47 research outputs found

    Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data

    Get PDF
    A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. A case study on two catchments in eastern Australia illustrates this framework. To develop an identifiable model characterizing long-term variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr. The Markov chain model, previously used to simulate oscillating wet/dry climate states, is found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. The model is able to replicate observed statistics such as seasonal and multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal rainfall in the IPO-PDO dry states is found to be 15%-28% lower than the wet state at the case study sites. In comparison, an annual lag-one autoregressive model is unable to adequately capture the observed rainfall distribution within separate IPO-PDO states. Copyright © 2011 by the American Geophysical Union.Benjamin J. Henley, Mark A. Thyer, George Kuczera and Stewart W. Frank

    Climate-informed stochastic hydrological modeling: Incorporating decadal-scale variability using paleo data

    Get PDF
    A hierarchical framework for incorporating modes of climate variability into stochastic simulations of hydrological data is developed, termed the climate-informed multi-time scale stochastic (CIMSS) framework. A case study on two catchments in eastern Australia illustrates this framework. To develop an identifiable model characterizing long-term variability for the first level of the hierarchy, paleoclimate proxies, and instrumental indices describing the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO) are analyzed. A new paleo IPO-PDO time series dating back 440 yr is produced, combining seven IPO-PDO paleo sources using an objective smoothing procedure to fit low-pass filters to individual records. The paleo data analysis indicates that wet/dry IPO-PDO states have a broad range of run lengths, with 90% between 3 and 33 yr and a mean of 15 yr. The Markov chain model, previously used to simulate oscillating wet/dry climate states, is found to underestimate the probability of wet/dry periods >5 yr, and is rejected in favor of a gamma distribution for simulating the run lengths of the wet/dry IPO-PDO states. For the second level of the hierarchy, a seasonal rainfall model is conditioned on the simulated IPO-PDO state. The model is able to replicate observed statistics such as seasonal and multiyear accumulated rainfall distributions and interannual autocorrelations. Mean seasonal rainfall in the IPO-PDO dry states is found to be 15%-28% lower than the wet state at the case study sites. In comparison, an annual lag-one autoregressive model is unable to adequately capture the observed rainfall distribution within separate IPO-PDO states. Copyright © 2011 by the American Geophysical Union.Benjamin J. Henley, Mark A. Thyer, George Kuczera and Stewart W. Frank

    p63 and SOX2 Dictate Glucose Reliance and Metabolic Vulnerabilities in Squamous Cell Carcinomas

    Get PDF
    Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction

    State of the Climate in 2006 Executive Summary

    Get PDF
    On the heels of 2005’s record-breaking weather events, 2006 was also a year of records. This was especially the case over the polar regions, where the largest Antarctic ozone hole on record occurred in 2006. Sea ice extent in the Antarctic reached records at times for both maximum and minimum extent, and in the Arctic, scientists observed the second smallest sea ice extent on record (behind 2005). These record events came as attention to the polar regions gained greater focus, thanks in large part to the International Polar Year, during which an unprecedented effort is underway to monitor the Arctic and Antarctic from March 2007 through March 2009

    Estimating daily climatological normals in a changing climate

    No full text
    International audienceClimatological normals are widely used baselines for the description and the characterization of a given meteorological situation. The World Meteorological Organization (WMO) standard recommends estimating climatological normals as the average of observations over a 30-year period. This approach may lead to strongly biased normals in a changing climate. Here we propose a new method with which to estimate daily climatological normals in a non-stationary climate. Our statistical framework relies on the assumption that the response to climate change is smooth over time, and on a decomposition of the response inspired by the pattern scaling assumption. Estimation is carried out using smoothing splines techniques, with a careful examination of the selection of smoothing parameters. The new method is compared, in a predictive sense and in a perfect model framework, to previously proposed alternatives such as the WMO standard (reset either on a decadal or annual basis), averages over shorter periods, and hinge fits. Results show that our technique outperforms all alternatives considered. They confirm that previously proposed techniques are substantially biased-biases are typically as large as a few tenths to more than 1 • C by the end of the century-while our method is not. We argue that such "climate change corrected" normals might be very useful for climate monitoring, and that weather services could consider using two different sets of normals (i.e. both stationary and non-stationary) for different purposes

    FIGURES 7–10. Phileurus truncatus, third instar. 7 in Description of the larva and pupa of Phileurus truncatus (Palisot de Beauvois, 1806) (Coleoptera: Scarabaeidae: Dynastinae: Phileurini) with a key to described third instars of New World Phileurini

    No full text
    FIGURES 7–10. Phileurus truncatus, third instar. 7, Maxillary stridulatory area. SD—stridulatory teeth; 8, labium and maxillae, dorsal view. HSC—hypopharyngeal sclerome; TP—truncate process; (9) antennomeres II–IV; 10, terminal antennomere.DSS—dorsal sensory spots

    Description of the larva and pupa of Phileurus truncatus (Palisot de Beauvois, 1806) (Coleoptera: Scarabaeidae: Dynastinae: Phileurini) with a key to described third instars of New World Phileurini

    No full text
    Arguez, Katherine M., Moore, Matthew R., Branham, Marc A. (2017): Description of the larva and pupa of Phileurus truncatus (Palisot de Beauvois, 1806) (Coleoptera: Scarabaeidae: Dynastinae: Phileurini) with a key to described third instars of New World Phileurini. Zootaxa 4363 (2), DOI: https://doi.org/10.11646/zootaxa.4363.2.
    corecore