498 research outputs found
The effect of botulinum toxin A in children with non-neurogenic therapy-refractory dysfunctional voiding – A systematic review
Introduction:Dysfunctional voiding (DV) is a habitual voiding disorder caused by involuntary contraction or non-relaxation of the external urethral sphincter (EUS) during voiding. This contraction causes high post-void residuals (PVR), urinary incontinence and urinary tract infections (UTIs). Various treatments for DV are available, but some children do not respond. Intersphincteric botulinum toxin-A (BTX-A) may be a possible treatment for therapy-refractory children with DV.Objective: The aim of this systematic review is to summarize the effects and safety of intersphincteric BTX-A as a treatment for therapy-refractory DV in children. Methods: A systematic search in Embase, MEDLINE, Cochrane, and Web of Science databases was performed. Studies reporting on the usage of intersphincteric BTX-A as a treatment for DV in children were included. Data on PVR, maximum flow rate (Qmax), repeat injections and complications were extracted. Results: From a total of 277 articles, five cohort studies were identified, reporting on 78 children with DV of whom 53 were female (68 %) and 25 were male (32 %). Sample sizes ranged from ten to twenty patients. Mean or median age at the time of intervention ranged from 8 to 10.5 years. Meta-analysis could not be performed due to lack of data. The narrative synthesis approach was therefore used to summarize the results. All studies showed significant decrease in PVR after BTX-A injection. Three studies showed a 33–69 % improvement on incontinence after BTX-A injection. Less UTIs were reported after treatment. A temporary increase in incontinence, UTIs and transitory numbness to the gluteus muscle were reported as side-effects. Conclusions: BTX-A could be a safe and effective treatment option for therapy-refractory DV in children by reducing PVR, UTIs and incontinence. Hereby, the synergistic effect of BTX-A and urotherapy should be emphasized in future management. Furthermore, this study identified gaps in current knowledge that are of interest for future research.</p
Special considerations for studies of extracellular vesicles from parasitic helminths: a community-led roadmap to increase rigour and reproducibility
Over the last decade, research interest in defining how extracellular vesicles (EVs) shape cross-species communication has grown rapidly. Parasitic helminths, worm species found in the phyla Nematoda and Platyhelminthes, are well-recognised manipulators of host immune function and physiology. Emerging evidence supports a role for helminth-derived EVs in these processes and highlights EVs as an important participant in cross-phylum communication. While the mammalian EV field is guided by a community-agreed framework for studying EVs derived from model organisms or cell systems [e.g., Minimal Information for Studies of Extracellular Vesicles (MISEV)], the helminth community requires a supplementary set of principles due to the additional challenges that accompany working with such divergent organisms. These challenges include, but are not limited to, generating sufficient quantities of EVs for descriptive or functional studies, defining pan-helminth EV markers, genetically modifying these organisms, and identifying rigorous methodologies for in vitro and in vivo studies. Here, we outline best practices for those investigating the biology of helminth-derived EVs to complement the MISEV guidelines. We summarise community-agreed standards for studying EVs derived from this broad set of non-model organisms, raise awareness of issues associated with helminth EVs and provide future perspectives for how progress in the field will be achieved
Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: the ZIKAlliance consortium.
BACKGROUND: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. METHODS: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmission clustering, disabilities and health economics, viral kinetics, the potential role of antibody enhancement, and co-infections will be linked to the cohort studies. DISCUSSION: Results of these large cohort studies will provide better risk estimates for birth defects and other developmental abnormalities associated with ZIKV infection including possible co-factors for the variability of risk estimates between other countries and regions. Additional outcomes include incidence and transmission estimates of ZIKV during and after pregnancy, characterization of short and long-term clinical course following infection and viral kinetics of ZIKV. STUDY REGISTRATIONS: clinicaltrials.gov NCT03188731 (PW cohort), June 15, 2017; clinicaltrials.gov NCT03393286 (CH cohort), January 8, 2018; clinicaltrials.gov NCT03204409 (NH cohort), July 2, 2017
The implicitome: A resource for rationalizing gene-disease associations
High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome). Implicit relations are largely unknown to, or are even unintended by the original authors, but they vastly extend the reach of existing
Symptomatic and Asymptomatic Neurological Complications of Infective Endocarditis: Impact on Surgical Management and Prognosis
International audienceObjectives:Symptomatic neurological complications (NC) are a major cause of mortality in infective endocarditis (IE) but the impact of asymptomatic complications is unknown. We aimed to assess the impact of asymptomatic NC (AsNC) on the management and prognosis of IE.Methods: From the database of cases collected for a population-based study on IE, we selected 283 patients with definite left-sided IE who had undergone at least one neuroimaging procedure (cerebral CT scan and/or MRI) performed as part of initial evaluation.Results Among those 283 patients, 100 had symptomatic neurological complications (SNC) prior to the investigation, 35 had an asymptomatic neurological complications (AsNC), and 148 had a normal cerebral imaging (NoNC). The rate of valve surgery was 43% in the 100 patients with SNC, 77% in the 35 with AsNC, and 54% in the 148 with NoNC (p<0.001). In-hospital mortality was 42% in patients with SNC, 8.6% in patients with AsNC, and 16.9% in patients with NoNC (p<0.001). Among the 135 patients with NC, 95 had an indication for valve surgery (71%), which was performed in 70 of them (mortality 20%) and not performed in 25 (mortality 68%). In a multivariate adjusted analysis of the 135 patients with NC, age, renal failure, septic shock, and IE caused by S. aureus were independently associated with in-hospital and 1-year mortality. In addition SNC was an independent predictor of 1-year mortality.Conclusions The presence of NC was associated with a poorer prognosis when symptomatic. Patients with AsNC had the highest rate of valve surgery and the lowest mortality rate, which suggests a protective role of surgery guided by systematic neuroimaging results
Protocol Dependence of Sequencing-Based Gene Expression Measurements
RNA Seq provides unparalleled levels of information about the transcriptome including precise expression levels over a wide dynamic range. It is essential to understand how technical variation impacts the quality and interpretability of results, how potential errors could be introduced by the protocol, how the source of RNA affects transcript detection, and how all of these variations can impact the conclusions drawn. Multiple human RNA samples were used to assess RNA fragmentation, RNA fractionation, cDNA synthesis, and single versus multiple tag counting. Though protocols employing polyA RNA selection generate the highest number of non-ribosomal reads and the most precise measurements for coding transcripts, such protocols were found to detect only a fraction of the non-ribosomal RNA in human cells. PolyA RNA excludes thousands of annotated and even more unannotated transcripts, resulting in an incomplete view of the transcriptome. Ribosomal-depleted RNA provides a more cost-effective method for generating complete transcriptome coverage. Expression measurements using single tag counting provided advantages for assessing gene expression and for detecting short RNAs relative to multi-read protocols. Detection of short RNAs was also hampered by RNA fragmentation. Thus, this work will help researchers choose from among a range of options when analyzing gene expression, each with its own advantages and disadvantages
Genome-wide assessment of differential roles for p300 and CBP in transcription regulation
Despite high levels of homology, transcription coactivators p300 and CREB binding protein (CBP) are both indispensable during embryogenesis. They are largely known to regulate the same genes. To identify genes preferentially regulated by p300 or CBP, we performed an extensive genome-wide survey using the ChIP-seq on cell-cycle synchronized cells. We found that 57% of the tags were within genes or proximal promoters, with an overall preference for binding to transcription start and end sites. The heterogeneous binding patterns possibly reflect the divergent roles of CBP and p300 in transcriptional regulation. Most of the 16 103 genes were bound by both CBP and p300. However, after stimulation 89 and 1944 genes were preferentially bound by CBP or p300, respectively. Target genes were found to be primarily involved in the regulation of metabolic and developmental processes, and transcription, with CBP showing a stronger preference than p300 for genes active in negative regulation of transcription. Analysis of transcription factor binding sites suggest that CBP and p300 have many partners in common, but AP-1 and Serum Response Factor (SRF) appear to be more prominent in CBP-specific sequences, whereas AP-2 and SP1 are enriched in p300-specific targets. Taken together, our findings further elucidate the distinct roles of coactivators p300 and CBP in transcriptional regulation
Use of cDNA Tiling Arrays for Identifying Protein Interactions Selected by In Vitro Display Technologies
In vitro display technologies such as mRNA display are powerful screening tools for protein interaction analysis, but the final cloning and sequencing processes represent a bottleneck, resulting in many false negatives. Here we describe an application of tiling array technology to identify specifically binding proteins selected with the in vitro virus (IVV) mRNA display technology. We constructed transcription-factor tiling (TFT) arrays containing ∼1,600 open reading frame sequences of known and predicted mouse transcription-regulatory factors (334,372 oligonucleotides, 50-mer in length) to analyze cDNA fragments from mRNA-display screening for Jun-associated proteins. The use of the TFT arrays greatly increased the coverage of known Jun-interactors to 28% (from 14% with the cloning and sequencing approach), without reducing the accuracy (∼75%). This method could detect even targets with extremely low expression levels (less than a single mRNA copy per cell in whole brain tissue). This highly sensitive and reliable method should be useful for high-throughput protein interaction analysis on a genome-wide scale
- …