4,005 research outputs found

    Heavy Quark Radiative Energy Loss - Applications to RHIC

    Full text link
    Heavy quark energy loss in a hot QCD plasma is computed taking into account the competing effects due to suppression of zeroth order gluon radiation bellow the plasma frequency and the enhancement of gluon radiation due to transition energy loss and medium induced Bremsstrahlung. Heavy quark medium induced radiative energy loss is derived to all orders in opacity, (L/λg)n(L/\lambda_g)^n. Numerical evaluation of the energy loss suggest small suppression of high pp_\perp charm quarks, and therefore provide a possible explanation for the null effects observed by PHENIX in the prompt electron spectrum in Au+AuAu+Au as s=130\sqrt{s}=130 and 200 AGeV.Comment: 4 pages, 4 figures, Contributed to 17th International Conference on Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California, 11-17 Jan 200

    Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules

    Get PDF
    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.Nadiatul A. Mohd-Radzman was supported by ANU International PhD Scholarship. This work was supported by an Australian Research Council grant to Michael A. Djordjevic and Nijat Imin (DP140103714)

    Constrained Dynamics of Tachyon Field in FRWL Spacetime

    Get PDF
    In this paper we continue study of tachyon scalar field described by a Dirac-Born-Infeld (DBI) type action with constraints in the cosmological context. The proposed extension of the system introducing an auxiliary field in the minisuperspace framework is discussed. A new equivalent set of constraints is constructed, satisfying the usual regularity conditions.Comment: 10 pages, to be published in the Special Issue of the Facta Universitatis Series: Physics, Chemistry and Technology devoted to the SEENET-MTP Balkan Workshop BSW2019 (3-14 June 2018, Nis, Serbia

    Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes

    No full text
    BACKGROUND Small, secreted signaling peptides work in parallel with phytohormones to control important aspects of plant growth and development. Genes from the C-TERMINALLY ENCODED PEPTIDE (CEP) family produce such peptides which negatively regulate plant growth, especially under stress, and affect other important developmental processes. To illuminate how the CEP gene family has evolved within the plant kingdom, including its emergence, diversification and variation between lineages, a comprehensive survey was undertaken to identify and characterize CEP genes in 106 plant genomes. RESULTS Using a motif-based system developed for this study to identify canonical CEP peptide domains, a total of 916 CEP genes and 1,223 CEP domains were found in angiosperms and for the first time in gymnosperms. This defines a narrow band for the emergence of CEP genes in plants, from the divergence of lycophytes to the angiosperm/gymnosperm split. Both CEP genes and domains were found to have diversified in angiosperms, particularly in the Poaceae and Solanaceae plant families. Multispecies orthologous relationships were determined for 22% of identified CEP genes, and further analysis of those groups found selective constraints upon residues within the CEP peptide and within the previously little-characterized variable region. An examination of public Oryza sativa RNA-Seq datasets revealed an expression pattern that links OsCEP5 and OsCEP6 to panicle development and flowering, and CEP gene trees reveal these emerged from a duplication event associated with the Poaceae plant family. CONCLUSIONS The characterization of the plant-family specific CEP genes OsCEP5 and OsCEP6, the association of CEP genes with angiosperm-specific development processes like panicle development, and the diversification of CEP genes in angiosperms provides further support for the hypothesis that CEP genes have been integral to the evolution of novel traits within the angiosperm lineage. Beyond these findings, the comprehensive set of CEP genes and their properties reported here will be a resource for future research on CEP genes and peptides.We thank Jason Bragg for his input and advice on inferring gene trees. This work was supported by an Australian Research Council Discovery Project grant (DP120101893). HAO received financial support (UHS10488) to conduct this study from the Grains Research and Development Council

    Heavy-to-light ratios as a test of medium-induced energy loss at RHIC and the LHC

    Full text link
    The ratio of nuclear modification factors of high-pTp_T heavy-flavored mesons tolight-flavored hadrons (heavy-to-light ratio) is shown to be a sensitive tool to test medium-induced energy loss at RHIC and LHC energies. Heavy-to-light ratios of DD mesons at RHIC in the region 7<pT<127<p_T<12 GeV, and of DD and BB mesons at the LHC in the region 10<pT<2010<p_T<20 GeV, are proposed for such a test. Finally, the different contributions to the nuclear modification factor for electrons at RHIC are analyzed. Preliminary PHENIX and STAR data are compatible with radiative energy loss provided the contribution of electrons from beauty decays is small compared to that from charm.Comment: 5 pages, latex, 4 eps figs included using graphicx; to appear in the proceedings of 18th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2005 (QM 2005), Budapest, Hungary, 4-9 Aug 200

    Suppression of heavy flavors at RHIC & LHC

    Get PDF
    Some of the open questions on jet quenching are expected to be clarified by measuring heavy-flavored mesons at high transverse momentum. The formalism based on radiative in-medium energy-loss, which describes other high-pt results at RHIC, gives definite predictions for the suppression of charm and beauty quarks. However, the uncertainties from both contributions to the observed electrons make the interpretation of the data difficult due to the absence of a well calibrated benchmark. We review the present situation as well as the consequences for the future LHC. We also comment on the use of heavy flavored jet angular correlations as an additional tool to study the underline dynamics of jet quenching.Comment: Plenary talk at the Conference Hard Probes 2006, Asilomar (California) June 2006. 8 page

    Jet reshaping in heavy-ion collisions

    Full text link
    We propose a new implementation of medium effects in jet structures in which a modification of the splitting function is included at every step in the typical final state parton shower. Although the main application of this new formalism will be at the LHC, it is interesting that, in the presence of a trigger bias to small number of splittings, non-trivial angular dependences could appear with shapes similar to those measured experimentally at RHIC in high-pT particle correlations.Comment: 4 pages, 4 figures, Invited talk at the 37th International Symposium on Multiparticle Dynamics, LBNL, August 200
    corecore