38 research outputs found

    Human memory B cells show plasticity and adopt multiple fates upon recall response to SARS-CoV-2

    Full text link
    The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm_{m}) cell subsets, including CD21+^{+} resting, CD21–^{–}CD27+^{+} activated and CD21–^{–}CD27–^{–} Bm_{m} cells. The interrelatedness between these Bm_{m} cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm_{m} cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21–^{–} Bm_{m} cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+^{+} resting Bm_{m} cells were the major Bm_{m} cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm_{m} cell clones could redifferentiate upon antigen rechallenge into other Bm_{m} cell subsets, including CD21–^{–}CD27–^{–} Bm_{m} cells, demonstrating that single Bm_{m} cell clones can adopt functionally different trajectories

    Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration.

    Get PDF
    Funder: V.C. was primarily funded by the Department of Health’s NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, and an MRC research grant (MR/P025838/1)Age-related macular degeneration (AMD) is a leading cause of blindness. Genetic variants at the chromosome 1q31.3 encompassing the complement factor H (CFH, FH) and CFH related genes (CFHR1-5) are major determinants of AMD susceptibility, but their molecular consequences remain unclear. Here we demonstrate that FHR-4 plays a prominent role in AMD pathogenesis. We show that systemic FHR-4 levels are elevated in AMD (P-value = 7.1 × 10-6), whereas no difference is seen for FH. Furthermore, FHR-4 accumulates in the choriocapillaris, Bruch's membrane and drusen, and can compete with FH/FHL-1 for C3b binding, preventing FI-mediated C3b cleavage. Critically, the protective allele of the strongest AMD-associated CFH locus variant rs10922109 has the highest association with reduced FHR-4 levels (P-value = 2.2 × 10-56), independently of the AMD-protective CFHR1-3 deletion, and even in those individuals that carry the high-risk allele of rs1061170 (Y402H). Our findings identify FHR-4 as a key molecular player contributing to complement dysregulation in AMD

    Genome-wide characterization of circulating metabolic biomarkers

    Get PDF
    Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1,2,3,4,5,6,7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8,9,10,11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases

    Ophthalmology

    Get PDF
    OBJECTIVE: In the current study we aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date. In addition, we aimed to determine the effect of AMD-associated genetic variants on metabolite levels, and aimed to investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control assocation analysis of metabolomics data. SUBJECTS: 2,267 AMD cases and 4,266 controls from five European cohorts. METHODS: Metabolomics was performed using a high-throughput H-NMR metabolomics platform, which allows the quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d/C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD RESULTS: We identified 60 metabolites that were significantly associated with AMD, including increased levels of large and extra-large HDL subclasses and decreased levels of VLDL, amino acids and citrate. Out of 52 AMD-associated genetic variants, seven variants were significantly associated with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, LIPC) with metabolites belonging to the large and extra-large HDL subclasses. In addition, 57 out of 60 metabolites were significantly associated with complement activation levels, and these associations were independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, while decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways, and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD

    The Expressed MicroRNA—mRNA Interactions of Toxoplasma gondii

    No full text
    MicroRNAs (miRNAs) are involved in post-transcriptional modulation of gene expression and thereby have a large influence on the resulting phenotype. We have previously shown that miRNAs may be involved in the communication between Toxoplasma gondii and its hosts and further confirmed a number of proposed specific miRNAs. Yet, little is known about the internal regulation via miRNAs in T. gondii. Therefore, we predicted pre-miRNAs directly from the type II ME49 genome and filtered them. For the confident hairpins, we predicted the location of the mature miRNAs and established their target genes. To add further confidence, we evaluated whether the hairpins and their targets were co-expressed. Such co-expressed miRNA and target pairs define a functional interaction. We extracted all such functional interactions and analyzed their differential expression among strains of all three clonal lineages (RH, PLK, and CTG) and between the two stages present in the intermediate host (tachyzoites and bradyzoites). Overall, we found ~65,000 expressed interactions of which ~5,500 are differentially expressed among strains but none are significantly differentially expressed between developmental stages. Since miRNAs and target decoys can be used as therapeutics we believe that the list of interactions we provide will lead to novel approaches in the treatment of toxoplasmosis

    Sphere-sequencing unveils local tissue microenvironments at single cell resolution

    No full text
    The spatial organization of cells within tissues is tightly linked to their biological function. Yet, methods to probe the entire transcriptome of multiple native tissue microenvironments at single cell resolution are lacking. Here, we introduce spheresequencing, a method that enables the transcriptomic characterization of single cells within spatially distinct tissue niches. Sphere-sequencing of the mouse metastatic liver revealed previously uncharacterized zonated genes and ligand-receptor interactions enriched in different hepatic microenvironments and the metastatic niche

    Fragment-sequencing unveils local tissue microenvironments at single-cell resolution

    No full text
    Abstract Cells collectively determine biological functions by communicating with each other—both through direct physical contact and secreted factors. Consequently, the local microenvironment of a cell influences its behavior, gene expression, and cellular crosstalk. Disruption of this microenvironment causes reciprocal changes in those features, which can lead to the development and progression of diseases. Hence, assessing the cellular transcriptome while simultaneously capturing the spatial relationships of cells within a tissue provides highly valuable insights into how cells communicate in health and disease. Yet, methods to probe the transcriptome often fail to preserve native spatial relationships, lack single-cell resolution, or are highly limited in throughput, i.e. lack the capacity to assess multiple environments simultaneously. Here, we introduce fragment-sequencing (fragment-seq), a method that enables the characterization of single-cell transcriptomes within multiple spatially distinct tissue microenvironments. We apply fragment-seq to a murine model of the metastatic liver to study liver zonation and the metastatic niche. This analysis reveals zonated genes and ligand-receptor interactions enriched in specific hepatic microenvironments. Finally, we apply fragment-seq to other tissues and species, demonstrating the adaptability of our method

    Fragment-sequencing unveils local tissue microenvironments at single-cell resolution

    No full text
    Cells collectively determine biological functions by communicating with each other—both through direct physical contact and secreted factors. Consequently, the local microenvironment of a cell influences its behavior, gene expression, and cellular crosstalk. Disruption of this microenvironment causes reciprocal changes in those features, which can lead to the development and progression of diseases. Hence, assessing the cellular transcriptome while simultaneously capturing the spatial relationships of cells within a tissue provides highly valuable insights into how cells communicate in health and disease. Yet, methods to probe the transcriptome often fail to preserve native spatial relationships, lack single-cell resolution, or are highly limited in throughput, i.e. lack the capacity to assess multiple environments simultaneously. Here, we introduce fragment-sequencing (fragment-seq), a method that enables the characterization of single-cell transcriptomes within multiple spatially distinct tissue microenvironments. We apply fragment-seq to a murine model of the metastatic liver to study liver zonation and the metastatic niche. This analysis reveals zonated genes and ligand-receptor interactions enriched in specific hepatic microenvironments. Finally, we apply fragment-seq to other tissues and species, demonstrating the adaptability of our method.ISSN:2041-172
    corecore