26 research outputs found

    Gastric point-of-care ultrasound in acutely and critically ill children (POCUS-ped): a scoping review

    Get PDF
    Point-of-care ultrasound (POCUS) use is increasing in pediatric clinical settings. However, gastric POCUS is rarely used, despite its potential value in optimizing the diagnosis and management in several clinical scenarios (i.e., assessing gastric emptying and gastric volume/content, gastric foreign bodies, confirming nasogastric tube placement, and hypertrophic pyloric stenosis). This review aimed to assess how gastric POCUS may be used in acute and critically ill children. An international expert group was established, composed of pediatricians, pediatric intensivists, anesthesiologists, radiologists, nurses, and a methodologist. A scoping review was conducted with an aim to describe the use of gastric POCUS in pediatrics in acute and critical care settings. A literature search was conducted in three databases, to identify studies published between 1998 and 2022. Abstracts and relevant full texts were screened for eligibility, and data were extracted, according to the JBI methodology (Johanna Briggs Institute). A total of 70 studies were included. Most studies ( = 47; 67%) were conducted to assess gastric emptying and gastric volume/contents. The studies assessed gastric volume, the impact of different feed types (breast milk, fortifiers, and thickeners) and feed administration modes on gastric emptying, and gastric volume/content prior to sedation or anesthesia or during surgery. Other studies described the use of gastric POCUS in foreign body ingestion ( = 6), nasogastric tube placement ( = 5), hypertrophic pyloric stenosis ( = 8), and gastric insufflation during mechanical ventilatory support ( = 4). POCUS was performed by neonatologists, anesthesiologists, emergency department physicians, and surgeons. Their learning curve was rapid, and the accuracy was high when compared to that of the ultrasound performed by radiologists (RADUS) or other gold standards (e.g., endoscopy, radiography, and MRI). No study conducted in critically ill children was found apart from that in neonatal intensive care in preterms. Gastric POCUS appears useful and reliable in a variety of pediatric clinical settings. It may help optimize induction in emergency sedation/anesthesia, diagnose foreign bodies and hypertrophic pyloric stenosis, and assist in confirming nasogastric tube placement, avoiding delays in obtaining confirmatory examinations (RADUS, x-rays, etc.) and reducing radiation exposure. It may be useful in pediatric intensive care but requires further investigation. [Abstract copyright: Copyright © 2022 Valla, Tume, Jotterand Chaparro, Arnold, Alrayashi, Morice, Nabialek, Rouchaud, Cercueil and Bouvet.

    The genetical bandwidth mapping: a spatial and graphical representation of population genetic structure based on the Wombling method.

    No full text
    International audienceCharacterizing the spatial variation of allele frequencies in a population has a wide range of applications in population genetics. This article introduces a new nonparametric method, which provides a two-dimensional representation of a structural parameter called the genetical bandwidth, which describes genetic structure around arbitrary spatial locations in a study area. This parameter corresponds to the shortest distance to areas of significant allele variation, and its computation is based on the Womble's systemic function. A simulation study and application to data sets taken from the literature give evidence that the method is particularly demonstrative when the fine-scale structure is stronger than the large-scale structure, and that it is generally able to locate genetic boundaries or clines precisely

    Liver segmentation: Practical tips.

    Get PDF
    The liver segmentation system, described by Couinaud, is based on the identification of the three hepatic veins and the plane passing by the portal vein bifurcation. Nowadays, Couinaud's description is the most widely used classification since it is better suited for surgery and more accurate for the localisation and monitoring of intra-parenchymal lesions. Knowledge of the anatomy of the portal and venous system is therefore essential, as is knowledge of the variants resulting from changes occurring during the embryological development of the vitelline and umbilical veins. In this paper, the authors propose a straightforward systematisation of the liver in six steps using several additional anatomical points of reference. These points of reference are simple and quickly identifiable in any radiological examination with section imaging, in order to avoid any mistakes in daily practice. In fact, accurate description impacts on many diagnostic and therapeutic applications in interventional radiology and surgery. This description will allow better preparation for biopsy, portal vein embolisation, transjugular intrahepatic portosystemic shunt, tumour resection or partial hepatectomy for transplantation. Such advance planning will reduce intra- and postoperative difficulties and complications

    Anatomy of liver arteries for interventional radiology.

    No full text
    The availability of intra-arterial hepatic therapies (radio and/or chemo-embolisation, intra-arterial hepatic chemotherapy) has convinced radiologists to perfect their knowledge of the anatomy of the liver arteries. These sometimes, complex procedures most often require selective arterial catheterization. Knowledge of the different arteries in the liver and the peripheral organs is therefore essential to optimize the procedure and avoid eventual complications. This paper aims to describe the anatomy of the liver arteries and the variants, applying it to angiography images, and to understand the implications of such variations in interventional radiological procedures

    Improved stability of lipiodol-drug emulsion for transarterial chemoembolisation of hepatocellular carcinoma results in improved pharmacokinetic profile: Proof of concept using idarubicin.

    No full text
    OBJECTIVES: To investigate the relationship between the improved stability of an anticancer drug-lipiodol emulsion and pharmacokinetic (PK) profile for transarterial chemoembolisation (TACE) of hepatocellular carcinoma (HCC). METHODS: The stability of four doxorubicin- or idarubicin-lipiodol emulsions was evaluated over 7 days. PK and clinical data were recorded after TACE with the most stable emulsion in eight unresectable HCC patients, after institutional review board approval. RESULTS: The most stable emulsion was the one that combined idarubicin and lipiodol (1:2 v:v). At 7 days, the percentages of aqueous, persisting emulsion and oily phases were 50-0-50, 33-0-67, 31-39-30, and 10-90-0 for the doxorubicin-lipiodol (1:1 v:v), doxorubicin-lipiodol (1:2 v:v), idarubicin-lipiodol (1:1 v:v), and the idarubicin-lipiodol (1:2 v:v) emulsion, respectively. After TACE, mean idarubicin Cmax and AUC0-24h were 12.5 ± 9.4 ng/mL and 52 ± 16 ng/mL*h. Within 24 h after injection, 40% of the idarubicin was in the liver, either in vessels, tumours, or hepatocytes. During the 2 months after TACE, no clinical grade >3 adverse events occurred. One complete response, five partial responses, one stabilisation, and one progression were observed at 2 months. CONCLUSION: This study showed a promising and favourable PK and safety profile for the idarubicin-lipiodol (1:2 v:v) emulsion for TACE. KEY POINTS: • Transarterial chemoembolisation (TACE) regimens that improve survival in hepatocellular carcinoma are needed. • Improved emulsion stability for TACE resulted in a favourable pharmacokinetic profile. • Preliminary safety and efficacy data for the idarubicin-lipiodol emulsion for TACE were encouraging

    Improved stability of lipiodol-drug emulsion for transarterial chemoembolisation of hepatocellular carcinoma results in improved pharmacokinetic profile: Proof of concept using idarubicin

    No full text
    To investigate the relationship between the improved stability of an anticancer drug-lipiodol emulsion and pharmacokinetic (PK) profile for transarterial chemoembolisation (TACE) of hepatocellular carcinoma (HCC). The stability of four doxorubicin- or idarubicin-lipiodol emulsions was evaluated over 7 days. PK and clinical data were recorded after TACE with the most stable emulsion in eight unresectable HCC patients, after institutional review board approval. The most stable emulsion was the one that combined idarubicin and lipiodol (1:2 v:v). At 7 days, the percentages of aqueous, persisting emulsion and oily phases were 50-0-50, 33-0-67, 31-39-30, and 10-90-0 for the doxorubicin-lipiodol (1:1 v:v), doxorubicin-lipiodol (1:2 v:v), idarubicin-lipiodol (1:1 v:v), and the idarubicin-lipiodol (1:2 v:v) emulsion, respectively. After TACE, mean idarubicin C-max and AUC(0-24h) were 12.5 +/- 9.4 ng/mL and 52 +/- 16 ng/mL*h. Within 24 h after injection, 40 % of the idarubicin was in the liver, either in vessels, tumours, or hepatocytes. During the 2 months after TACE, no clinical grade > 3 adverse events occurred. One complete response, five partial responses, one stabilisation, and one progression were observed at 2 months. This study showed a promising and favourable PK and safety profile for the idarubicin-lipiodol (1:2 v:v) emulsion for TACE. aEuro cent Transarterial chemoembolisation (TACE) regimens that improve survival in hepatocellular carcinoma are needed. aEuro cent Improved emulsion stability for TACE resulted in a favourable pharmacokinetic profile. aEuro cent Preliminary safety and efficacy data for the idarubicin-lipiodol emulsion for TACE were encouraging

    Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial.

    Get PDF
    Radiofrequency ablation is the recommended treatment for patients with hepatocellular carcinoma who have lesions smaller than 3 cm and are therefore not candidates for surgery. Microwave ablation is a more recent technique with certain theoretical advantages that have not yet been confirmed clinically. We aimed to compare the efficacy of both techniques in the treatment of hepatocellular carcinoma lesions of 4 cm or smaller. We did a randomised controlled, single-blinded phase 2 trial at four tertiary university centres in France and Switzerland. Patients with chronic liver disease and hepatocellular carcinoma with up to three lesions of 4 cm or smaller who were not eligible for surgery were randomised to receive microwave ablation (experimental group) or radiofrequency ablation (control group). Randomisation was centralised and done by use of a fixed block method (block size 4). Patients were randomly assigned by a co-investigator by use of the sealed opaque envelope method and were masked to the treatment; physicians were not masked to treatment, since the devices used were different. The primary outcome was the proportion of lesions with local tumour progression at 2 years of follow-up. Local tumour progression was defined as the appearance of a new nodule with features typical of hepatocellular carcinoma in the edge of the ablation zone. All analyses were done in the per-protocol population. The study is completed, but patients will continue to be followed up for 5 years. This study is registered with ClinicalTrials.gov, number NCT02859753. Between Nov 15, 2011, and Feb 27, 2015, 152 patients were randomly assigned: 76 patients to receive microwave ablation and 76 patients to receive radiofrequency ablation. For the per-protocol analysis, five patients were excluded from the microwave ablation group as were three patients from the radiofrequency ablation group. Median follow-up was 26 months (IQR 18-29) in the microwave ablation group and 25 months (18-34) in the radiofrequency ablation group. At 2 years, six (6%) of 98 lesions had local tumour progression in the microwave ablation group as did 12 (12%) of 104 in the radiofrequency ablation group (risk ratio 1·62, 95% CI 0·66-3·94; p=0·27). Complications were infrequent, with only two grade 4 complications (two events of arterial bleeding requiring embolisation, both in the microwave ablation group) and three grade 3 complications (pneumothorax; lesion of the umbilical vein; and intrahepatic segmental necrosis, all in the radiofrequency ablation group). No treatment-related deaths were reported. Although we did not find that microwave ablation was more effective than radiofrequency ablation for treatment of hepatocellular carcinoma lesions of 4 cm or smaller, our results show that the proportion of lesions with local tumour progression at 2 years of follow-up was low with both tested percutaneous methods. Microsulis (AngioDynamics)

    Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T.

    No full text
    PURPOSE: To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. MATERIALS AND METHODS: The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (Di ± standard deviations) and their fractions (fi ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. RESULTS: The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D1 = 1.35 ± 0.03 × 10(-3) mm(2)/s; f1 = 72.7 ± 0.9 %), a fast (D2 = 26.50 ± 2.49 × 10(-3) mm(2)/s; f2 = 13.7 ± 0.6 %) and a very fast (D3 = 404.00 ± 43.7 × 10(-3) mm(2)/s; f3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm(2) CONCLUSION: The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm(2) range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. KEY POINTS: ? For normal liver, tri-exponential IVIM model might be superior to bi-exponential ? A very fast compartment (D = 404.00 ± 43.7 × 10 (-3)  mm (2) /s; f = 13.5 ± 0.8 %) is determined from the tri-exponential model ? The compartment contributes to the IVIM signal only for b ≤ 15 s/mm (2.
    corecore