37 research outputs found

    First evidence of tick-borne protozoan pathogens, babesia sp. And hepatozoon canis, in red foxes (vulpes vulpes) in Serbia

    Get PDF
    Tick-borne haematozoans cause severe diseases in domestic animals, and some of them have zoonotic potential. The results of previous studies in Europe point to the important role of foxes in natural endemic cycles of several tick-borne pathogens, including protozoa. The aim of the present research was to acquire information on the prevalence and distribution of tick-borne protozoan parasites among foxes in Serbia. Legally hunted foxes from 14 localities throughout Serbia were analysed. Spleen samples were collected from 129 animals and tested for the presence of Babesia spp. and Hepatozoon spp. by PCR. In total, 79/129 (61.2%) of the tested foxes were positive for H. canis, while the presence of two Babesia species was confirmed: B. vulpes (37/129, 28.7%) and B. canis (1/129, 0.8%). Co-infection with B. vulpes and H. canis was present in 26/129 (20.2%) foxes and one animal (1/129, 0.8%) was co-infected by B. canis and H. canis. The results of this study indicate the important role of foxes in the epizootiology of B. vulpes and H. canis in the Republic of Serbia and stress the need for further research to clarify all elements of the enzootic cycle of the detected pathogens, including other reservoirs, vectors, and transmission routes

    Losartan Improved Antioxidant Defense, Renal Function and Structure of Postischemic Hypertensive Kidney

    Get PDF
    Ischemic acute renal failure (ARF) is a highly complex disorder involving renal vasoconstriction, filtration failure, tubular obstruction, tubular backleak and generation of reactive oxygen species. Due to this complexity, the aim of our study was to explore effects of Angiotensin II type 1 receptor (AT1R) blockade on kidney structure and function, as well as oxidative stress in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. Experiments were performed on anaesthetized adult male SHR in the model of ARF with 40 minutes clamping the left renal artery. The right kidney was removed and 40 minutes renal ischemia was performed. Experimental groups received AT1R antagonist (Losartan) or vehicle (saline) in the femoral vein 5 minutes before, during and 175 minutes after the period of ischemia. Biochemical parameters were measured and kidney specimens were collected 24h after reperfusion. ARF significantly decreased creatinine and urea clearance, increased LDL and lipid peroxidation in plasma. Treatment with losartan induced a significant increase of creatinine and urea clearance, as well as HDL. Lipid peroxidation in plasma was decreased and catalase enzyme activity in erythrocytes was increased after losartan treatment. Losartan reduced cortico-medullary necrosis and tubular dilatation in the kidney. High expression of pro-apoptotic Bax protein in the injured kidney was downregulated after losartan treatment. Our results reveal that angiotensin II (via AT1R) mediates the most postischemic injuries in hypertensive kidney through oxidative stress enhancement. Therefore, blockade of AT1R may have beneficial effects in hypertensive patients who have developed ARF

    Failure analysis method for enhancing circularity through systems perspective

    Get PDF
    Recently, a circular economy has attracted global attention as an approach for addressing material security and resource-efficiency issues. As our societies shift toward a circular economy, manufacturers need to not only produce environmentally conscious products but to also realize reliable systems that will ensure the closure of the loops of the products, components, and materials. To do so, early-stage design is crucial to effectively and efficiently detect possible failures and then take adequate countermeasures against them. Although a few methods of failure analysis have been proposed to address environmental issues, these methods have failed to consider the cause–effect relationships among failures. This will hinder manufacturers from identifying core problems that should be addressed in a given system. Therefore, this study extends failure mode and effect analysis, which is an engineering technique used to address potential failures, by addressing the entire system reliability in relation to circularity. As a result of a case study of a manufacturer aiming to increase circularity with their products on the market, we revealed that the proposed method is useful in the early stage of design to (a) identify failure modes where effects are largely given to or received from other failures, (b) develop countermeasures effectively by addressing root causes of failures, and (c) find an opportunity to collaborate with external actors

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Seasonal and diel movement patterns of brown bears in a population in southeastern Europe

    No full text
    Most animals concentrate their movement into certain hours of the day depending on drivers such as photoperiod, ambient temperature, inter- or intraspecific competition, and predation risk. The main activity periods of many mammal species, especially in human-dominated landscapes, are commonly set at dusk, dawn, and during nighttime hours. Large carnivores, such as brown bears, often display great flexibility in diel movement patterns throughout their range, and even within populations, striking between individual differences in movement have been demonstrated. Here, we evaluated how seasonality and reproductive class affected diel movement patterns of brown bears of the Dinaric-Pindos and Carpathian bear populations in Serbia. We analyzed the movement distances and general probability of movement of 13 brown bears (8 males and 5 females) equipped with GPS collars and monitored over 1–3 years. Our analyses revealed that movement distances and probability of bear movement differed between seasons (mating versus hyperphagia) and reproductive classes. Adult males, solitary females, and subadult males showed a crepuscular movement pattern. Compared with other reproductive classes, females with offspring were moving significantly less during crepuscular hours and during the night, particularly during the mating season, suggesting temporal niche partitioning among different reproductive classes. Adult males, solitary females, and in particular subadult males traveled greater hourly distances during the mating season in May-June than the hyperphagia in July–October. Subadult males significantly decreased their movement from the mating season to hyperphagia, whereas females with offspring exhibited an opposite pattern with almost doubling their movement from the mating to hyperphagia season. Our results provide insights into how seasonality and reproductive class drive intrapopulation differences in movement distances and probability of movement in a recovering, to date little studied, brown bear population in southeastern Europe

    Data from: Top predators constrain mesopredator distributions

    No full text
    Top predators can suppress mesopredators by killing them, competing for resources and instilling fear, but it is unclear how suppression of mesopredators varies with the distribution and abundance of top predators at large spatial scales and among different ecological contexts. We suggest that suppression of mesopredators will be strongest where top predators occur at high densities over large areas. These conditions are more likely to occur in the core than on the margins of top predator ranges. We propose the Enemy Constraint Hypothesis, which predicts weakened top-down effects on mesopredators towards the edge of top predators’ ranges. Using bounty data from North America, Europe and Australia we show that the effects of top predators on mesopredators increase from the margin towards the core of their ranges, as predicted. Continuing global contraction of top predator ranges could promote further release of mesopredator populations, altering ecosystem structure and contributing to biodiversity loss

    Concentrations of Selected Elements in Liver Tissue of Grey Wolves (Canis lupus) from Serbia

    No full text
    The grey wolf (Canis lupus) is a large carnivore species and a top predator in the ecosystems that it inhabits. Considering its role in food webs, wolves may be exposed to high concentrations of potentially harmful elements. Therefore liver samples from 28 legally hunted wolves were analyzed for concentrations of 16 elements using inductively coupled plasma optical emission spectrometry. The Mann-Whitney U test showed a significant difference between the genders only for Li, and there were no differences between individuals caught in different years. The majority of statistically significant correlations between element levels were positive, except for three cases. Compliance with several criteria for suitable bioindicator organisms imply that wolves may serve for monitoring environmental contamination

    A European concern? genetic structure and expansion of golden jackals (canis aureus) in Europe and the caucasus

    No full text
    In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 basepair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe’s native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (Î"K approach in STRUCTURE, Principal Components Analysis [PCA]), although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA), or possibly its connection with the Caucasus population (one analysis in STRUCTURE). We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is “non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human healtha. These insights into the genetic structure and ancestry of Baltic jackals have important implications for management and conservation of jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, considering also the results presented here, should be legally protected in all EU member states. © 2015 Rutkowski et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore