5,824 research outputs found

    A methodology to measure sight-hidden dips'parameters.

    Full text link
    Highway design standards specify several requirements on available sight distance. Usually, compliance with these standards is ensured during the design phase of a new road. This is made through geometric calculations that take into account the terrain and the road. In this paper, a procedure for measuring distances in an existing road from georeferenced photographs is proposed. In addition, an estimation of the error committed when using this procedure is made. Distances measured using this procedure arecompared with the ones measured using a Global Navigation Satellite System (GNSS). Distances error is within the error estimation and is low enough for using it in traffic safety studies. In addition, the procedure is applied to measure several parameters of a sight-hidden dip. This procedure does not need a terrain model to measure these parameters. This is an advantage compared with other existing procedures for estimating the parameters of sight-hidden dips

    GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    Get PDF
    We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 as well as the properties of its host galaxy with high-resolution echelle as well as near-infrared spectroscopy. Observations were taken by the 8.2m Very Large Telescope with the Ultraviolet and Visual Echelle spectrograph (UVES) and the Infrared Spectrometer And Array Camera (ISAAC) between 10 and 14 hours after the onset of the event. We report the first detection of emission lines from a GRB host galaxy in the near-infrared, detecting H-alpha and the [O III] doublet. These allow an independent measurement of the systemic redshift (z = 2.3304 +/- 0.0005) which is not contaminated by absorption as the Ly-alpha line is, and the deduction of properties of the host galaxy. From the visual echelle spectroscopy, we find several absorption line groups spanning a range of about 3,000 km/s in velocity relative to the redshift of the host galaxy. The absorption profiles are very complex with both velocity-broadened components extending over several 100 km/s and narrow lines with velocity widths of only 20 km/s. By analogy with QSO absorption line studies, the relative velocities,widths, and degrees of ionization of the lines ("line-locking", "ionization--velocity correlation") show that the progenitor had both an extremely strong radiation field and several distinct mass loss phases (winds). These results are consistent with GRB progenitors being massive stars, such as Luminous Blue Variables (LBVs) or Wolf--Rayet stars, providing a detailed picture of the spatial and velocity structure of the GRB progenitor star at the time of explosion. The host galaxy is a prolific star-forming galaxy with a SFR of about 40 solar masses per year.Comment: 11 pages, 5 figures. Accepted for publication in Astronomy and Astrophysics

    Genetic Uniformity of the MSXJ papaya hybrid (Carica papaya L.) during Micropropagation

    Get PDF
    Objective. To analyze the genetic uniformity of the MSXJ papaya hybrid vitroplants, obtained via direct organogenesis. Design/methodology/approach. The MSXJ papaya hybrid presents quality characteristics for national and export markets. The in vitro plant tissue culture represents a tool for its multiplication and conservation, but somaclonal variation can decrease its genetic and agronomic uniformity. In order to analyze the genetic uniformity of this hybrid vitroplants, 10 ISSR primers were used in micropropagated vitroplants during nine subcultures. DNA extraction was carried out with the CTAB method. The data analysis was performed with the PopGene v 1.3.1 program. Results. Eighty five loci of 200 to 2000 bp were generated, with 37 polymorphic loci. In the cluster analysis, three groups were observed that separated subculture one, subcultures two through eight, and subculture nine; the Gst value of 0.87 indicated genetic uniformity up to subculture eight. Limitations/implications. Papaya is one of the most important tropical fruits worldwide; however it is necessary to have healthy and genetically uniform plants that guarantee their quality. In vitro propagation allows to produce healthy and uniform plants, but it is necessary to study their genetic uniformity during their micropropagation. Findings/conclusions. The in vitro multiplication of the MSXJ papaya hybrid allowed to regenerate vigorous plants in 30 days. Molecular profiles indicated that up to subculture eight plantlets were genetically uniform, so it is recommended not to carry out more than eight subcultures during micropropagation.Objective: To analyze the genetic uniformity of MSXJ hybrid papaya in vitro plants, obtained by direct organogenesis.Design/Methodology/Approach: The MSXJ papaya hybrid demonstrates quality characteristics for the national and exports market. In vitro culture of plant tissues represents a useful tool for their multiplication and conservation, but somaclonal variation can diminish their genetic and agronomic uniformity. In order to analyze the genetic uniformity of in vitro plants of this hybrid, ten ISSR primers were used for in vitro plants micropropagated during nine subcultures. DNA was extracted using the CTAB method. Data were analyzed using the program PopGene v 1.3.1.Results: Eighty-five loci of 200 to up to 2000 pb were generated, with 37 polymorphic loci. In the cluster analysis, three groups were observed which separate subculture one, subcultures two to eight, and subculture nine; the Gst value of 0.87 indicated genetic uniformity as far as subculture eight.Study Limitations/Implications: Papaya is one of the most important tropical fruits worldwide; however, these plants need to be healthy and genetically uniform to guarantee commercial success. In vitro propagation allows obtaining healthy and uniform plants, but it is necessary to study genetic uniformity during their micropropagation.Findings/Conclusions: The in vitro multiplication of the MSXJ papaya hybrid permitted the regeneration of vigorous plants in 30 d. Molecular profiles indicate that as far as subculture eight, there is genetic uniformity. As such, no more thaneight subcultures are recommended during micropropagation

    Musculoskeletal evaluation in severe haemophilia A patients from Latin America

    Get PDF
    There is a paucity of literature on haemophilia treatment in Latin American countries, a region characterized by rapidly improving systems of care, but with substantial disparities in treatment between countries. The aim of this study was to evaluate the musculoskeletal status of haemophilia patients from Latin America and to examine the relationship between musculoskeletal status and treatment practices across countries. The Committee of Latin America on the Therapeutics of Inhibitor Groups conducted a survey of its member country representatives on key aspects of haemophilia treatment in 10 countries. Musculoskeletal status of patients was obtained during routine comprehensive evaluations between March 2009 and March 2011. Eligible patients had severe haemophilia A (factor VIII <1%) without inhibitors (<0.6 BU mL−1) and were ≄5 years of age. Musculoskeletal status was compared between three groups of countries, based primarily on differences in the availability of long‐term prophylaxis. Overall, 143 patients (5–66 years of age) were enrolled from nine countries. In countries where long‐term prophylaxis had been available for at least 10 years (Group A), patients aged 5–10 years had significantly better mean World Federation of Hemophilia clinical scores, fewer target joints and fewer affected joints than patients from countries where long‐term prophylaxis has been available for about 5 years (Group B) or was not available (Group C). In Latin America, the musculoskeletal status of patients with severe haemophilia without inhibitors has improved significantly in association with the provision of long‐term prophylaxis. As more countries in Latin America institute this practice, further improvements are anticipated

    Sex Identification of in vitro Plants of Carica papaya L. MSXJ Hybrid through Molecular Markers

    Get PDF
    Objective: To identify the sex in vitro plants of the MSXJ hybrid papaya (Carica papaya L.) obtained via somatic organogenesis, using molecular markers SCAR type. Design/methodology/approach: Plants of the MSXJ hybrid papaya with eight months of age and during the fruiting stage were collected at the municipality of Cotaxtla, Veracruz. They were superficially disinfected, with plenty of running water, detergent for 30 minutes, 70% alcohol was added for one minute, 30% commercial chlorine for another 30 minutes and rinsed with sterile distilled water. Subsequently the meristems were grown under a MS medium, and after 30 days a subculture was performed. The extraction of DNA was performed using the Doyle and Doyle method. The PCR was done by the Deputy et al. method, and initiators T1, T12 and W11 were used. Results: Initiator T1 was positive control. Initiators T12 and W11 allowed the amplification of fragments identifying hermaphrodite, female and male plants, while the T12 and W11 initiators were specific to hermaphrodite plants. Study limitations/implications: Papaya producers know the genus of plants three months after planting. Sexuality in papaya plants cannot be differentiated until the flowering step. Findings/conclusions: the implementation of molecular markers could facilitate large-scale plant selection, reducing costs, maintenance time and the elimination of plants with unwanted sex.Objective: To identify the sex of in vitro plants of papaya (Carica papaya L.) MSXJhybrid obtained via somatic organogenesis, through SCAR type molecular markers. Design/Methodology/Approach: Eight-month old MSXJ papaya hybrid plants in thefructification stage were collected in Cotaxtla, Veracruz, Mexico. They weresuperficially disinfected with abundant running water, detergent during 30 min, andthen alcohol at 70% was added for one minute, commercial chlorine at 30% for 30min, and they were rinsed with sterile distilled water; then the meristems werecultivated in MS medium and after 30 d a subculture was made. The DNA extractionwas made with the CTAB method, and the DNA PCR was done with the Deputy et al.(2002) method, and the primers T1, T12 and W11 were used.Results: The T1 primer was the positive control and the T12 and W11 primersallowed the amplification of fragments that identify hermaphrodite, feminine and maleplants, while the T12 and W11 primers were specific for hermaphrodite plants.Study Limitations/Implications: It is required to standardize the method for it to beinexpensive.Findings/Conclusions: The sexuality of papaya plants can be differentiated until thestage of flowering, which is why the implementation of molecular markers wouldfacilitate plant selection if it is implemented at a large scale. Costs, maintenance timeand elimination of plants of unwanted sex are reduced this way

    Gaia Early Data Release 3: Summary of the contents and survey properties

    Get PDF
    Brown, A., et al. (Gaia Collaboration). This article has an erratum: [https://doi.org/10.1051/0004-6361/202039657e][Context] We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2. [Aims] A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results. [Methods] The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity. Results. Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP - GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3. [Conclusions] Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% levelThe Gaia mission and data processing have financially been supported by, in alphabetical order by country: the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences – Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS); the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) – ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); the National Science Foundation of China (NSFC) through grants 11573054 and 11703065 and the China Scholarship Council through grant 201806040200; the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 “Mining the Variable Sky”, with the funds of the Croatian-Swiss Research Programme; the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; the Danish Ministry of Science; the Estonian Ministry of Education and Research through grant IUT40-1; the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; the European Research Council (ERC) through grants 320360 and 647208 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 as well as grants 670519 (Mixing and Angular Momentum tranSport of massIvE stars – MAMSIE), 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), and 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin); the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through grants for Slovenia, through contracts C98090 and 4000106398/12/NL/KML for Hungary, and through contract 4000115263/15/NL/IB for Germany; the Academy of Finland and the Magnus Ehrnrooth Foundation; the French Centre National d’Etudes Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the “Investissements d’avenir” programme, through grant ANR-15-CE31-0007 for project “Modelling the Milky Way in the Gaia era” (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project “The Milky Way disc formation in the Gaia era” (ARCHEOGAL), and through grant ANR-15-CE31-0012-01 for project “Unlocking the potential of Cepheids as primary distance calibrators” (UnlockCepheids), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), the “Action FĂ©dĂ©ratrice Gaia” of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, and the Programme National de Gravitation, RĂ©fĂ©rences, Astronomie, et MĂ©trologie (GRAM) of CNRS/INSU with the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, and 50QG1904 and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t (TU) Dresden for generous allocations of computer time; the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and through the Premium Postdoctoral Research Programme (L. MolnĂĄr), and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KH_18-130405; the Science Foundation Ireland (SFI) through a Royal Society – SFI University Research Fellowship (M. Fraser); the Israel Science Foundation (ISF) through grant 848/16; the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF forthe Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project “MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology” (MITiC); the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A.H.), and through a Spinoza prize (A.H.), and the Netherlands Research School for Astronomy (NOVA); the Polish National Science Centre through HARMONIA grant 2018/06/M/ST9/00311, DAINA grant 2017/27/L/ST9/03221, and PRELUDIUM grant 2017/25/N/ST9/01253, and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; the Portugese Fundação para a CiĂȘncia e a Tecnologia (FCT) through grants SFRH/BPD/74697/2010 and SFRH/BD/128840/2017 and the Strategic Programme UID/FIS/00099/2019 for CENTRA; the Slovenian Research Agency through grant P1-0188; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, RTI2018-095076-B-C21, RTI2018-095076-B-C22, BES-2016-078499, and BES-2017-083126 and the Juan de la Cierva formaciĂłn 2015 grant FJCI-2015-2671, the Spanish Ministry of Education, Culture, and Sports through grant FPU16/03827, the Spanish Ministry of Science and Innovation (MICINN) through grant AYA2017-89841P for project “Estudio de las propiedades de los fĂłsiles estelares en el entorno del Grupo Local” and through grant TIN2015-65316-P for project “ComputaciĂłn de Altas Prestaciones VII”, the Severo Ochoa Centre of Excellence Programme of the Spanish Government through grant SEV2015-0493, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia “MarĂ­a de Maeztu”) through grants MDM-2014-0369 and CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2018/42 and ED481A-2019/155, support received from the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC) funded by the Xunta de Galicia, the Xunta de Galicia and the Centros Singulares de InvestigaciĂłn de Galicia for the period 2016-2019 through CITIC, the European Union through the European Regional Development Fund (ERDF) / Fondo Europeo de Desenvolvemento Rexional (FEDER) for the Galicia 2014-2020 Programme through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre – Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2016-1-0006, AECT-2016-2-0013, AECT-2016-3-0011, and AECT-2017-1-0020, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project “Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels” (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I; the Swedish National Space Agency (SNSA/Rymdstyrelsen); the Swiss State Secretariat for Education, Research, and Innovation through the Mesures d’Accompagnement, the Swiss ActivitĂ©s Nationales ComplĂ©mentaires, and the Swiss National Science Foundation; the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S001123/1, ST/S001948/1, ST/S002103/1, and ST/V000969/1. This work made use of the following software: Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2013, 2018, http://www.astropy.org), IPython (PĂ©rez & Granger 2007, https://ipython.org/), Jupyter (https://jupyter.org/), Matplotlib (Hunter 2007, https://matplotlib.org), SciPy (Virtanen et al. 2020, https://www.scipy.org), NumPy (Harris et al. 2020, https://numpy.org), and TOPCAT (Taylor 2005, http://www.starlink.ac.uk/topcat/). This work has made use of NASA’s Astrophysics Data System. We thank the referee, Andy Casey, for a careful reading of the manuscript

    Characterization in Clonal Selections of Citrus X latifolia Tanaka ex Q. Jiménez: Español

    Get PDF
    Abstract Objective: To physically and chemically characterize clonal selections with Persian lemon potential. Design/methodology/approximation: A core component analysis was used, using a mixed data factor analysis model. The distribution of genotypes was plotted by major components through the K-medoid method, while cluster analysis it was determined by a Gower dissimilarity matrix. A dendogram was performed by Ward's method with a minimum variance grouping criteria. In the morphological characterization of the fruits which were considered trees of Citrus volkameriana, Citrus macrophylla, Citrus paradisi X Poncirus trifoliata, X Citroncirus spp., Citrus X aurantium. The diameter, length, weight, color and shape of the fruit was analyzed. Other variables to evaluate were the shape of the base, apex shape, surface texture, albedo adhesion, number of seeds, maturation rate, juice weight, juice yield, pH, Brix and tidable acidity. Data analysis was performed with R software and the factoextra and FactoMineR packages. Results: The physical and chemical characteristics of Persian lemon fruits varies due to the correlation between the different types of rootstock grown in the citrus area studied. Study limitations/implications: Producers are unaware of the clone or type of plant material they propagate, making selections of clones that show outstanding morphoagronomic characteristics. Findings/conclusions: The morphological diversity and quality fruit is closely related to the type of rootstock used for its spread. The internal and external characteristics in Citrus macrophylla stand out as the fruit.Objective: To physically and chemically characterize clonal selections of Persian lime(Citrus x latifolia Tanaka ex Q. JimĂ©nez).Design/Methodology/Approach: The principal components analysis was employed,using a mixed data factorial analysis model. Genotype distribution was graphed usingprincipal components with the k-medoids method, while a Gower’s dissimilarity matrixwas determined for the conglomerate analysis and a dendrogram was developed usingWard’s minimum variance cluster method. For the morphological characterization of thefruits, the study considered the following trees: Citrus volkameriana, Citrus macrophylla,Citrus paradisi X Poncirus trifoliata, X Citroncirus spp., and Citrus X aurantium. Thefruit’s diameter, length, weight, color, and shape were analyzed, in addition to its baseshape, tip shape, surface texture, albedo adherence, number of seeds, ripening rate,juice weight, juice yield, pH, °Brix, and titratable acidity. Data were analyzed using Rsoftware and the factoextra and FactoMineR packages.Results: The physical and chemical traits of Persian lime fruit vary due to thecorrelations between the types of rootstock that are cultivated in the citrus zone studied. Study Limitations/Implications: Farmers do not know which clone or type of plantmaterial they propagate; they simply select clones that show outstanding morpho-agronomical traits.Findings/Conclusions: The morphological diversity and quality of the fruit is related tothe type of rootstock used in its propagation, in addition to internal and external traits inCitrus macrophylla standing out in fruit quality

    Gaia Early Data Release 3: The Gaia Catalogue of Nearby Stars

    Get PDF
    Smart, R. L., et al. (Gaia Collaboration)[Aims] We produce a clean and well-characterised catalogue of objects within 100 pc of the Sun from the Gaia Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use. [Methods] Theselection of objects within 100 pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100 pc is included in the catalogue. [Results] We have produced a catalogue of 331 312 objects that we estimate contains at least 92% of stars of stellar type M9 within 100 pc of the Sun. We estimate that 9% of the stars in this catalogue probably lie outside 100 pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of Gaia Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10 pc of the Sun. [Conclusions] We provide the community with a large, well-characterised catalogue of objects in the solar neighbourhood. This is a primary benchmark for measuring and understanding fundamental parameters and descriptive functions in astronomy.The Gaia mission and data processing have financially been supported by, in alphabetical order by country: the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences – Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS); the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) – ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); the National Science Foundation of China (NSFC) through grants 11573054 and 11703065 and the China Scholarship Council through grant 201806040200; the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 “Mining the Variable Sky”, with the funds of the Croatian-Swiss Research Programme; the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; the Danish Ministry of Science; the Estonian Ministry of Education and Research through grant IUT40-1; the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; the European Research Council (ERC) through grants 320360 and 647208 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 as well as grants 670519 (Mixing and Angular Momentum tranSport of massIvE stars – MAMSIE), 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), and 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin); the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through grants for Slovenia, through contracts C98090 and 4000106398/12/NL/KML for Hungary, and through contract 4000115263/15/NL/IB for Germany; the Academy of Finland and the Magnus Ehrnrooth Foundation; the French Centre National d’Etudes Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the “Investissements d’avenir” programme, through grant ANR-15-CE31-0007 for project “Modelling the Milky Way in the Gaia era” (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project “The Milky Way disc formation in the Gaia era” (ARCHEOGAL), and through grant ANR-15-CE31-0012-01 for project “Unlocking the potential of Cepheids as primary distance calibrators” (UnlockCepheids), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), the “Action FĂ©dĂ©ratrice Gaia” of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, and the Programme National de Gravitation, RĂ©fĂ©rences, Astronomie,et MĂ©trologie (GRAM) of CNRS/INSU with the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, and 50QG1904 and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t (TU) Dresden for generous allocations of computer time; the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and through the Premium Postdoctoral Research Programme (L. MolnĂĄr), and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KH_18-130405; the Science Foundation Ireland (SFI) through a Royal Society - SFI University Research Fellowship (M. Fraser); the Israel Science Foundation (ISF) through grant 848/16; the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project “MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology” (MITiC); the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); the Polish National Science Centre through HARMONIA grant 2018/06/M/ST9/00311, DAINA grant 2017/27/L/ST9/03221, and PRELUDIUM grant 2017/25/N/ST9/01253, and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; the Portugese Fundação para a CiĂȘncia e a Tecnologia (FCT) through grants SFRH/BPD/74697/2010 and SFRH/BD/128840/2017 and the Strategic Programme UID/FIS/00099/2019 for CENTRA; the Slovenian Research Agency through grant P1-0188; the Spanish Ministry of Economy (MINECO/FEDER, UE) through grants ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, RTI2018-095076-B-C21, RTI2018-095076-B-C22, BES-2016-078499, and BES-2017-083126 and the Juan de la Cierva formaciĂłn 2015 grant FJCI-2015-2671, the Spanish Ministry of Education, Culture, and Sports through grant FPU16/03827, the Spanish Ministry of Science and Innovation (MICINN) through grant AYA2017-89841P for project “Estudio de las propiedades de los fĂłsiles estelares en el entorno del Grupo Local” and through grant TIN2015-65316-P for project “ComputaciĂłn de Altas Prestaciones VII”, the Severo Ochoa Centre of Excellence Programme of the Spanish Government through grant SEV2015-0493, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia “MarĂ­a de Maeztu”) through grants MDM-2014-0369 and CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2018/42 and ED481A-2019/155, support received from the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC) funded by the Xunta de Galicia, the Xunta de Galicia and the Centros Singulares de InvestigaciĂłn de Galicia for the period 2016-2019 through CITIC, the European Union through the European Regional Development Fund (ERDF) / Fondo Europeo de Desenvolvemento Rexional (FEDER) for the Galicia 2014-2020 Programme through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre – Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2016-1-0006, AECT-2016-2-0013, AECT-2016-3-0011, and AECT-2017-1-0020, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project “Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels” (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I; the Swedish National Space Agency (SNSA/Rymdstyrelsen); the Swiss State Secretariat for Education, Research, and Innovation through the Mesures d’Accompagnement, the Swiss ActivitĂ©s Nationales ComplĂ©mentaires, and the Swiss National Science Foundation; the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S001123/1, ST/S001948/1, ST/S002103/1, and ST/V000969/1
    • 

    corecore