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Nitrogen, particularly nitrate is an important yield determinant for crops. However,
current agricultural practice with excessive fertilizer usage has detrimental effects on the
environment. Therefore, legumes have been suggested as a sustainable alternative for
replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through
symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic
root system which modulates its architecture according to the nitrogen availability in the
soil. Understanding how legumes regulate root development in response to nitrogen
availability is an important step to improving root architecture. The nitrogen-mediated root
development pathway starts with sensing soil nitrogen level followed by subsequent signal
transduction pathways involving phytohormones, microRNAs and regulatory peptides that
collectively modulate the growth and shape of the root system.This review focuses on the
current understanding of nitrogen-mediated legume root architecture including local and
systemic regulations by different N-sources and the modulations by phytohormones and
small regulatory molecules.
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INTRODUCTION
Understanding how plants grow and develop under diverse
environmental conditions is crucial for improving crop pro-
ductivity. As plants are sessile, they are highly sensitive to
the environment and respond accordingly for growth and sur-
vival. Of particular importance is nitrogen (N) which provides
the building blocks for protein production in plants and dic-
tates crop yield and productivity. The root system adapts to
soil N-levels by modifying its architecture (Hodge, 2006). In
legumes, during N-limitation, specialized root organs called
nodules, can form through symbiotic interaction with rhizobia
which are specialized nitrogen-fixing bacteria. Rhizobia con-
vert atmospheric N2 to ammonium to provide legumes with
N for growth. Some of this fixed N is recycled back into
the soil to sustain subsequent plant growth. Due to this abil-
ity, legumes are used as rotational or cover crops to replenish
soil N (Collette et al., 2011). As legume root architecture is
strongly regulated by N, understanding N-regulation of root
development has great agricultural importance. The recent
discovery of small regulatory molecules such as microRNAs
and regulatory peptides provide additional facets to the clas-
sic phytohormone mediated pathways of root development.
Therefore this review aims to give a brief perspective on the
current knowledge of the signaling components involved in N-
mediated root architecture with emphasis on the legume root
system.

IMPROVING PLANT ROOT ARCHITECTURE FOR BETTER N
USE EFFICIENCY
Nitrogen levels strongly influence root architecture and crop yields
(Hodge, 2006; Garnett et al., 2009). The enhanced crop production
during the Green Revolution was mostly attributed to N fertilizer
use to alleviate soil N-limitation (Tilman, 1998; Xu et al., 2012).
However, there is also an internal control in plants for N use – N
use efficiency (NUE) which determines the efficiency of a plant
to transport, assimilate and uptake N from the environment (Xu
et al., 2012). Poor NUE often translates into utilization of only
30–40% of externally supplied N and this wastage is exacerbated
by the energy intensiveness of the Haber-Bosch process which
consumes 1–2% of the world energy supply (Cocking, 2009; Hao
et al., 2011). In addition, current food crop production has reached
a NUE plateau, limiting further yield increases. Poor NUE has
also led to excessive N fertilizer usage, generating adverse envi-
ronmental effects including nitrate-derived water pollution, the
production of reactive N, algal blooms and water and soil acid-
ification (Tilman, 1998; Galloway et al., 2008; Rockstrom et al.,
2009). Therefore, suboptimal NUE poses a major challenge. On
one hand, crop production must increase to sustain world pop-
ulation growth (Collette et al., 2011). On the other, the further
environmental damage that will ensue if NUE is not improved
will undermine these efforts. Disturbances in the global N-cycle
are already negatively impacted global biosphere health and reac-
tive N gases contribute to global warming (Rockstrom et al., 2009).
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A more sustainable alternative involves utilizing the biological N
fixation ability of legumes to replenish soil N. Therefore, a better
understanding of legume development with respect to N-mediated
root growth is required for agricultural sustainability.

IMPORTANCE OF LEGUMES TO PROVIDE AN ALTERNATIVE
N-SOURCE IN SUSTAINABLE AGRICULTURE
Nitrogen-fixing root nodules form from the legume-Rhizobium
symbiosis. A “zone of maximum susceptibility” occurs in the
elongation zone near the root tip (Bhuvaneswari et al., 1980; Sar-
gent et al., 1987). Rhizobium-derived nodulation (Nod) factors are
required to induce root hair curling, infection and nodule pri-
mordium formation. Rhizobia colonize mature nodules and fix
N. The legume-Rhizobium symbiosis contributes between 14 and
140 kg of N/acre/year and 33% of human protein globally (Gra-
ham and Vance, 2003). A 15 year study involving the co-cultivation
of maize with soybean compared to growing maize grown alone
showed a significant reduction of carbon and N loss to the envi-
ronment (Drinkwater et al., 1998). The Food and Agriculture
Organization (FAO) promotes sustainable agriculture by increas-
ing legume usage in crop-rotations and as cover crops to enrich soil
N levels (FAO, 2009; Collette et al., 2011). Although N-limitation
has been long known as a prerequisite for nodulation to occur,
the mechanism behind legume root susceptibility for nodulation
is still unknown. Since lateral root and nodule development and
overall root architecture are strongly influenced by N-availability,
a comprehensive understanding of these processes is required to
optimize legume utilisation for sustainable agriculture.

N REGULATION OF ROOT ARCHITECTURE IS MEDIATED
THROUGH SYSTEMIC AND LOCAL SIGNALING PATHWAYS
Local and systemic controls influence N-mediated root archi-
tecture regulation (Figure 1). In addition, homogenous and
heterogeneous N-regimes impart differential responses in dicots
and monocots. Local control is exemplified by the stimulation of
lateral root elongation by high N-patches in the soil (Robinson
et al., 1999). In the systemic pathway, root architecture is dictated
by the plant’s overall N-status (Zhang and Forde, 1998; Robinson
et al., 1999). Homogeneous high nitrate (e.g. ≥10 mM) imparts
systemic inhibition of lateral and primary root growth (Figure 1)
whereas homogeneous low nitrate (e.g. ≤1 mM) promotes both
(Robinson et al., 1999; Zhang et al., 1999; Walch-Liu et al., 2006;
Ruffel et al., 2011). Coordinated systemic and local regulations are
observed in split-root experiments where the root system is split
into two, with each side exposed to different treatments. Split-root
exposed to low and high N-level on each side respectively shows
more lateral roots form on the side exposed to high nitrate (Ruf-
fel et al., 2011). The root foraging mechanism exploits the high
N-patches and minimal investment is made by the plant to the
N-limited roots (Robinson et al., 1999). Compared to these N-
regulations of lateral roots, less is known about nodule regulation
by local and systemic N pathways.

Local and systemic pathways also regulate nodule numbers. The
earliest formed nodules stimulate systemic autoregulation which
suppresses further nodulation in younger root regions (Figure 1).
Autoregulation can also be observed in split-root experiments:
nodules forming on one split-root will inhibit nodulation on

FIGURE 1 | Regulation of nodule and lateral root formation in low and

high N. Low N promotes the formation of lateral roots and nodules. Lateral
root formation increases in low N to promote foraging. However, if the root
senses a patch of high N during N-limitation, lateral root elongation is
promoted towards the high N-patch to exploit the available N-source for the
plant use. In low N, legume roots are susceptible to rhizobial infection and
form nodules in which N is fixed by rhizobia and transported into the plant. The

formation of nodules also sends a root-derived signal “Q” to the shoot, which
triggers the production of a shoot-derived inhibitor (SDI) that travels back to
the root to inhibit further nodulation. In homogenous high N conditions, both
lateral roots and nodules are inhibited. In high N, the root is less susceptible
for nodulation and infection, nodule number development and N fixation
capacity are reduced. High shoot N also leads to less lateral root
formation.
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the second split-root (Kosslak and Bohlool, 1984; Sargent et al.,
1987). Nodules formed by the first inoculation produce root-
derived signal (Q) which travels to the shoot via the xylem to be
ultimately perceived by a leucine-rich repeat receptor-like kinase
(LRR-RLK). Functional orthologues of this LRR-RLK have been
identified in Lotus japonicus (HAR1; hypernodulation aberrant
root 1), Medicago truncatula (SUNN; super numeric nodules),
soybean (NARK; nodule autoregulation receptor kinase) and pea
(SYM29; Krusell et al., 2002; Searle et al., 2003; Schnabel et al.,
2005). After Q perception, the shoots produce a shoot-derived
inhibitor (SDI) that suppresses nodulation in other parts of the
roots (Figure 1; Caetano-Anolles and Gresshoff, 1991). Systemic
control is also observed through selective discrimination of rhizo-
bia based on N-fixation and nodulation efficiency (Sargent et al.,
1987; Laguerre et al., 2012). Local high nitrate strongly inhibits
nodulation locally and initiates a systemic response. The systemic
response can be measured using split-roots (Ruffel et al., 2008;
Jeudy et al., 2010). As plants need to invest a lot of energy to
maintain nodules, the coordinate regulation of local and systemic
pathways ensures that plants have sufficient N with the least energy
investment. Therefore, plants will opt for nodulation only when
they have a high requirement for N but utilize an external N source
whenever available.

INORGANIC AND ORGANIC N INFLUENCE ON PLANT ROOT
DEVELOPMENT
Plants take up N from the soil in either inorganic (e.g., nitrate
or ammonium) or organic (e.g., amino acids) forms. Most
plants prefer nitrate to ammonium because excess nitrate can be
stored in vacuoles and high ammonium can be toxic (Glass et al.,
2002). In legumes, high nitrate and ammonium (>3 mM) inhibit
nodulation but lower concentrations (0.5–2 mM) can stimulate
nodulation (Bollman and Vessey, 2006; Barbulova et al., 2007).
Different N-sources regulate roots differentially (Bollman and
Vessey, 2006; Ruffel et al., 2008). Split-root experiments compar-
ing the effects of growth by nitrate, ammonium or N-fixation
revealed that nitrate is the only N-source that compensates growth
during N-limitation (Ruffel et al., 2008; Jeudy et al., 2010). When
one side of the split-root is in sufficient nitrate and the other
is N-limited, the root will compensate the systemic N-limitation
by increasing nitrate uptake from the sufficient side (Jeudy et al.,
2010). Both ammonium and N-fixation do not seem to have com-
pensatory regulation for growth during N-limitation. However,
long-term N-limitation leads to nodule growth stimulation in the
sufficient N-side of the split-root and inhibits nodulation in the N-
limited side (Salon et al., 2009; Jeudy et al., 2010). These differential
root responses to nitrate, ammonium and N-fixation demonstrate
the ability of legumes to distinguish between the N-regimes. This
is likely to be mediated by different sensory components regulating
the plant responses to the respective N-forms.

Root growth in ammonium is partly regulated by ammonium
transporters (AMTs) which are involved in maintaining opti-
mal ammonium levels in planta and modulating root responses
to prevent ammonium toxicity. The AMT1 and AMT2 fami-
lies were identified in Arabidopsis (Yuan et al., 2007). The AMT1
family controls ammonium transport and acquisition while the
AMT2 family is involved in regulatory processes (Sohlenkamp

et al., 2002; Yuan et al., 2007). In Lotus, three AMT1s and two
AMT2s have been characterized (Salvemini et al., 2001; Simon-
Rosin et al., 2003; D’Apuzzo et al., 2004; Rogato et al., 2010a).
LjAMT1;1 and LjAMT1;2 are up-regulated during N-limitation.
LjAMT1;3 is up-regulated by high ammonium (D’Apuzzo et al.,
2004) and is a putative ammonium transceptor that mediates
root responses to toxic ammonium levels (Rogato et al., 2010a,b).
LjAMT2;1 is postulated to recover ammonium lost from cellu-
lar efflux in nodules and other organs (Simon-Rosin et al., 2003)
whereas LjAMT2;2 is required for N-acquisition during mycor-
rhizal associations (Guether et al., 2009). Ammonium negatively
impacts nodulation by inhibiting root hair curling and repress-
ing the expression of NIN (NODULE INCEPTION), an essential
gene for nodule formation (Barbulova et al., 2007). These results
indicate that ammonium inhibition is upstream of the Nod fac-
tor pathway and that ammonium perception needs to be relayed
quickly for rapid nodule inhibition to occur.

Nitrate, the predominant form of soil inorganic N, strongly
affects lateral root and nodule formation. In contrast to ammo-
nium, nitrate inhibition occurs downstream of the nodulation
pathway just before cortical cell division (Barbulova et al., 2007).
The Lotus autoregulation mutant, har1, is nitrate-insensitive but
retains sensitivity to ammonium. Autoregulation mutants from
other species are also nitrate insensitive suggesting that nitrate is
involved in the autoregulation pathway (Schnabel et al., 2010). Two
nitrate transporter families, NRT1 and NRT2, mediate nitrate-
dependent responses. NRT1s are mostly low affinity transporters
(LATs) and NRT2 are mostly high affinity transporters (HATs; Tsay
et al., 2007). In Medicago, two NRT1 transporters were identified:
NIP/LATD (numerous infections and polyphenolics/lateral root-
organ defective), which is involved in root architecture regulation
(Bagchi et al., 2012), and NRT1.3, which regulates nitrate uptake in
N-deficient conditions (Morère-Le Paven et al., 2011). NIP/LATD
acts as a HAT under low nitrate conditions and NIP/LATD mutants
have severe defects during nodule and lateral root formation,
which can only be partially rescued by an Arabidopsis NRT1 homo-
logue (Bagchi et al., 2012). This suggests additional functions for
NIP/LATD apart from transporting nitrate (Yendrek et al., 2010;
Bagchi et al., 2012). MtNRT1.3, which encodes a dual-affinity
nitrate transporter similar to AtNRT1.1, is postulated to regu-
late nitrate uptake during N-limitation (Morère-Le Paven et al.,
2011). Since AtNRT1.1 is known to be a transceptor, the legume
NRT homologs could be involved in nitrate-dependent nodula-
tion signaling pathways. Nitrate inhibits nodulation not because
of its nutritional effect but more likely as an important signaling
cue to regulate nodulation (Carroll and Mathews, 1990).

Apart from inorganic N, free amino acids, particularly glu-
tamine, also affect root architecture. High glutamine inhibits
root growth by acting as an internal N-status signal for medi-
ating root development (Zhang et al., 1999). In legumes, the
glutamine, asparagine and ureides produced by nodules may also
regulate nodulation. A high level of fixed-N in the phloem lowers
nitrogenase activity in nodules (Parsons et al., 1993; Imsande and
Touraine, 1994; Sulieman et al., 2010). These reductions in nitro-
genase activity through feedback regulation might contribute to
nodule modulation (Parsons et al., 1993; Serraj and Sinclair, 2003;
Sulieman and Tran, 2013).

www.frontiersin.org October 2013 | Volume 4 | Article 385 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00385” — 2013/9/27 — 19:34 — page 4 — #4

Mohd-Radzman et al. Nitrogen modulates legume root architecture

N-mediated regulation of root development ensures that suf-
ficient N acquisition occurs to support the formation of the
photosynthetic apparatus in the shoot. The shoot then invests
carbon to promote root development to explore the soil for more
N or initiate symbiosis to fix N (Garnett et al., 2009; Nunes-Nesi
et al., 2010). Therefore, the communication between local and sys-
temic pathways is tightly regulated by phytohormones and other
regulatory molecules including small regulatory molecules.

PHYTOHORMONES: WELL-KNOWN MEDIATORS OF
LONG-RANGE SIGNALING IN N-REGULATION
Auxin is the major hormone implicated in root development and
N-mediated control of root architecture. High nitrate is thought
to reduce local auxin accumulation suggesting that auxin may be
a shoot-to-root signal of “N-status” (Bao et al., 2007; Okushima
et al., 2011). In Arabidopsis, high shoot N-levels are speculated
to reduce shoot-to-root auxin transport resulting in reduced lat-
eral root formation (Reed et al., 1998; Forde, 2002). However
studies with Medicago reveals that high shoot N-levels increase
shoot-to-root auxin transport (Jin et al., 2012). The correlation
between shoot-to-root auxin transport and lateral root formation
suggests that systemic N-regulation via auxin acts through mod-
ulating auxin levels for the formation of lateral root founder cells
(Dubrovsky et al., 2011). This response is demonstrated by using
Medicago sunn-1 mutant, which has insensitive shoot-to-root
auxin transport regardless of the N-level. In sunn-1, the correlation
between N-dependent auxin transport and lateral root regulation
is lost (Jin et al., 2012). However, SUNN-dependent shoot-to-root
auxin transport seems to only apply to nitrate-mediated lateral
root regulation but not nodule regulation suggesting that auxin-
dependent N-regulation of nodulation acts locally in the root
(Jin et al., 2012). Auxin regulation of root development involves
crosstalk with other phytohormones such as ethylene.

The gaseous hormone, ethylene, is directly regulated by soil
nitrate levels and is involved in local nitrate-dependent root reg-
ulation. In several species, high nitrate increases root ethylene
evolution (Ligero et al., 1986, 1987; Caba et al., 1998; Tian et al.,
2009). High ethylene levels inhibit nodules and lateral roots for-
mation while low ethylene increases lateral roots and promotes
nodulation (Peters and Crist-Estes, 1989; Lee and Larue, 1992;
Nukui et al., 2000; Oldroyd et al., 2001). Several rhizobia gener-
ate better nodulation responses by inhibiting localized ethylene
by synthesizing an ethylene precursor mimic or by producing the
aminocyclopropane-deaminase enzyme which degrades aminocy-
clopropane, the ethylene precursor (Ma et al., 2002). Ethylene also
imparts positional control of nodulation as increased ethylene lev-
els opposite the phloem poles favors nodule formation opposite
the xylem poles (Heidstra et al., 1997). Ethylene regulation of lat-
eral roots and nodules likely occurs through the control of cell cycle
pathways (Dan et al., 2003; Spadafora et al., 2012) however little
detail is known how this occurs. Cell cycle regulation by ethylene
occurs partly through crosstalk with cytokinin (Spadafora et al.,
2012) which is also involved in nitrate-regulated development.

Cytokinin directly regulates the cell cycle and is a mediator
for communicating N-status between the shoot and root via the
phosphorelay pathway (Sakakibara et al., 2000). In this pathway,
nitrate replenishment of an N-starved root system increases

cytokinin synthesis which is then transported to the shoot, signal-
ing the root’s N status. As shoot N-supply is depleted, cytokinin
is transported back to the root to signal the shoot’s low N-status
(Sakakibara et al., 2000; Ruffel et al., 2011). Cytokinin also reg-
ulates the cell cycle during lateral root development by acting
directly on lateral root founder cells to inhibit root initiation
(Li et al., 2006; Laplaze et al., 2007). However, once differentia-
tion occurs, high cytokinin promotes lateral root elongation (Li
et al., 2006). As lateral root elongation is also stimulated by high
nitrate patches, it would be interesting to examine the cytokinin-
nitrate interaction during this process. In legumes, cytokinin is an
upstream component of the nodulation pathway and exogenous
cytokinin application induces the expression of several nodula-
tion genes (Fang and Hirsch, 1998; Gonzalez-Rizzo et al., 2006).
Cytokinin receptor mutants of Lotus (Murray et al., 2007) and
Medicago (Gonzalez-Rizzo et al., 2006) show reduced nodulation
while a cytokinin receptor gain-of-function mutants leads to spon-
taneous nodulation (Murray et al., 2007; Tirichine et al., 2007).
Although N-mediated root development involves cytokinin, auxin
and ethylene, small regulatory molecules fine-tune these pathways.

SMALL REGULATORY MOLECULES FOR FINE-TUNING PLANT
DEVELOPMENTAL RESPONSES
Regulatory microRNAs and peptides act as fine-tuners of local
cellular development. These small regulatory molecules are likely
to act as cellular cues in response to environmental conditions
including N-availability. The signaling cascades then activate the
phytohormone pathways to modulate the root system. For exam-
ple, the auxin receptor, Auxin signaling F-box protein 3 (AFB3),
is a target of microRNA, miR393 (Vidal et al., 2010). Since AFB3
and miR393 are both nitrate-induced, this leads to a transient
up-regulation of AFB3 in a feed-forward loop prior to the subse-
quent induction of miR393 which down-regulates AFB3 (Vidal
et al., 2010). The rapid down-regulation of AFB3 by miR393
provides a fine-tuned mechanism of the root system to dynam-
ically respond to N in real time. This interaction is an excellent
example of a small regulatory molecule integrating nitrate avail-
ability with auxin signaling. Recently, soybean miR160 has also
been shown to modulate auxin during nodulation. miR160 is
down-regulated by Rhizobium inoculation while its Arabidopsis
homologue is upregulated by N-starvation (Subramanian et al.,
2008; Liang et al., 2012). Over-expressing miR160 in soybean
leads to auxin hypersensitivity which reduces nodule formation
demonstrating the importance of auxin regulation by miR160
during nodulation (Turner et al., 2013). miR169 is also involved
in N-regulation of root development. Overexpressing miR169 in
Arabidopsis reduces nuclear factor Y-A (NF-YA) transcript levels
leading to a low N-stress phenotype coupled with low N acquisi-
tion (Zhao et al., 2011). In Medicago, miR169 targets HAP2-1, a
NF-YA involved in nodulation (Combier et al., 2006). This Med-
icago NF-YA is closely regulated with NIN (Soyano et al., 2013).
NIN and its Arabidopsis homolog, NLP7 are up-regulated by low
N (Wang et al., 2009). As nlp7 displays N-stressed root phenotypes
even in N-sufficient conditions (Castaings et al., 2009), it would
be interesting to see if miR169 or other regulatory molecules are
involved in NIN/NLP7 dependent pathway during N-limitation in
roots.

Frontiers in Plant Science | Plant Systems Biology October 2013 | Volume 4 | Article 385 | 4

http://www.frontiersin.org/Plant_Systems_Biology/
http://www.frontiersin.org/Plant_Systems_Biology/archive


“fpls-04-00385” — 2013/9/27 — 19:34 — page 5 — #5

Mohd-Radzman et al. Nitrogen modulates legume root architecture

Other regulatory molecules in plants include small signal-
ing peptides. The most well-studied regulatory peptide families
in plants are the CLE peptide family. Several members of
this family are involved in root development including CLE40,
which involves in the maintenance of the root apical meris-
tem (RAM) by regulating cellular differentiation (Stahl et al.,
2009). In legumes, nodule-specific CLE peptides also regu-
late nodulation (Saur et al., 2011; Mortier et al., 2012). Several
CLEs are nitrate-regulated like GmNIC1 in soybean which is
involved in the autoregulation of nodulation (Reid et al., 2011,
2013). During autoregulation, GmNIC1 interacts with the NARK
receptor in the root (Reid et al., 2011, 2013). Recently, the
LjCLE-RS2 peptide in Lotus was demonstrated to be the “Q”
signal (Figure 1) which interacts with HAR1 in the shoot
(Okamoto et al., 2013). LjCLE-RS2 is also up-regulated by
nitrate and is hypothesized to integrate nitrate inhibition of
nodulation via the HAR1-dependent autoregulation pathway
(Okamoto et al., 2009). Nodule inhibition by these nitrate-
regulated CLEs suggests possible crosstalks between autoregu-
lation and nitrate-regulation of nodulation. These CLEs are
likely to be involved in signal transduction pathways which fur-
ther regulate the cytokinin-mediated nodulation pathway (Saur
et al., 2011). Therefore, these small regulatory peptides provide
a fine-tuning mechanism for nitrate-mediated control of root
architecture.

CONCLUSION
Nitrogen is an essential nutrient for plant productivity and
its environmental availability strongly regulates root archi-
tecture. To optimize N acquisition, nitrate and ammonium
transporters/transceptors provide the sensory components of
N-mediated root development in legumes. The signal for N-
availability is translated into an array of phytohormone pathways
which regulates root development. Small regulatory molecules
such as microRNAs and peptides provide further fine-tuning
of these phytohormone signals to produce highly dynamic and
plastic root responses to N-levels. Hence these regulatory path-
ways, which integrate environmental sensory signals with the
modulation of phytohormones and small regulatory molecules
could be exploited to improve legume root architecture for better
NUE.
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