450 research outputs found

    Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen

    Get PDF
    SummaryBackground: Ambient oxygen (O2) influences the behavior of organisms from bacteria to man. In C. elegans, an atypical O2 binding soluble guanylate cyclase (sGC), GCY-35, regulates O2 responses. However, how acute and chronic changes in O2 modify behavior is poorly understood.Results: Aggregating C. elegans strains can respond to a reduction in ambient O2 by a rapid, reversible, and graded inhibition of roaming behavior. This aerokinetic response is mediated by GCY-35 and GCY-36 sGCs, which appear to become activated as O2 levels drop and to depolarize the AQR, PQR, and URX neurons. Coexpression of GCY-35 and GCY-36 is sufficient to transform olfactory neurons into O2 sensors. Natural variation at the npr-1 neuropeptide receptor alters both food-sensing and O2-sensing circuits to reconfigure the salient features of the C. elegans environment. When cultivated in 1% O2 for a few hours, C. elegans reset their preferred ambient O2, seeking instead of avoiding 0%–5% O2. This plasticity involves reprogramming the AQR, PQR, and URX neurons.Conclusions: To navigate O2 gradients, C. elegans can modulate turning rates and speed of movement. Aerotaxis can be reprogrammed by experience or engineered artificially. We propose a model in which prolonged activation of the AQR, PQR, and URX neurons by low O2 switches on previously inactive O2 sensors. This enables aerotaxis to low O2 environments and may encode a “memory” of previous cultivation in low O2

    Pseudocoarctation of the Aorta Associated with the Anomalous Origin of the Left Vertebral Artery: a Case Report

    Get PDF
    Pseudocoarctation of the aorta is a rare congenital anomaly of the aortic arch, and it has been described as an elongation of the aortic arch with "kinking" at the level of the ligamentum arteriosum without a pressure gradient across the lesion. The treatment for this condition is controversial. We report here on an unusual case of pseudocoarctation of the aorta associated with the anomalous origin of the left vertebral artery and we include a review of the medical literature

    Cyber security fear appeals:unexpectedly complicated

    Get PDF
    Cyber security researchers are starting to experiment with fear appeals, with a wide variety of designs and reported efficaciousness. This makes it hard to derive recommendations for designing and deploying these interventions. We thus reviewed the wider fear appeal literature to arrive at a set of guidelines to assist cyber security researchers. Our review revealed a degree of dissent about whether or not fear appeals are indeed helpful and advisable. Our review also revealed a wide range of fear appeal experimental designs, in both cyber and other domains, which confirms the need for some standardized guidelines to inform practice in this respect. We propose a protocol for carrying out fear appeal experiments, and we review a sample of cyber security fear appeal studies, via this lens, to provide a snapshot of the current state of play. We hope the proposed experimental protocol will prove helpful to those who wish to engage in future cyber security fear appeal research

    Cannabinoid 1 Receptor Signaling on Hippocampal GABAergic Neurons Influences Microglial Activity

    Get PDF
    Microglia, the resident immune cells of the brain, play important roles in defending the brain against pathogens and supporting neuronal circuit plasticity. Chronic or excessive pro-inflammatory responses of microglia damage neurons, therefore their activity is tightly regulated. Pharmacological and genetic studies revealed that cannabinoid type 1 (CB1) receptor activity influences microglial activity, although microglial CB1 receptor expression is very low and activity-dependent. The CB1 receptor is mainly expressed on neurons in the central nervous system (CNS)—with an especially high level on GABAergic interneurons. Here, we determined whether CB1 signaling on this neuronal cell type plays a role in regulating microglial activity. We compared microglia density, morphology and cytokine expression in wild-type (WT) and GABAergic neuron-specific CB1 knockout mice (GABA/CB1−/−) under control conditions (saline-treatment) and after 3 h, 24 h or repeated lipopolysaccharide (LPS)-treatment. Our results revealed that hippocampal microglia from saline-treated GABA/CB1−/− mice resembled those of LPS-treated WT mice: enhanced density and larger cell bodies, while the size and complexity of their processes was reduced. No further reduction in the size or complexity of microglia branching was detected after LPS-treatment in GABA/CB1−/− mice, suggesting that microglia in naïve GABA/CB1−/− mice were already in an activated state. This result was further supported by correlating the level of microglial tumor necrosis factor α (TNFα) with their size. Acute LPS-treatment elicited in both genotypes similar changes in the expression of pro-inflammatory cytokines (TNFα, interleukin-6 (IL-6) and interleukin 1β (IL-1β)). However, TNFα expression was still significantly elevated after repeated LPS-treatment in WT, but not in GABA/CB1−/− mice, indicating a faster development of tolerance to LPS. We also tested the possibility that the altered microglia activity in GABA/CB1−/− mice was due to an altered expression of neuron-glia interaction proteins. Indeed, the level of fractalkine (CX3CL1), a neuronal protein involved in the regulation of microglia, was reduced in hippocampal GABAergic neurons in GABA/CB1−/− mice, suggesting a disturbed neuronal control of microglial activity. Our result suggests that CB1 receptor agonists can modulate microglial activity indirectly, through CB1 receptors on GABAergic neurons. Altogether, we demonstrated that GABAergic neurons, despite their relatively low density in the hippocampus, have a specific role in the regulation of microglial activity and cannabinoid signaling plays an important role in this arrangement

    Cerebrospinal fluid flow dynamics in patients with multiple sclerosis: a phase contrast magnetic resonance study

    Get PDF
    Cerebrospinal fluid (CSF) flow dynamics, which supposedly have a strong relationship with chronic cerebrospinal venous insufficiency (CCSVI), might be expected to be affected in multiple sclerosis (MS) patients. In this study, CSF flow at the level of the cerebral aqueduct was evaluated quantitatively by phase contrast magnetic resonance imaging (PC-MRI) to determine whether CSF flow dynamics are affected in MS patients. We studied 40 MS patients and 40 healthy controls using PC-MRI. We found significantly higher caudocranial(p=0.010) and craniocaudal CSF flow volumes(p=0.015) and stroke volume (p=0.010) in the MS patients compared with the controls. These findings may support the venous occlusion theory, but may also be explained by atrophy-dependent ventricular dilatation independent of the venous theory in MS patients

    Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae

    Get PDF
    Traumatic brain injury (TBI) is characterized by acute neurological dysfunction and asso- ciated with the development of chronic traumatic encephalopathy (CTE) and Alzheimer’s disease. We previously showed that cis phosphorylated tau (cis P-tau), but not the trans form, contributes to tau pathology and functional impairment in an animal model of severe TBI. Here we found that in human samples obtained post TBI due to a variety of causes, cis P-tau is induced in cortical axons and cerebrospinal fluid and positively correlates with axonal injury and clinical outcome. Using mouse models of severe or repetitive TBI, we showed that cis P-tau elimination with a specific neutralizing antibody administered immediately or at delayed time points after injury, attenuates the development of neuropathology and brain dysfunction during acute and chronic phases including CTE-like pathology and dysfunction after repetitive TBI. Thus, cis P-tau contributes to short-term and long-term sequelae after TBI, but is effectively neutralized by cis antibody treatment

    Smartwatch games: Encouraging privacy-protective behaviour in a longitudinal study

    Get PDF
    While the public claim concern for their privacy, they frequently appear to overlook it. This disparity between concern and behaviour is known as the Privacy Paradox. Such issues are particularly prevalent on wearable devices. These products can store personal data, such as text messages and contact details. However, owners rarely use protective features. Educational games can be effective in encouraging changes in behaviour. Therefore, we developed the first privacy game for (Android) Wear OS watches. 10 participants used smartwatches for two months, allowing their high-level settings to be monitored. Five individuals were randomly assigned to our treatment group, and they played a dynamically-customised privacy-themed game. To minimise confounding variables, the other five received the same app but lacking the privacy topic. The treatment group improved their protection, with their usage of screen locks significantly increasing (p = 0.043). In contrast, 80% of the control group continued to never restrict their settings. After the posttest phase, we evaluated behavioural rationale through semi-structured interviews. Privacy concerns became more nuanced in the treatment group, with opinions aligning with behaviour. Actions appeared influenced primarily by three factors: convenience, privacy salience and data sensitivity. This is the first smartwatch game to encourage privacy-protective behaviour
    corecore