48 research outputs found

    An assessment of theICE6G_C(VM5a)glacial isostatic adjustment model

    Get PDF
    The recent release of the next-generation global ice history model, ICE6G_C(VM5a), is likely to be of interest to a wide range of disciplines including oceanography (sea level studies), space gravity (mass balance studies), glaciology, and, of course, geodynamics (Earth rheology studies). In this paper we make an assessment of some aspects of the ICE6G_C(VM5a) model and show that the published present-day radial uplift rates are too high along the eastern side of the Antarctic Peninsula (by ∼8.6 mm/yr) and beneath the Ross Ice Shelf (by ∼5 mm/yr). Furthermore, the published spherical harmonic coefficients—which are meant to represent the dimensionless present-day changes due to glacial isostatic adjustment (GIA)—contain excessive power for degree ≥90, do not agree with physical expectations and do not represent accurately the ICE6G_C(VM5a) model. We show that the excessive power in the high-degree terms produces erroneous uplift rates when the empirical relationship of Purcell et al. (2011) is applied, but when correct Stokes coefficients are used, the empirical relationship produces excellent agreement with the fully rigorous computation of the radial velocity field, subject to the caveats first noted by Purcell et al. (2011). Using the Australian National University (ANU) groups CALSEA software package, we recompute the present-day GIA signal for the ice thickness history and Earth rheology used by Peltier et al. (2015) and provide dimensionless Stokes coefficients that can be used to correct satellite altimetry observations for GIA over oceans and by the space gravity community to separate GIA and present-day mass balance change signals. We denote the new data sets as ICE6G_ANU

    Relationship between glacial isostatic adjustment and gravity perturbations observed by GRACE

    Get PDF
    The Gravity Recovery and Climate Experiment space gravity mission provides one of the principal means of estimating present-day mass loss occurring in polar regions. Extraction of the mass loss signal from the observed gravity changes is complicated by the need to first remove the signal of ongoing glacial isostatic adjustment (GIA) since the Last Glacial Maximum. This can be problematic in regions such as Antarctica where the GIA models are poorly constrained by observation and their accuracy is not well known. We present a new methodology that permits the GIA component to be represented mathematically by a simple, linear expression of the ratio of viscoelastic Love numbers that is valid for a broad range of Earth and ice-load models. The expression is shown to reproduce rigorous computations of surface uplift rates to within 0.3 mm/yr, thus providing a means of inverting simultaneously for present-day mass loss and ongoing GIA with all the accuracy of a fully detailed forward model

    Spatio-temporal variations in seasonal ice tongue submarine melt rate at a tidewater glacier in southwest Greenland

    Get PDF
    Submarine melting of tidewater glaciers is proposed as a trigger for their recent thinning, acceleration and retreat. We estimate spring submarine melt rates (SMRs) of Kangiata Nunaata Sermia in southwest Greenland, from 2012 to 2014, by examining changes in along-fjord freeboard and velocity of the seasonal floating ice tongue. Estimated SMRs vary spatially and temporally near the grounding line, with mean rates of 1.3 ± 0.6, 0.8 ± 0.3 and 1.0 ± 0.4 m d−1 across the tongue in 2012, 2013 and 2014, respectively. Higher melt rates correspond with locations of emerging subglacial plumes and terminus calving activity observed during the melt season using time-lapse camera imagery. Modelling of subglacial flow paths suggests a dynamic system capable of rapid re-routing of subglacial discharge both within and between melt seasons. Our results provide an empirically-derived link between the presence of subglacial discharge plumes and areas of high spring submarine melting and calving along glacier termini

    Rapid dynamic activation of a marine-based Arctic ice cap

    Get PDF
    We use satellite observations to document rapid acceleration and ice loss from a formerly slow-flowing, marine-based sector of Austfonna, the largest ice cap in the Eurasian Arctic. During the past two decades, the sector ice discharge has increased 45-fold, the velocity regime has switched from predominantly slow (~ 101 m/yr) to fast (~ 103 m/yr) flow, and rates of ice thinning have exceeded 25 m/yr. At the time of widespread dynamic activation, parts of the terminus may have been near floatation. Subsequently, the imbalance has propagated 50 km inland to within 8 km of the ice cap summit. Our observations demonstrate the ability of slow-flowing ice to mobilize and quickly transmit the dynamic imbalance inland; a process that we show has initiated rapid ice loss to the ocean and redistribution of ice mass to locations more susceptible to melt, yet which remains poorly understood.This work was supported by the UK Natural Environment Research Council.This article was originally published in Geophysical Research Letters (M McMillan, A Shepherd, N Gourmelen, A Dehecq, A Leeson, A Ridout, T Flament, A Hogg, L Gilbert, T Benham, M van den Broeke, JA Dowdeswell, X Fettweis, B Noël, T Strozzi, Geophysical Research Letters 2014, 41, 8902–8909)

    Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites

    Get PDF
    Aedes-borne viruses like dengue and chikungunya are a major problem in Reunion Island. Assessing exposure to Aedes bites is crucial to estimating the risk of pathogen transmission. Currently, the exposure of populations to Aedes albopictus bites is mainly evaluated by entomological methods which are indirect and difficult to apply on a large scale. Recent findings suggest that evaluation of human antibody responses against arthropod salivary proteins could be useful in assessing exposure to mosquito bites. The results indicate that 88% of the studied population produce IgG to Ae. albopictus saliva antigens in Reunion Island and show that this biomarker can detect different levels of individual exposure. In addition, little cross-reactivity is observed with Aedes aegypti saliva, suggesting that this could be a specific marker for exposure to Aedes albopictus bites. Taken together, these results suggest that antibody responses to saliva could constitute a powerful immuno-epidemiological tool for evaluating exposure to Aedes albopictus and therefore the risk of arbovirus infection

    Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island - multi-year trend analysis of historical records from 1996-2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An often confounding facet of the dynamics of malaria vectors is the aquatic larval habitat availability and suitable conditions under which they can thrive. Here, we investigated the impact of environmental factors on the temporal and spatial distribution of larval habitats of <it>Anopheles </it><it>arabiensis </it>in different locations on La Reunion Island.</p> <p>Methods</p> <p>A retrospective examination was made from archival data which provided the complete enumeration of <it>An. arabiensis </it>breeding habitats in three distinct geographic zones - extending North-east, West and South of the island over 14 years, from January 1996 to December 2009. Data on the occurrence and the number of active larval habitats at each of a total of 4376 adjacent ellipsoid grid cells (216,506 square meters each) were used (1) to provide the geographic extent of breeding site availability from year to year and (2) to analyze associations with prevailing environmental factors, habitat types, and locations.</p> <p>Results</p> <p><it>Anopheles arabiensis </it>utilized a spectrum of man-made and natural aquatic habitats, most of which were concentrated primarily in the rock pools located in ravines and river fringes, and also in the large littoral marshes and within the irrigated agricultural zones. The numbers of breeding site per sampling grid differed significantly in different parts of the island. In contrast to an originally more widespread distribution across the island in the 1950s, detailed geographic analyses of the data obtained in the period extending from 1996-2009 showed an intriguing clustered distribution of active breeding sites in three discontinuous geographic zones, in which aquatic habitats availability fluctuates with the season and year. Seasonality in the prevalence of anopheles breeding sites suggests significant responsiveness to climatic factors.</p> <p>Conclusions</p> <p>The observed retreat of <it>An. arabiensis </it>distribution range to lower altitudinal zones (< 400 m) and the upward shift in the most remote littoral areas in the northeast and southwest regions suggest the possible influence of biogeographic factors, changes in land use and control operations. The results of this study would allow for a more rational implementation of control strategies across the island.</p

    Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming

    Get PDF
    Ice flow along land-terminating margins of the Greenland Ice Sheet (GIS) varies considerably in response to fluctuating inputs of surface meltwater to the bed of the ice sheet. Such inputs lubricate the ice-bed interface, transiently speeding up the flow of ice. Greater melting results in faster ice motion during summer, but slower motion over the subsequent winter, owing to the evolution of an efficient drainage system that enables water to drain from regions of the ice-sheet bed that have a high basal water pressure. However, the impact of hydrodynamic coupling on ice motion over decadal timescales remains poorly constrained. Here we show that annual ice motion across an 8,000-km2 land-terminating region of the west GIS margin, extending to 1,100 m above sea level, was 12 slower in 2007-14 compared with 1985-94, despite a 50 increase in surface meltwater production. Our findings suggest that, over these three decades, hydrodynamic coupling in this section of the ablation zone resulted in a net slowdown of ice motion (not a speed-up, as previously postulated). Increases in meltwater production from projected climate warming may therefore further reduce the motion of land-terminating margins of the GIS. Our findings suggest that these sectors of the ice sheet are more resilient to the dynamic impacts of enhanced meltwater production than previously thought. © 2015 Macmillan Publishers Limited. All rights reserved

    Matrix-assisted laser desorption ionization--time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors.

    Get PDF
    BACKGROUND: The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification. METHODS: To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested. RESULTS: Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species. CONCLUSIONS: We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys
    corecore