37 research outputs found
Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy
Label-free live single-cell Raman spectroscopy was used to obtain a chemical fingerprint of colorectal cancer cells including the classification of the SW480 and SW620 cell line model system, derived from primary and secondary tumour cells from the same patient. High-quality Raman spectra were acquired from hundreds of live cells, showing high reproducibility between experiments. Principal component analysis with linear discriminant analysis yielded the best cell classification, with an accuracy of 98.7±0.3% (standard error) when compared to discrimination trees or support vector machines. SW480 showed higher content of the disordered secondary protein structure amide III band, whereas SW620 showed larger α-helix and β-sheet band content. The SW620 cell line also displayed higher nucleic acid, phosphates, saccharide, and CH2 content. HL60, HT29, HCT116, SW620 and SW480 live single-cell spectra were classified using PCA/LDA with an accuracy of 92.4±0.4% (standard error), showing differences mainly in the β-sheet content, the cytochrome C bands, the CH-stretching regions, the lactate contributions and the DNA content. The lipids contributions above 2900 cm-1 and the lactate contributions at 1785 cm-1 appeared to be dependent on the colorectal adenocarcinoma stage, the advanced stage cell lines showing lower lipid and higher lactate content. The results demonstrate that these cell lines can be distinguished with high confidence, suggesting that Raman spectroscopy on live cells can distinguish between different disease stages, and could play an important role clinically as a diagnostic tool for cell phenotyping
Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy
Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal