23 research outputs found

    First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Full text link
    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the RcR_c magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2×22\times2 deg2^2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.Comment: 11 pages, 16 figures; Accepted for publication in Monthly Notices of the Royal Astronomical Society 201

    Benchmarking the power of amateur observatories for TTV exoplanets detection

    Get PDF
    This document is the Accepted Manuscript version of the following article: Roman v. Baluev, et al, ‘Benchmarking the power of amateur observatories for TTV exoplanets detection’, Monthly Notices of the Royal Astronomical Society, Vol. 450(3): 3101-3113, first published online 9 May 2015. The version of record is available at doi: https://doi.org/10.1093/mnras/stv788 © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We perform an analysis of ~80000 photometric measurements for the following 10 stars hosting transiting planets: WASP-2, -4, -5, -52, Kelt-1, CoRoT-2, XO-2, TrES-1, HD 189733, GJ 436. Our analysis includes mainly transit lightcurves from the Exoplanet Transit Database, public photometry from the literature, and some proprietary photometry privately supplied by other authors. Half of these lightcurves were obtained by amateurs. From this photometry we derive 306 transit timing measurements, as well as improved planetary transit parameters. Additionally, for 6 of these 10 stars we present a set of radial velocity measurements obtained from the spectra stored in the HARPS, HARPS-N, and SOPHIE archives using the HARPS-TERRA pipeline. Our analysis of these TTV and RV data did not reveal significant hints of additional orbiting bodies in almost all of the cases. In the WASP-4 case, we found hints of marginally significant TTV signals having amplitude 10-20 sec, although their parameters are model-dependent and uncertain, while radial velocities did not reveal statistically significant Doppler signals.Peer reviewe

    Benchmarking the power of amateur observatories for TTV exoplanets detection

    Get PDF
    We perform an analysis of ~80 000 photometric measurements for the following 10 stars hosting transiting planets:WASP-2, -4, -5, -52, Kelt-1, CoRoT-2, XO-2, TrES-1, HD 189733, GJ 436. Our analysis includes mainly transit light curves from the Exoplanet Transit Database, public photometry from the literature, and some proprietary photometry privately supplied by other authors. Half of these light curves were obtained by amateurs. From this photometry we derive 306 transit timing measurements, as well as improved planetary transit parameters. Additionally, for 6 of these 10 stars we present a set of radial velocity measurements obtained from the spectra stored in the HARPS, HARPS-N and SOPHIE archives using the HARPS- TERRA pipeline. Our analysis of these transit timing and radial velocity data did not reveal significant hints of additional orbiting bodies in almost all of the cases. In the WASP-4 case, we found hints of marginally significant TTV signals having amplitude 10-20 s, although their parameters are model dependent and uncertain, while radial velocities did not reveal statistically significant Doppler signals.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    KElt-18b: Puffy planet, hot host, probably perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright (V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of, situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of, a radius of, and a density of, making it one of the most inflated planets known around a hot star. We argue that KELT-18b\u27s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet\u27s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJDTDB) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter-McLaughlin measurements in the near future to confirm the suspected spin-orbit misalignment of this system

    Benchmarking the power of amateur observatories for TTV exoplanets detection

    Get PDF
    We perform an analysis of ~80 000 photometric measurements for the following 10 stars hosting transiting planets:WASP-2, -4, -5, -52, Kelt-1, CoRoT-2, XO-2, TrES-1, HD 189733, GJ 436. Our analysis includes mainly transit light curves from the Exoplanet Transit Database, public photometry from the literature, and some proprietary photometry privately supplied by other authors. Half of these light curves were obtained by amateurs. From this photometry we derive 306 transit timing measurements, as well as improved planetary transit parameters. Additionally, for 6 of these 10 stars we present a set of radial velocity measurements obtained from the spectra stored in the HARPS, HARPS-N and SOPHIE archives using the HARPS- TERRA pipeline. Our analysis of these transit timing and radial velocity data did not reveal significant hints of additional orbiting bodies in almost all of the cases. In the WASP-4 case, we found hints of marginally significant TTV signals having amplitude 10-20 s, although their parameters are model dependent and uncertain, while radial velocities did not reveal statistically significant Doppler signals.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    KPS-1b: The First Transiting Exoplanet Discovered Using an Amateur Astronomer's Wide-field CCD Data

    Get PDF
    We report the discovery of the transiting hot Jupiter KPS-1b. This exoplanet orbits a V = 13.0 K1-type main sequence star every 1.7 days, has a mass of 1.090 (+0.086 -0.087) MJup and a radius of 1.03 (+0.13 -0.12) RJup. The discovery was made by the prototype Kourovka Planet Search (KPS) project, which used wide-field CCD data gathered by an amateur astronomer using readily available and relatively affordable equipment. Here we describe the equipment and observing technique used for the discovery of KPS-1b, its characterization with spectroscopic observations by the SOPHIE spectrograph and with high-precision photometry obtained with 1m class telescopes. We also outline the KPS project evolution into the Galactic Plane eXoplanet survey. The discovery of KPS-1b represents a new major step of the contribution of amateur astronomers to the burgeoning field of exoplanetology

    Transits of Known Planets Orbiting a Naked-Eye Star

    Get PDF
    © 2020 The American Astronomical Society. All rights reserved.Some of the most scientifically valuable transiting planets are those that were already known from radial velocity (RV) surveys. This is primarily because their orbits are well characterized and they preferentially orbit bright stars that are the targets of RV surveys. The Transiting Exoplanet Survey Satellite (TESS) provides an opportunity to survey most of the known exoplanet systems in a systematic fashion to detect possible transits of their planets. HD 136352 (Nu2 Lupi) is a naked-eye (V = 5.78) G-type main-sequence star that was discovered to host three planets with orbital periods of 11.6, 27.6, and 108.1 days via RV monitoring with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. We present the detection and characterization of transits for the two inner planets of the HD 136352 system, revealing radii of 1.482-0.056+0.058 R ⊕ and 2.608-0.077+0.078 R ⊕ for planets b and c, respectively. We combine new HARPS observations with RV data from the Keck/High Resolution Echelle Spectrometer and the Anglo-Australian Telescope, along with TESS photometry from Sector 12, to perform a complete analysis of the system parameters. The combined data analysis results in extracted bulk density values of ρb = 7.8-1.1+1.2 g cm-3 and ρc = 3.50-0.36+0.41 g cm-3 for planets b and c, respectively, thus placing them on either side of the radius valley. The combination of the multitransiting planet system, the bright host star, and the diversity of planetary interiors and atmospheres means this will likely become a cornerstone system for atmospheric and orbital characterization of small worlds.Peer reviewe

    The frequency of Duchenne muscular dystrophy/Becker muscular dystrophy and Pompe disease in children with isolated transaminase elevation: results from the observational VICTORIA study

    Get PDF
    IntroductionElevated transaminases and/or creatine phosphokinase can indicate underlying muscle disease. Therefore, this study aims to determine the frequency of Duchenne muscular dystrophy/Becker muscular dystrophy (DMD/BMD) in male children and Pompe disease (PD) in male and female children with isolated hypertransaminasemia.MethodsThis multi-center, prospective study enrolled patients aged 3–216 months with serum alanine transaminase (ALT) and/or aspartate transaminase (AST) levels >2× the upper limit of normal (ULN) for ≥3 months. Patients with a known history of liver or muscle disease or physical examination findings suggestive of liver disease were excluded. Patients were screened for creatinine phosphokinase (CPK) levels, and molecular genetic tests for DMD/BMD in male patients and enzyme analysis for PD in male and female patients with elevated CPK levels were performed. Genetic analyses confirmed PD. Demographic, clinical, and laboratory characteristics of the patients were analyzed.ResultsOverall, 589 patients [66.8% male, mean age of 63.4 months (standard deviation: 60.5)] were included. In total, 251 patients (188 male and 63 female) had CPK levels above the ULN. Of the patients assessed, 47% (85/182) of male patients were diagnosed with DMD/BMD and 1% (3/228) of male and female patients were diagnosed with PD. The median ALT, AST, and CPK levels were statistically significantly higher, and the questioned neurological symptoms and previously unnoticed examination findings were more common in DMD/BMD patients than those without DMD/BMD or PD (p < 0.001).DiscussionQuestioning neurological symptoms, conducting a complete physical examination, and testing for CPK levels in patients with isolated hypertransaminasemia will prevent costly and time-consuming investigations for liver diseases and will lead to the diagnosis of occult neuromuscular diseases. Trial RegistrationClinicaltrials.gov NCT04120168
    corecore