAK with KCC3 in the brain. Reciprocal 
co-immunoprecipitation experiments revealed that both WNK3 and SPAK formed a complex with KCC3 in WT 
mouse brain, but not in littermate WNK3 KO brains, or in KCC1/3 double KO brains48,49 (Fig. 6E). In addition, 
co-immunoprecipitation of KCC3 with SPAK was abrogated in SPAK502A/502A mice (Fig. 6C). Together, these data 
show that NKCC1 and KCC3 phosphorylation in the brain is regulated by a WNK3-SPAK complex and mediated 
in part by an interaction between the CCT in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3.

WNK3/SPAK inhibition decreases the cytotoxic edema of astrocytes and endothelial cells of 
the blood-brain barrier.  Ischemia-induced cytotoxic swelling of astrocytes is associated with reactive 
gliosis marked by hypertrophy, proliferation, and up-regulation of the astrocyte-specific marker glial fibrillary 
acidic protein (GFAP) and AQP4 located at peri-capillary astrocytic end feet50. We assessed the ischemia-induced 
cytotoxic swelling of astrocytes after MCAO in WNK3 WT and WNK3 KO mice. MCAO triggered astrocyte 
hypertrophy in the ipsilateral ischemic peri-infarct cortex of WNK3 WT brains, as evidenced by increased 
soma volume of stellate astrocytes (defined by GFAP staining (GFAP+) that harbor multiple enlarged radiating 
processes (Arrows; Fig. 6F). In contrast, the number and soma volume of GFAP+​ astrocytes were significantly 
reduced in WNK3 KO brains after MCAO (p <​ 0.05, WT vs. KO, Fig. 6F).

Ischemia-induced cytotoxic swelling of BBB endothelial cells and astrocytic end feet disrupts BBB integrity 
and causes vasogenic cerebral edema51–53. We detected less reactive astrocyte formation at AQP4-stained end feet 
associated with BBB endothelial cells in post-MCAO WNK3 KO brains than in WNK3 WT brains. Since systemic 
IgG does not cross the BBB54, we investigated BBB integrity in WNK3 WT and WNK3 KO brains by measuring 
IgG infiltration55. Increased BBB permeability was detected in WNK3 WT mice 3 days after ischemic stroke, as 
reflected by greatly increased IgG accumulation in ipsilateral peri-lesional cortices (Fig. 6G; p <​ 0.05). In contrast, 
WNK3 KO brains exhibited significantly less IgG infiltration (Fig. 6G; p <​ 0.05). These results demonstrate that 
WNK3 KO reduces BBB breakdown associated with endothelial cell cytotoxic swelling.

Discussion
We have identified the regulatory elements controlling phosphorylation of KCC3 at residues Thr991 and 
Thr1048, a key signaling event of the homeostatic response to cell swelling that triggers RVD19,24. Our 
multi-tiered functional kinomics approach included a kinome-wide siRNA-phosphoproteomic screen, a 
high-content kinase inhibitor drug screen, and kinase trapping coupled with Orbitrap MS. We used multi-
ple, complementary screening and validation assays to improve chances for unbiased detection of important 
and possibly novel regulatory elements while minimizing “off-target” effects. For example, to improve screen 
specificity we validated siRNA screen hits not with other siRNAs, but with KO cell lines. Complementation 
of the siRNA loss-of-function kinome screen with a kinase inhibitor drug screen allowed assessment of 
kinase inhibition effects in different cell types on different time scales. The ability of kinases to regulate 
transporter phosphorylation was assayed both indirectly (with anti-phospho antibodies) and directly (using 
in vitro kinase assays). Moreover, we validated in vitro findings using the in vivo brain MCAO in vivo model 
of ischemic cerebral edema.

Collectively, our results converged on the WNK-SPAK kinase as a particularly important node of KCC3 
P-Thr991/Thr1048 phosphorylation. Components of this pathway were represented in all 3 types of screens: 1) 
WNK3 was identified in the siRNA screen, and validated in KO cell lines (Figs 1, 2, 3, 4 and 5); STOCK1S-50699, 
which inhibits SPAK activation by the WNK kinases, including WNK3, was identified in the kinase inhibitor 
screen and validated with dose-response and functional experiments (Fig. 3); SPAK and its homolog OSR1 
was identified in kinase Orbitrap MS experiments (Table 1). In addition, both WNK3 and SPAK were validated  
in vivo in brain (Fig. 6). Among the >​200 kinase inhibitors tested at the concentrations recommended to achieve 

(B). 10 min 86Rb+ uptake assays were carried out in the presence of 1 mM ouabain and 0.1 mM bumetanide  
plus 10 μ​M of STOCK1S-50699 (indicated in the figure as +​IN) and quantitated by scintillation counting.  
(D) HEK293T WT, WNK3 KO and WNK1 KO cells (see Methods) were treated for the indicated times with 
the indicated conditions. Harvested cell lysates were subjected immunoprecipitation (IP) and/or immunoblot 
(IB) with the indicated antibodies. (E) Graphs show quantitation of Western blot ratios (phospho-KCC3)/
(total KCC3) (n =​ 3, means ±​ SD). ***p <​ 0.001; **p <​ 0.01; *p <​ 0.05; ns: non-significant (unpaired t-test). 
Under hypotonic low Cl− conditions, WNK1 KO cells and WNK3 KO cells both exhibited apparently decreased 
phosphorylation of heterologous KCC3 at Thr991 (p <​ 0.001) and Thr1048 (p <​ 0.001). WNK1 KO HEK293T 
cells and WNK3 KO HEK293T cells exhibited apparent decreases in phosphorylation of NKCC1 Thr203/Thr207/
Thr212, SPAK Ser373, and OSR1 Ser325 (p <​ 0.05).
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target specificity, STOCK1S-50699 was unique in targeting KCC3 P-Thr991 and P-Thr1048. Our experiments reveal 
a hitherto unrecognized specificity of regulation of KCC3 P-Thr991/Thr1048 by the WNK-SPAK kinase pathway, 
and show for the first time the requirement of these kinases for KCC3 phosphorylation in vivo. Further experi-
ments revealed additional novel insights into this pathway: while SPAK directly phosphorylates Thr1048, it does 
not phosphorylate Thr991 (Fig. 6C,D). Also, while WNK3 is required for both P-Thr991 and P-Thr1048, it does not 
appear to phosphorylate either residue directly, as shown by in vitro kinase assays (Supplementary Figure 3A). 
Moreover, although STOCK1S-50699 inhibits both KCC3 P-Thr991 and P-Thr1048, the drug more potently inhibits 
P-Thr1048 at lower concentrations (Fig. 3C).

Our in vivo validation experiments with WNK3 and SPAK uncovered novel insights into the roles of this 
swelling-regulated pathway in the mammalian brain. We showed these kinases interact in vivo in brain, and that 
genetic knockdown of WNK3, or prevention of SPAK activation by the WNKs via missense mutation in the CCT 
domain of SPAK (SPAK502A/502A), each decreases KCC3 P-Thr1048 and, to a lesser extent, KCC3 P-Thr991. Genetic 
inhibition of WNK3-SPAK signaling in the MCAO model also ameliorated two cell swelling-associated compo-
nents of ischemic cerebral edema: perivascular cytotoxic edema of astrocytes and endothelial cell cytotoxic edema 
(both contributing to BBB breakdown). These findings provide a mechanistic explanation for the improved radi-
ographic and clinical outcomes of malignant cerebral edema after ischemic stroke in mice genetically lacking 
either WNK3 or SPAK46. Our in vitro data (Fig. 6) suggest that this in vivo effect likely results from increased 
KCC3-dependent cellular Cl− efflux due to decreased inhibitory KCC3 phosphorylation.

Figure 5.  Inhibition of WNK3-SPAK signaling prevents acute cell swelling in response to osmotic stress 
by stimulating KCC3 activity. (A) Left panel: Relative change in cell water volume during hypotonic stress 
in WNK3 WT and WNK3-KD (kinase-dead) cells. Cells were sequentially exposed to isotonic HEPES-MEM 
(310 mOsm/kg H2O), followed by hypotonic HEPES-MEM (150 mOsm/kg H2O) to promote cell swelling 
for 20 min, and then isotonic HEPES-MEM for 5 min. Middle panel: Summary data of cell volume increase. 
Right panel: Rate constants from the slopes (blue and red lines in left panel) were calculated by fitting a linear 
regression to the cell water data (relative change) during the initial swelling response (5–7 min). WNK3-KD 
cells exhibited significantly less swelling in response to hypotonic stress. Data are mean ±​ SEM, n =​ 5–6 
experiments. *p <​ 0.05 vs. WT. (B) Relative change in cell water after hypotonic swelling in WNK3-WT cells 
in the presence and absence of STOCK1S-50699. Cells were pre-incubated with 10 μ​M STOCK1S-50699 
for 30 min at 37 degrees C and exposed to osmotic stress as described above in the presence of drug. 
STOCK1S-50699 prevented cells from swelling in response to acute hypotonic stress. Data are means ±​ SEM, 
n =​ 5–6 experiments. *p <​ 0.05 vs. WT. (C) Relative change in cell water after hypotonic swelling in WNK3-KD 
cells in the presence and absence of STOCK1S-50699, as described above. Data are means ±​ SEM, n =​ 4–5 
experiments. No significant difference in either peak change of cell water content or the initial rate of 
cell swelling was noted with STOCK1S-50699 in WNK3-KD cells. (D) Relative change in cell volume in 
WNK3-WT and WNK3-KD cells in the presence or absence of furosemide. Cells were pre-incubated with 
2 mM furosemide for 15 min prior to hypotonic stimulation as described above in the presence of drug. Right 
panel: Summary data of cell volume increase. The effect of WNK3-KD on decreasing cell swelling is reversed 
by 2 mM furosemide, revealing a dependence on KCC3 activity. Data are mean ±​ SEM, n =​ 3–4 experiments. 
*p <​ 0.05.
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Figure 6.  WNK3-SPAK inhibition attenuates the cytotoxic edema of astrocytes and endothelial cells of 
the blood-brain barrier by decreasing NKCC1/KCC3 phosphorylation. (A) Effect of WNK3 knockout 
on NKCC1 and KCC3 expression and phosphorylation in vivo. WT WNK3 and WNK3 KO mice56 were 
subjected to transient middle cerebral artery occlusion (MCAO), a model of ischemic brain swelling44. Whole 
brain homogenates were subjected to immunoprecipitation (IP) and/or immunoblot (IB) with the indicated 
antibodies. Lysates were immunoblotted in parallel. Molecular masses (kDa) are indicated at the left. (B) Bar 
graphs present the ratio of the phosphorylated target signal to total target intensity (mean+​/−​ SD). *p <​ 0.05; 
**p <​ 0.01; ***p <​ 0.001. CL: contralateral; IL: ipsilateral. WNK3 KO mice exhibit apparently decreased KCC3 
P-Thr1048 and NKCC1 P-Thr203/Thr207/Thr212 signals. (C) Effect of genetic WNK-SPAK inhibition on NKCC1 
and KCC3 expression and phosphorylation in vivo. Whole brain homogenates from WT and SPAK CCT 
L502A knock-in mice47 (SPAK502A/502A), engineered to mimic WNK-SPAK inhibition by STOCK1S-50699, 
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We hypothesized that any kinases shown to regulate KCC3 P-Thr991 and/or P-Thr1048 might also regulate 
NKCC1 at a homologous phosphorylation motif (Thr203/Thr207/Thr212) by the same stimuli, but with reciprocal 
effects12,24. Indeed, our in vitro and in vivo data show that WNK3-SPAK signaling is required for the simultaneous 
volume-regulated phosphorylation of both KCC3 and NKCC1 in our cell culture systems and in the ischemic 
brain. The existence of a common Cl−/volume sensitive regulatory kinase that reciprocally regulates both the 
NKCCs and the KCCs has long been proposed16, but experimental evidence for these simultaneous effects in the 
same mammalian cells in vitro or in vivo has been lacking. We show here that knockout of WNK3 in cells, block-
ade with STOCK1S-50699, or genetic inactivation of the WNK3-SPAK kinase pathway in the brain (in the setting 
of ischemic conditions promoting cell swelling) simultaneously antagonizes inhibitory KCC3 P-Thr991/Thr1048 and 
stimulatory NKCC1 P-Thr203/Thr207/Thr212. These inhibitory effects are predicted to facilitate net Cl− extrusion 
from cells by concurrent inhibition of Cl− loading by NKCC1 and stimulation of Cl− efflux by KCC3, and can 
explain the decreased cerebral edema observed post-MCAO in WNK3 KO mice56.

Our screens also identified several novel candidate regulators of KCC3 such as PDK1 kinase (Fig. 1B–E and 
Supplementary Figure 2A). In vitro kinase assays suggest that PDK1 does not directly phosphorylate KCC3, but 
could perhaps mediate its effect via another kinase, similar to the action of WNK3. TLK2 and other novel kinases 
were also found to interact with phospho- or dephospho-KCC3, although TLK2 did not phosphorylate KCC3 
directly. Both primary siRNA and drug screens identified multiple kinases in the mTOR pathway, including SGK1 
and AKT1. However, validation of these targets failed in KO cell lines or when drugs were used at lower con-
centrations to achieve higher target specificity. Notably, the mTOR-AKT1-SGK1 pathway has been previously 
implicated in regulation of the WNK-SPAK signaling pathway57,58. Thus, transient inhibition of multiple isoforms 
of mTOR pathway components such as SGK or AKT, might regulate KCC3/NKCC1 phosphorylation via mecha-
nisms independent of or dependent on the WNK-SPAK pathway, whereas selective inhibition of single isoforms 
(e.g., SGK1 or AKT1), or constitutive inhibition by genetic knockout might allow or stimulate counter-regulatory 
pathways. The known roles of the mTOR-AKT1-SGK1 pathway in regulation of cell size and volume suggest a 
possible swelling-independent mechanism involving KCC3. These observations emphasize the need for further 
investigation of these novel kinase hits in future experiments.

These results suggest a model that links the Cl−/volume-sensitive WNK3-SPAK kinase complex with 
both NKCC1 and KCC3 to comprise a “molecular rheostat” of cell volume homeostasis, balancing opposing, 
phosphorylation-mediated effects on these two transporters (Fig. 7). The existence of such a kinase system has 
been proposed59, but its molecular identity has not systematically studied or characterized in vivo. We suggest that 
the WNK3-SPAK complex serves as a combined “sensor-transducer” that simultaneously signals both to the RVI 
effector, NKCC1 and to the RVD effector KCC3. Interestingly, both WNK3 and NKCC1/KCC3 contain RFXV/I 
motifs, which mediate docking with the conserved C-terminal (CCT) domain of SPAK60. This interaction appears 
unique in the genome, and therefore constitutes a compelling drug target. As such, our results documenting ben-
eficial effects of WNK3-SPAK inhibition in the MCAO model of cerebral edema suggest this complex could be 
as a novel therapeutic target for a medical problem of high morbidity and mortality commonly associated with 
stroke, tumor, trauma, infection, and other intracranial pathologies61. Given the finding that SPAK inhibition 
also simultaneously decreases KCC2 P-Thr1007 (see Fig. 6C), a site homologous to KCC3 P-Thr1048 that, when 
dephosphorylated, potentiates neuronal Cl− extrusion24, we speculate that neuronal WNK-SPAK inhibition could 
be a potential novel strategy to restore GABA inhibition in hyper-excitable neurons with high intracellular [Cl−]. 
Taken together, our study provides comprehensive evidence for the WNK3/SPAK-mediated regulation of KCC3 
and NKCC1 protein phosphorylation and function in cell volume homeostasis.

Methods
Kinome siRNA-phosphoproteomic screen.  To identify genes required for KCC3 P-Thr991 phosphoryla-
tion, a high-throughput RNAi screen was performed in 24-well plates with the human Dharmacon SMARTpool 
siRNA kinome library targeting 541 kinases and kinase-related genes in which each mRNA is targeted by a pool 

were subjected to IP and/or IB with the indicated antibodies. Co-immunoprecipitation of KCC3 with SPAK 
was abrogated in SPAK502A/502A mice. (D) Bar graphs summarize ratios of phosphorylated target signal 
to total target intensity (mean+​/−​ SD). *p <​ 0.05; **p <​ 0.01; ***p <​ 0.001. Similar to WNK3 KO mice, 
SPAK502A/502A mice exhibit apparently decreased KCC3 P-Thr1048 and NKCC1 P-Thr203/Thr207/Thr212 signals. 
(E) Co-immunoprecipitation experiments of WNK3, SPAK, and KCC3 in brain. Whole-brain lysates harvested 
from WT, KCC1/3 KO, and WNK3 KO mice were immunoprecipitated with the indicated WNK3, SPAK, 
and KCC3 antibodies, fractionated by SDS-PAGE, and subjected to Western blot analysis with the indicated 
antibodies. Results are representative of 3 independent experiments. WNK3-SPAK-KCC3 forms a physical 
complex in mammalian brain. (F) Effect of WNK3 KO on the cell volume of peri-infarct reactive astrocytes after 
MCAO. Representative immunofluorescent images are shown of WNK3 WT (arrows) and WNK3 KO brains 
(arrowheads) 72 h after MCAO. The soma volume of glial fibrillary acidic protein (GFAP)-positive astrocytes 
was measured in z-stacks using Imaris software (Version 8.2, Bitplane, Zurich, Switzerland) as described in 
Methods. Relative to WNK3 WT mice, reactive astrocytes from WNK3 KO mice exhibit significantly reduced 
cytotoxic edema after MCAO. Values are expressed as Mean ±​ SEM, n =​ 3; *p <​ 0.05 compared to WT. (G) Effect 
of WNK3 KO on blood-brain-barrier (BBB) integrity after MCAO. Representative immunofluorescent images 
are shown of infiltrated IgG in the brain parenchyma of WNK3 WT and WNK3 KO mice 72 h after MCAO. 
Bar graph summarizes the results of IgG infiltration. Relative to WNK3 WT mice, WNK3 KO mice exhibit 
decreased intraparenchymal infiltration IgG after MCAO, indicating less BBB breakdown. Values are expressed 
as mean ±​ SEM (n =​ 5), *p <​ 0.05 compared to WT.
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of siRNAs consisting of a combination of four siRNA duplexes directed at different regions of the gene. This 
siRNA library has been previously characterized and extensively used62–67. The HEK293 cell line with Flip-in 
TREX dox-inducible expression of MYC-tagged KCC3 18,19 was seeded in 24-well plates at the density of 2.5 ×​ 106 

Figure 7.  WNK3-SPAK: a “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters and molecular 
rheostat of cell volume in the mammalian brain. (A) A proposed phosphorylation motif in SLC12A family 
NKCC1 and the KCC cotransporters, including KCC3, is shown in a segment of the human KCC1–4 C 
terminus aligned with a segment of the NKCC1, NCC and NKCC2 N-terminus from human (h) (Revised from 
ref. 19). The threonine (T) highlighted in yellow indicates a single phosphorylation site that is common to all 
the transporters. With nearby shared tyrosine (Y) and arginine (R) residues separated by any amino acid residue 
(X), a candidate SLC12A family regulatory phosphorylation motif is suggested. In KCC3, the highlighted Thr in 
yellow is Thr991. Phosphorylation at Thr212 in human NKCC1 (Thr184 in shark) by WNK1-SPAK kinase signaling 
is a key event (along with Thr203 and Thr207) required for NKCC1 activation in conditions that simultaneously 
promote the inhibitory phosphorylation of KCC3 Thr991 12,28,76. KCC3 Thr991 (and homologous sites in other 
KCCs) and NKCC1 Thr212 may be part of a phospho-motif “YXRT” that is important for the coordinated 
control of NKCCs and the KCCs by the WNK3-SPAK kinase complex (as in B). (B) Coupling of the WNK3-
SPAK kinase complex to NKCC1 and KCC3 could comprise a “molecular rheostat” of cell volume regulation. 
The WNK3-SPAK kinases may have dual functions as sensors of both cell volume and intracellular [Cl−], as well 
as transducers that communicate changes of these parameters to plasmalemmal ion transport proteins. NKCC1 
(“in-flow”) is activated and KCC3 (“out-flow”) is inhibited by WNK3-SPAK-dependent phosphorylation 
at the indicated sites, leading to regulatory volume increase (RVI, in blue to left of rheostat) that mediates 
net accumulation of intracellular solute – as would occur in response to prior cell shrinkage. In the opposite 
scenario, NKCC1 is inhibited and KCC3 is activated by WNK3-SPAK inhibition and by activation of protein 
phosphatases, leading to decreased NKCC1/KCC3 phosphorylation. The resulting regulatory volume decrease 
(RVD, in red to right of rheostat) regulatory volume decrease (RVI, in blue to left of rheostat) that mediates 
net reduction of intracellular solute – as would occur in response to cell swelling. Therefore, the WNK3-SPAK 
complex might function as a “sensor-transducer” of cell volume perturbations that, via a physical and functional 
coupling to NKCC1 and KCC3, comprises a molecular rheostat of cell volume.
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cells per well. Each well of cells was transfected with 100 nM of siRNA pool containing 25nM of each of four siR-
NAs targeting each gene, using by Mirus TransIT TKO reagent. Additional wells present on all plates transfected 
contained either buffer alone, a non-targeting control siRNA (siGENOME non-targeting siRNA #2, Dharmacon, 
or firefly (FF) luciferase), and siRNAs directed against KCC319. After 48 hours of culture and dox-induction of 
MYC-KCC3 expression in siRNA-transfected cells as described18, we harvested membrane lysates and subjected 
them to SDS-PAGE gel fractionation and Western blot analysis with anti-KCC3 P-Thr991 antibody. The level of 
the KCC3 P-Thr991 immuno-signal on Western blots was quantitated using ImageJ software, and robust z-score 
analysis29 of the primary screen data was performed. siRNAs that decreased KCC3 P-Thr991 immuno-signal  
>​2 SD below the mean of the buffer-alone and negative control wells were considered as identifying candidate 
kinases for further investigation.

Antibodies.  The following antibodies were raised in sheep and affinity-purified on the appropriate antigen 
by the Division of Signal Transduction Therapy Unit at the University of Dundee: KCC2 total antibody [S700C, 
first bleed; raised against residues 1–119 of human KCC2A]; KCC3 total antibody [S701C, first bleed; raised 
against residues 1–175 of human KCC3]; KCC3 phospho-Ser96 antibody [S042D, first bleed; raised against 
residues 89–103 of human KCC3 phosphorylated at Ser96, IEDLSQN(S)ITGEHSQ]; KCC3 phospho-Thr991 
[S959C, first bleed; raised against residues 984–998 of human KCC3A phosphorylated at Thr 991, SAYTYER(T)
LMMEQRSRR]; KCC3 phospho-Thr1048 [S961C, first bleed; raised against residues 1041–1055 of human KCC3 
phosphorylated at Thr1048, CYQEKVHMT*WTKDKYM]. NKCC1 total antibody [S022D, second bleed; raised 
against residues 1–288 of human NKCC1]; NKCC1 phospho-Thr203/Thr207/Thr212 antibody [S763B, third bleed; 
raised against residues 198–217 of human NKCC1 phosphorylated at Thr203, Thr207 and Thr212, HYYYD(T)
HTN(T)YYLR(T)FGHNT]; WNK1-total antibody [S079B, second bleed; raised against residues 2360–2382 
of human WNK1]; WNK1-phospho-Ser382 antibody [S099B, second bleed; raised against residues 377–387 of 
human WNK1 phosphorylated at Ser382, ASFAK(S)VIGTP]; WNK2-total antibody [S140C, second bleed; raised 
against residues 1605–1871 of human WNK2]; WNK3-total antibody [S156C, second bleed; raised against res-
idues 1142–1461 of human WNK3]; WNK4-total antibody [S064B, second bleed; raised against residues 1221–
1243 of human WNK4]; SPAK-total antibody [S551D, third bleed; raised against full-length GST-tagged human 
SPAK protein]; SPAK-N termial antibody [S668D, third bleed; raised against residues 2–76 of mouse SPAK]; 
SPAK/OSR1 (S-motif) phospho-Ser373/Ser325 antibody [S670B, second bleed; raised against residues 367–379 
of human SPAK, RRVPGS(S)GHLHKT, which is highly similar to residues 319–331 of human OSR1 in which 
the sequence is RRVPGS(S)GRLHKT); ERK1 total antibody [S221B, second bleed; raised against full-length 
human ERK1 protein]. The anti-FLAG antibody (F1804) was purchased from Sigma-Aldrich; the anti-PDK1 
antibody (3062) and the Tuberin/TSC2 (28A7) antibody (3635) were purchased from Cell Signaling Technology. 
Secondary antibodies coupled to horseradish peroxidase used for immunoblotting were obtained from Pierce. 
IgG used in control immunoprecipitation experiments was affinity-purified from pre-immune serum using 
Protein G-Sepharose.

Buffers.  Buffer A contained 50 mM Tris/HCl, pH7.5 and 0.1 mM EGTA. Lysis buffer was 50 mM Tris/HCl, pH 
7.5, 1 mM EGTA, 1 mM EDTA, 50 mM sodium fluoride, 5 mM sodium pyrophosphate, 1 mM sodium orthovana-
date, 1% (w/v) NP-40, 0.27 M sucrose, 0.1% (v/v) 2-mercaptoethanol and protease inhibitors (1 tablet per 50 ml). 
TBS-Tween buffer (TTBS) was Tris/HCl, pH 7.5, 0.15 M NaCl and 0.2% (v/v) Tween-20. SDS sample buffer was 
1X-NuPAGE lithium dodecyl sulfate (LDS) sample buffer (Invitrogen), containing 1% (v/v) 2-mercaptoethanol. 
Isotonic high potassium buffer was 95 mM NaCl, 50 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, 1 mM 
Na2SO4 and 20 mM HEPES (pH 7.4). Hypotonic high potassium buffer was 80 mM KCl, 1 mM CaCl2, 1 mM 
MgCl2, 1 mM Na2HPO4, 1 mM Na2SO4 and 20 mM HEPES (pH 7.4). Isotonic buffer was 135 mM NaCl, 5 mM 
KCl, 0.5 mM CaCl2, 0.5 mM MgCl2, 0.5 mM Na2HPO4, 0.5 mM Na2SO4and 15 mM HEPES (pH 7.5). Hypotonic 
low chloride buffer was 67.5 mM sodium-gluconate, 2.5 mM potassium-gluconate, 0.25 mM CaCl2, 0.25 mM 
MgCl2, 0.5 mM Na2HPO4, 0.5 mM Na2SO4 and 7.5 mM HEPES (pH 7.5).

Cell culture, transfections and stimulations.  HEK293 (human embryonic kidney 293) cells were cul-
tured on 10-cm-diameter dishes in DMEM supplemented with 10% (v/v) fetal bovine serum, 2 mM L-glutamine, 
100 U/ml penicillin and 0.1 mg/ml streptomycin. For transfection experiments, each dish of adherent HEK293 
cells was transfected with 20 μ​l of 1 mg/ml polyethylenimine (Polysciences) and 5–10 μ​g of plasmid DNA as 
described previously68. 36 hours post-transfection cells were stimulated with either control isotonic or hypo-
tonic medium for a period of 30 minutes. HEK-293 cells overexpressing WNK3 (WNK3-WT) and HEK-293 
cells expressing WNK3 mutant (WNK3-KD) were cultured in DMEM supplemented with 10% tetracycline free 
FBS, 10 μ​g/ml blasticidin, 100 μ​g/ml hygromycin B, and 5% penicillin-streptomycin. For live cell imaging experi-
ments, 0.2 ×​ 106 cells/well were plated on poly-D-Lysine coated glass coverslips (22 mm ×​ 22 mm) in 6-well plates. 
KCC3 expression (WT or Mutant) was induced by treatment of cultures with 1 μ​g/ml doxycycline for 16 h. Cells 
were lysed in 0.3 ml of ice-cold lysis buffer/dish, lysates were clarified by centrifugation at 4 °C for 15 minutes at 
26,000 g, and aliquoted supernatants were frozen in liquid nitrogen and stored at −20 °C. Protein concentrations 
were determined using the Bradford method. Where noted, cells were treated with the indicated concentrations 
of the SPAK/OSR1 CCT domain inhibitor STOCK1S-50699 (InterBioScreen Ltd.)35.

Cell volume measurements.  Cell volume change was determined using calcein as a marker of intracellu-
lar water volume, as described previously18. Briefly, cells on coverslips were incubated with 0.5 μ​M calcein-AM 
for 30 min at 37 °C. The cells were placed in a heated (37 °C) imaging chamber (Warner Instruments, Hamden, 
CT) on a Nikon Ti Eclipse inverted epifluorescence microscope equipped with perfect focus, a 40X Super Fluor 
oil immersion objective lens, and a Princeton Instruments MicroMax CCD camera. Calcein fluorescence was 
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monitored using a FITC filter set (excitation 480 nm, emission 535 nm, Chroma Technology, Rockingham, VT). 
Images were collected every 60 sec with MetaFluor image-acquisition software (Molecular Devices, Sunnyvale, 
CA) and regions of interest (~20–30 cells) were selected. Baseline drift resulting from photobleaching and dye 
leakage was corrected as described69. The fluorescence change was plotted as a function of the reciprocal of the 
relative osmotic pressure and the resulting calibration curve applied to all subsequent experiments as previously 
described69. The HEPES-buffered isotonic solution contained (in mM, pH 7.4): 100 NaCl, 5.4 KCl, 1.3 CaCl2, 
0.8 MgSO4, 20 HEPES, 5.5 glucose, 0.4 NaHC03, and 70 sucrose, adjusted to 310 mOsm using an osmometer 
(Advanced Instruments, Norwood, MA). Anisosmotic solutions (150, 280 mOsm) were prepared by removal or 
addition of sucrose to the above solution.

Immunoblotting and phospho-antibody immunoprecipitation.  Cell lysates (15 μ​g) in SDS sample 
buffer were subjected to electrophoresis on polyacrylamide gels and transferred to nitrocellulose membranes. 
The membranes were incubated for 30 min with TTBS containing 5% (w/v) skim milk. The membranes were 
then immunoblotted overnight at 4 °C in TTBS with 5% skim milk plus the indicated primary antibodies. Sheep 
antibodies were used at a concentration of 1–2 μ​g/ml. Incubation with phospho-specific sheep antibodies was 
in the added presence of 10 μ​g/ml of the dephosphorylated form of the phosphopeptide antigen used to raise 
the antibody. The blots were then washed six times with TTBS and incubated for 1 hour at room temperature 
with secondary HRP-conjugated antibodies diluted 5000-fold in 5% (w/v) skim milk in TTBS. After repeating 
the washing steps, signals were detected with enhanced chemiluminescence reagent. Immunoblots were devel-
oped using a film automatic processor (SRX-101; Konica Minolta Medical) and films were scanned at 600 dpi 
(PowerLook 1000; UMAX). Figures were generated using Photoshop/Illustrator (Adobe). For phospho-antibody 
immunoprecipitation, KCC isoforms were immunoprecipitated from indicated cell extracts. 2 mg of the indicated 
clarified cell extract were mixed with 15 μ​g of the indicated phospho-specific KCC antibody conjugated to 15 μ​l  
of protein-G–Sepharose in the added presence of 20 μ​g of the dephosphorylated form of the phosphopeptide 
antigen, and incubated 2 hours at 4 °C with gentle shaking. Immunoprecipitates were washed three times with 
1 ml of lysis buffer containing 0.15 M NaCl and twice with 1 ml of buffer A. Bound proteins were eluted with 1x 
LDS sample buffer.

Mass spectrometric analysis (MS) analysis.  Lysates (5 mg) derived from HEK-293 cells stably express-
ing wild-type or mutant FLAG epitope-tagged KCC3 were subjected to immunoprecipitation with anti-FLAG 
antibody covalently conjugated to agarose (5 μ​l). Immunoprecipitates were washed three times with lysis buffer 
containing 0.5 M NaCl, followed by two washes with Buffer A. Proteins were eluted from FLAG beads by resus-
pendion of immunoprecipitates in SDS sample buffer (30 μ​l). The immunoprecipitates were subjected to electro-
phoresis on a precast 4–12% gradient gel (Invitrogen) and the protein bands were visualized following Colloidal 
Blue staining. Proteins in the selected gel bands were reduced and alkylated by the addition of 10 mM DTT, fol-
lowed by 50 mM iodoacetamide. Identification of proteins was performed by in-gel digestion of the proteins with 
5 μ​g/ml trypsin and subsequent analysis of the tryptic peptides by LC (liquid chromatography)–MS/MS (tandem 
MS) on a Thermo LTQ-Orbitrap system coupled to a Thermo Easy nano-LC instrument. Excalibur RAW files 
were converted into peak lists by Raw2msm70 and then analysed by Mascot (http://www.matrixscience.com), 
utilizing the SwissProt human database. Two missed cleavages were permitted; the significance threshold was 
P <​ 0.05.

86Rb+ uptake assay in ES and HEK293 cells.  ES cells were plated in 12-well plates (2.4 cm diameter/
well) and the 86Rb+ uptake assay was performed on cells that were 80% confluent. HEK-293 cells were plated at 
a confluence of 50–60% in 12-well plates (2.4-cm-diameter per/well) and transfected with wild-type or various 
mutant forms of full-length flag-tagged human KCCs. Each well of HEK-293 cells was transfected with 2.5 μ​l  
of 1 mg/ml polyethylenimine and 1 μ​g of plasmid DNA. The 86Rb+-uptake assay was performed on the cells at 
36 hours post-transfection. In both cases, culture medium was removed from the wells and replaced with either 
isotonic or hypotonic medium for 15 min at 37 °C. Cell medium was removed by means of aspiration with a vac-
uum pump and replaced with stimulating medium containing 1 mM ouabain and 0.1 mM bumetanide, to prevent 
86Rb+ uptake via the NKCC1 cotransporter, for a further 15 min. After this period, the medium was removed and 
replaced with isotonic medium plus inhibitors containing 2 μ​Ci/ml 86Rb+ for 10 min at 37 °C. After this incu-
bation period, cells were rapidly washed three times with the respective ice-cold non-radioactive medium. The 
cells were lysed in 300 μ​l of ice-cold lysis buffer and 86Rb+ uptake was quantitated by liquid scintillation counting 
(PerkinElmer), and was quantified by scintillation counting with transformation of 86Rb+ uptake counts per min-
ute into flux values (pmoles K+/mg protein/min).

Generation of WNK3 or WNK1 knockout cells using CRISPR/Cas9 gene editing.  Analysis of the 
PRKWNK3 locus shows that there are 4 transcripts (ENST00000354646, ENST00000375169, ENST00000375159 
and ENST00000458404) in this gene. Potential KO CRISPR guide RNAs were subsequently identified using a 
Sanger Centre CRISPR webtool (http://www.sanger.ac.uk/htgt/wge/find_crisprs). The sequence between exon3 
and exon7 in WNK3 gene was replaced with a resistance gene cassette. Cas9/sgRNA mediated indels also contrib-
uted to the gene knockout. Three guide RNAs were designed. sgRNA1 (GCTCAGCTTTGGTTAACTTTCGG) 
was chosen to generate indels in the region of the ATG start codon; an additional G was added to the 5′​ end of 
each guide to maximize expression from the U6 promoter. Complementary oligos were designed and annealed 
to yield dsDNA inserts with compatible overhangs to BbsI-digested vectors71. Guide RNA pairs were cloned 
into a WT spCas9 and sgRNA expression plasmid. Donor plasmid was constructed by ligating the homolo-
gous arm into the TV-B1 vector (Beijing Biocytogen Co. Ltd). HEK293T cells were co-transfected with 1 μ​g 
of TV-4G-EB-WNK3 and 3 μ​g PCS-sgRNA in a 10 cm dish using the Neon Transfection System with Pulse 

http://www.matrixscience.com
http://www.sanger.ac.uk/htgt/wge/find_crisprs
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Voltage 1500. Following 24 h recovery and a further 48 h selection with puromycin (1 μ​g/ml) the transfec-
tion was repeated and cells subjected to a further round of puromycin selection to enrich for transfectants. 
Resistant clones picked with cylinders were analysed for WNK3 depletion by immunoblotting and sequenc-
ing. Genomic DNA was isolated for PCR amplification of the region surrounding the exon containing the 
WNK3 ATG start codon (forward primer WNK3-GT-F: 5′​-AGGGCAGAAATACACAAGGAAAGGA-3′​;  
reverse primer PGK-GT-R: 5′​-AGAAAGCGAAGGAGCAAAGCTGCTA-3′​). The resulting PCR prod-
ucts were subcloned into the holding vector pSC-B (StrataClone Blunt PCR Cloning Kit, Agilent 
Technologies). Twelve white colonies picked for each clonal line were further confirmed by PCR (forward 
primer WNK3-MSD-F: 5′​-GCCATGTTGGAGGAGTCACAGTAGC-3′​; reverse primer WNK3-MSD-R:  
5′​-TGGCACTATCAGGGTCAACTTACGTC-3′​). Isolated plasmid DNAs were Xbal-cut to verify insert size 
before sequence confirmation with M13F and M13R primers. CRISPR PCR products are heterogeneous due to 
differences among the targeted alleles. We have found that analysis of >​10 heterogeneous post-CRISPR clones 
per clonal cell line suffices to verify the allelic population. Sequencing of exon 1 PCR fragments from the CRISPR 
lines revealed a 1859 base-pair deletion (encompassing the start codon) and a 391 base-pair insertion confirming 
the presence of frameshifting indels and successful KO of the WNK3 loci. Generation of WNK1 knockout cells by 
CRISPR/Cas9 gene editing was previously described72.

Animals.  The SPAK502A/502A knock-in mouse was established and maintained as described in our 
recent study47. The WNK3 knockout (KO) colony was established and maintained as described recently56. 
Kcc1−/−Kcc3−/− mouse was established and maintained as described previously49. Mice were maintained under 
specific pathogen-free conditions at the University of Dundee (UK). All animal studies were ethically reviewed 
and carried out in accordance with Animals (Scientific Procedures) Act 1986, the Policy on the Care, Welfare and 
Treatment of Animals, regulations set by the University of Dundee and the U.K. Home Office. Animal studies 
and breeding were approved by the University of Dundee ethical committee and performed under a U.K. Home 
Office project license.

Transient focal cerebral ischemia model.  Transient focal cerebral ischemia was induced in mice (8–10 
weeks old, 25–30 g) by intraluminal occlusion of the left middle cerebral artery (MCA) for 60 min as described 
previously56. Mice were anesthetized with 3% isoflurane in 67%:30% N2O/O2 until they were unresponsive to the 
tail pinch test. Animals were then fitted with a nose cone blowing 1.5% isoflurane for anesthesia maintenance. 
The left common carotid artery was exposed and the occipital artery branches of the external carotid artery were 
isolated and coagulated. The internal carotid artery was isolated and the extracranial branch was dissected and 
ligated. A rubber silicon-coated monofilament suture (6–0) was introduced into the internal carotid artery lumen 
and gently advanced approximately 9–9.5 mm to block the MCA blood flow for 60 min. The rectal temperature 
was maintained at 37.0 ±​ 0.5 °C during surgery through a temperature-controlled heating pad. Achievement of 
ischemia was confirmed by monitoring regional cerebral blood flow (rCBF) in the area of left MCA with a laser 
Doppler probe as described previously73. Briefly, changes in rCBF at the surface of the left cortex were recorded 
using a blood perfusion monitor (Laserflo BPM2, Vasamedics, Eden Prairie, MN, USA) with a fiber optic probe 
(0.7 mm in diameter). The tip of the probe was fixed with glue on the skull over the core area supplied by the MCA 
(2 mm posterior and 6 mm lateral from the bregma). Animals failing to achieve CBF reduction >​75% of baseline 
level or that died after ischemia induction (fewer than 10%) were excluded from further experimentation. The 
MCA suture was withdrawn to initiate reperfusion. The incision was closed and the mice allowed to recover 
30–60 min under a heat lamp to maintain core temperature (36.0–37.0 °C) during the recovery period. After 
recovery, animals were returned to their cages with free access to food and water.

Statistical analysis.  Data are presented as means ±​ SEM. Comparison for means between two groups was 
analyzed by Student t-test (2-tailed). One-way or Two-way repeated measures ANOVA was used to assess sta-
tistical significance among multiple group experiments and assays, followed by Tukey’s multiple comparisons 
test. For all statistical analysis we considered P <​ 0.05 to be statistically significant. GraphPad Prism (version 7.0, 
GraphPad Software, Inc., La Jolla, CA) was used for all statistical tests.

S.E.M. values of mean ratios of phospho-protein band intensity (numerator) to total protein band inten-
sity (denominator) were calculated without taking into account the independent s.e.m. values of numerator and 
denominator inputs (applicable to ratios presented in Figs 2A–C, 3D, 4E and 6B,D). The denominators in these 
experiments (total protein band intensities) remained unchanged in these experiments with nearly all relative 
errors <​3%, such that changes in ratio were overwhelmingly attributable to changes in numerator (phophopro-
tein band intensities). The p values for comparisons of these ratios, computed as described above, are indicated in 
the relevant text and figure legends by italicized p values.

All recombinant proteins, DNA constructs, antibodies, generated for this study at the University of Dundee 
can be requested on our reagents website (https://mrcppureagents.dundee.ac.uk/).
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