390 research outputs found
Neuromorphic In-Memory Computing Framework using Memtransistor Cross-bar based Support Vector Machines
This paper presents a novel framework for designing support vector machines
(SVMs), which does not impose restriction on the SVM kernel to be
positive-definite and allows the user to define memory constraint in terms of
fixed template vectors. This makes the framework scalable and enables its
implementation for low-power, high-density and memory constrained embedded
application. An efficient hardware implementation of the same is also
discussed, which utilizes novel low power memtransistor based cross-bar
architecture, and is robust to device mismatch and randomness. We used
memtransistor measurement data, and showed that the designed SVMs can achieve
classification accuracy comparable to traditional SVMs on both synthetic and
real-world benchmark datasets. This framework would be beneficial for design of
SVM based wake-up systems for internet of things (IoTs) and edge devices where
memtransistors can be used to optimize system's energy-efficiency and perform
in-memory matrix-vector multiplication (MVM).Comment: 4 pages, 5 figures, MWSCAS 201
Interplay of buried histidine protonation and protein stability in prion misfolding
Misofolding of mammalian prion proteins (PrP) is believed to be the cause of a group of rare and fatal neurodegenerative diseases. Despite intense scrutiny however, the mechanism of the misfolding reaction remains unclear. We perform nuclear Magnetic Resonance and thermodynamic stability measurements on the C-terminal domains (residues 90–231) of two PrP variants exhibiting different pH-induced susceptibilities to aggregation: the susceptible hamster prion (GHaPrP) and its less susceptible rabbit homolog (RaPrP). The pKa of histidines in these domains are determined from titration experiments, and proton-exchange rates are measured at pH 5 and pH 7. A single buried highly conserved histidine, H187/H186 in GHaPrP/RaPrP, exhibited a markedly down shifted pKa ~5 for both proteins. However, noticeably larger pH-induced shifts in exchange rates occur for GHaPrP versus RaPrP. Analysis of the data indicates that protonation of the buried histidine destabilizes both PrP variants, but produces a more drastic effect in the less stable GHaPrP. This interpretation is supported by urea denaturation experiments performed on both PrP variants at neutral and low pH, and correlates with the difference in disease susceptibility of the two species, as expected from the documented linkage between destabilization of the folded state and formation of misfolded and aggregated species
Ab initio theory of helix-coil phase transition
In this paper we suggest a theoretical method based on the statistical
mechanics for treating the alpha-helix-random coil transition in alanine
polypeptides. We consider this process as a first-order phase transition and
develop a theory which is free of model parameters and is based solely on
fundamental physical principles. It describes essential thermodynamical
properties of the system such as heat capacity, the phase transition
temperature and others from the analysis of the polypeptide potential energy
surface calculated as a function of two dihedral angles, responsible for the
polypeptide twisting. The suggested theory is general and with some
modification can be applied for the description of phase transitions in other
complex molecular systems (e.g. proteins, DNA, nanotubes, atomic clusters,
fullerenes).Comment: 24 pages, 3 figure
Influence of the structural modulations and the Chain-ladder interaction in the compounds
We studied the effects of the incommensurate structural modulations on the
ladder subsystem of the family of compounds
using ab-initio explicitly-correlated calculations. From these calculations we
derived model as a function of the fourth crystallographic coordinate
describing the incommensurate modulations. It was found that in the
highly calcium-doped system, the on-site orbital energies are strongly
modulated along the ladder legs. On the contrary the two sites of the ladder
rungs are iso-energetic and the holes are thus expected to be delocalized on
the rungs. Chain-ladder interactions were also evaluated and found to be very
negligible. The ladder superconductivity model for these systems is discussed
in the light of the present results.Comment: 8 octobre 200
Alpha helix-coil phase transition: analysis of ab initio theory predictions
In the present paper we present results of calculations obtained with the use
of the theoretical method described in our preceding paper [1] and perform
detail analysis of alpha helix-random coil transition in alanine polypeptides
of different length. We have calculated the potential energy surfaces of
polypeptides with respect to their twisting degrees of freedom and construct a
parameter-free partition function of the polypeptide using the suggested method
[1]. From the build up partition function we derive various thermodynamical
characteristics for alanine polypeptides of different length as a function of
temperature. Thus, we analyze the temperature dependence of the heat capacity,
latent heat and helicity for alanine polypeptides consisting of 21, 30, 40, 50
and 100 amino acids. Alternatively, we have obtained same thermodynamical
characteristics from the use of molecular dynamics simulations and compared
them with the results of the new statistical mechanics approach. The comparison
proves the validity of the statistical mechanic approach and establishes its
accuracy.Comment: 34 pages, 12 figure
Cell Surface Binding and Internalization of Aβ Modulated by Degree of Aggregation
The amyloid peptides, Aβ40 and Aβ42, are generated through endoproteolytic cleavage of the amyloid precursor protein. Here we have developed a model to investigate the interaction of living cells with various forms of aggregated Aβ40/42. After incubation at endosomal pH 6, we observed a variety of Aβ conformations after 3 (Aβ3), 24 (Aβ24), and 90 hours (Aβ90). Both Aβ4224 and Aβ4024 were observed to rapidly bind and internalize into differentiated PC12 cells, leading to accumulation in the lysosome. In contrast, Aβ40/4290 were both found to only weakly associate with cells, but were observed as the most aggregated using dynamic light scattering and thioflavin-T. Internalization of Aβ40/4224 was inhibited with treatment of monodansylcadaverine, an endocytosis inhibitor. These studies indicate that the ability of Aβ40/42 to bind and internalize into living cells increases with degree of aggregation until it reaches a maximum beyond which its ability to interact with cells diminishes drastically
Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding
<p>Abstract</p> <p>Background</p> <p>Aggregation of the amyloid peptides, Aβ40 and Aβ42, is known to be involved in the pathology of Alzheimer's disease (AD). Here we investigate the relationship between peptide aggregation and cell surface binding of three forms of Aβ (Aβ40, Aβ42, and an Aβ mutant).</p> <p>Results</p> <p>Using confocal microscopy and flow cytometry with fluorescently labelled Aβ, we demonstrate a correlation between the aggregation propensity of the Alzheimer amyloid peptides and their neuronal cell surface association. We find that the highly aggregation prone Aβ42 associates with the surface of neuronal cells within one hour, while the less aggregation prone Aβ40 associates over 24 hours. We show that a double mutation in Aβ42 that reduces its aggregation propensity also reduces its association with the cell surface. Furthermore, we find that a cell line that is resistant to Aβ cytotoxicity, the non-neuronal human lymphoma cell line U937, does not bind either Aβ40 or Aβ42.</p> <p>Conclusion</p> <p>Taken together, our findings reveal that amyloid peptide aggregation propensity is an essential determinant of neuronal cell surface association. We anticipate that our approach, involving Aβ imaging in live cells, will be highly useful for evaluating the efficacy of therapeutic drugs that prevent toxic Aβ association with neuronal cells.</p
An effective all-atom potential for proteins
We describe and test an implicit solvent all-atom potential for simulations
of protein folding and aggregation. The potential is developed through studies
of structural and thermodynamic properties of 17 peptides with diverse
secondary structure. Results obtained using the final form of the potential are
presented for all these peptides. The same model, with unchanged parameters, is
furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta
protein and a three-helix-bundle protein, with very good results. The
computational efficiency of the potential makes it possible to investigate the
free-energy landscape of these 49--67-residue systems with high statistical
accuracy, using only modest computational resources by today's standards
- …
