11 research outputs found

    The effect of phosphorus deficiency on growth and primary processes of photosynthesis in algae and cyanobacteria

    No full text
    The management of cyanobacterial blooms is connected with the necessity to limit the input of nutrients into surface water reservoirs, especially phosphorus. Higher content of phosphorus or change in N/P ratio towards phosphorus give advance for cyanobacteria. Laboratory cultures of cyanobacteria Synechococcus and green alga Chlorella were cultivated in standard medium (0.18 mM P) and then transferred into medium without phosphorus or with 0.045 mM, 0.09 mM, 0.18 mM and 0.36 mM P. Growth rate (optical density) and parameters of induced chlorophyll fluorescence were measured repeatedly during 7 days of cultivation. Significant inhibitive effect on growth and fluorescence parameters was found in cyanobacteria cultivated in medium without P. On the other hand, green alga did not exhibit any significant sensitivity to the P concentration in the medium

    Rapid AOP Method for Estrogens Removal via Persulfate Activated by Hydrodynamic Cavitation

    No full text
    The production and use of manufactured chemicals have risen significantly in the last few decades. With interest in preserving and improving the state of the environment, there is also growing interested in new technologies for water purification and wastewater treatment. One frequently discussed technological group is advanced oxidation processes (AOPs). AOPs using sulphur-based radicals appear to reduce the volume of organic contaminants in wastewater significantly. The use of persulfate has excellent potential to successfully eliminate the number of emerging contaminants released into the environment. The main disadvantage of sulphur-based AOPs is the need for activation. We investigated an economically and environmentally friendly solution based on hydrodynamic cavitation, which does not require heating or additional activation of chemical substances. The method was evaluated for emerging contaminant removal research, specifically for the group of steroid estrogens. The mixture of estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2) was effectively eliminated and completely removed during a treatment that lasted just a few seconds. This novel method can be used in a broad spectrum of water treatment processes or as the intensification of reactions in chemical engineering technologies

    Anxiety in Duckweed–Metabolism and Effect of Diazepam on Lemna minor

    No full text
    The fate of pharmaceuticals in the human body, from their absorption to excretion is well studied. However, medication often leaves the patient’s body in an unchanged or metabolised, yet still active, form. Diazepam and its metabolites, ranging up to 100 µg/L, have been detected in surface waters worldwide; therefore, the question of its influence on model aquatic plants, such as duckweed (Lemna minor), needs to be addressed. Lemna was cultivated in a Steinberg medium containing diazepam in three concentrations—0.2, 20, and 2000 µg/L. The activity of superoxide dismutase (SOD) and catalase (CAT), leaf count, mass, and the fluorescence quantum yield of photosynthesis were assessed. The medium was also analysed by LC-MS/MS to determine the concentration of diazepam metabolites. Our results show no negative impact of diazepam on Lemna minor, even in concentrations significantly higher than those that are ecotoxicologically relevant. On the contrary, the influence of diazepam on Lemna suggests growth stimulation and a similarity to the effect diazepam has on the human body. The comparison to the human body may be accurate because γ-Aminobutyric acid-like (GABA-like) receptors responsible for the effect in humans have also been recently described in plants. Therefore, our results can open an interesting scientific area, indicating that GABA receptors and interference with benzodiazepines are evolutionarily much older than previously anticipated. This could help to answer more questions related to the reaction of aquatic organisms to micropollutants such as psychopharmaceuticals

    Anxiety in Duckweed–Metabolism and Effect of Diazepam on <i>Lemna minor</i>

    No full text
    The fate of pharmaceuticals in the human body, from their absorption to excretion is well studied. However, medication often leaves the patient’s body in an unchanged or metabolised, yet still active, form. Diazepam and its metabolites, ranging up to 100 µg/L, have been detected in surface waters worldwide; therefore, the question of its influence on model aquatic plants, such as duckweed (Lemna minor), needs to be addressed. Lemna was cultivated in a Steinberg medium containing diazepam in three concentrations—0.2, 20, and 2000 µg/L. The activity of superoxide dismutase (SOD) and catalase (CAT), leaf count, mass, and the fluorescence quantum yield of photosynthesis were assessed. The medium was also analysed by LC-MS/MS to determine the concentration of diazepam metabolites. Our results show no negative impact of diazepam on Lemna minor, even in concentrations significantly higher than those that are ecotoxicologically relevant. On the contrary, the influence of diazepam on Lemna suggests growth stimulation and a similarity to the effect diazepam has on the human body. The comparison to the human body may be accurate because γ-Aminobutyric acid-like (GABA-like) receptors responsible for the effect in humans have also been recently described in plants. Therefore, our results can open an interesting scientific area, indicating that GABA receptors and interference with benzodiazepines are evolutionarily much older than previously anticipated. This could help to answer more questions related to the reaction of aquatic organisms to micropollutants such as psychopharmaceuticals

    Odstranění Microcystis Aeruginosa kombinovaným působením plazmového výboje a hydrodynamické kavitace

    No full text
    Cyanobacterial water blooms represent toxicological, ecological and technological problems around the globe. When present in raw water used for drinking water production, one of the best strategies is to remove the cyanobacterial biomass gently before treatment, avoiding cell destruction and cyanotoxins release. This paper presents a new method for the removal of cyanobacterial biomass during drinking water pre-treatment that combines hydrodynamic cavitation with cold plasma discharge. Cavitation produces press stress that causes Microcystis gas vesicles to collapse. The cyanobacteria then sink, allowing for removal by sedimentation. The cyanobacteria showed no signs of revitalisation, even after seven days under optimal conditions with nutrient enrichment, as photosynthetic activity is negatively affected by hydrogen peroxide produced by plasma burnt in the cavitation cloud. Using this method, cyanobacteria can be removed in a single treatment, with no increase in microcystin concentration. This novel technology appears to be highly promising for continual treatment of raw water inflow in drinking water treatment plants and will also be of interest to those wishing to treat surface waters without the use of algaecide

    Biotic threats to garden monuments: algae, cyanobacteria and invasive plant species

    No full text
    Chateau, city parks and gardens are perceived as harmonious parts of the landscape. Unfortunately, even these areas have to face various threats, and they can be a threat to the surrounding environment. The exhibition /catalogue presents a look at the organisms that threaten parks. These threats cover unwelcomed invaders covering invasive plants and small microorganisms in the soil, on facades, statues or in water. On the other hand, some species that are intentionally brought to the parks can be risky not only the gardens themselves but also their surroundings
    corecore