3,030 research outputs found
On Probabilistic Applicative Bisimulation and Call-by-Value -Calculi (Long Version)
Probabilistic applicative bisimulation is a recently introduced coinductive
methodology for program equivalence in a probabilistic, higher-order, setting.
In this paper, the technique is applied to a typed, call-by-value,
lambda-calculus. Surprisingly, the obtained relation coincides with context
equivalence, contrary to what happens when call-by-name evaluation is
considered. Even more surprisingly, full-abstraction only holds in a symmetric
setting.Comment: 30 page
The statistical analyses of flares detected in B band photometry of UV Ceti type stars
In this study, we present the unpublished flare data collected from 222
flares detected in the B band observations of five stars and the results
derived by statistical analysis and modeling of these data. Six basic
properties have been found with a statistical analysis method applied to all
models and analyses for the flares detected in the B band observation of UV
Ceti type stars. We have also compared the U and B bands with the analysis
results. This comparison allowed us to evaluate the methods used in the
analyses. The analyses provided the following results. (1) The flares were
separated into two types, fast and slow flares. (2) The mean values of the
equivalent durations of the slow and the fast flares differ by a factor of 16.2
\pm 3.7. (3) Regardless of the total flare duration, the maximum flare energy
can reach a different Plateau level for each star. (4) The Plateau values of EV
Lac and EQ Peg are higher than the others. (5) The minimum values of the total
flare duration increase toward the later spectral types. This value is called
the Half-Life value in models. (6) Both the maximum flare rise times and the
total flare duration obtained from the observed flares decrease toward the
later spectral types.Comment: 17 pages, 10 figures, 8 table
Dual chaperone role of the c-terminal propeptide in folding and oligomerization of the pore-forming toxin aerolysin
Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the predictive power of computational techniques with experimental validation using both structural and functional approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone with dual function
Electric fields and valence band offsets at strained [111] heterojunctions
[111] ordered common atom strained layer superlattices (in particular the
common anion GaSb/InSb system and the common cation InAs/InSb system) are
investigated using the ab initio full potential linearized augmented plane wave
(FLAPW) method. We have focused our attention on the potential line-up at the
two sides of the homopolar isovalent heterojunctions considered, and in
particular on its dependence on the strain conditions and on the strain induced
electric fields. We propose a procedure to locate the interface plane where the
band alignment could be evaluated; furthermore, we suggest that the
polarization charges, due to piezoelectric effects, are approximately confined
to a narrow region close to the interface and do not affect the potential
discontinuity. We find that the interface contribution to the valence band
offset is substantially unaffected by strain conditions, whereas the total band
line-up is highly tunable, as a function of the strain conditions. Finally, we
compare our results with those obtained for [001] heterojunctions.Comment: 18 pages, Latex-file, to appear in Phys.Rev.
Disentangling the electronic and phononic glue in a high-Tc superconductor
Unveiling the nature of the bosonic excitations that mediate the formation of
Cooper pairs is a key issue for understanding unconventional superconductivity.
A fundamen- tal step toward this goal would be to identify the relative weight
of the electronic and phononic contributions to the overall frequency (\Omega)
dependent bosonic function, \Pi(\Omega). We perform optical spectroscopy on
Bi2212 crystals with simultaneous time- and frequency-resolution; this
technique allows us to disentangle the electronic and phononic contributions by
their different temporal evolution. The strength of the interaction
({\lambda}~1.1) with the electronic excitations and their spectral distribution
fully account for the high critical temperature of the superconducting phase
transition.Comment: 9 pages, 4 figure
The Patterns of High-Level Magnetic Activity Occurring on the Surface of V1285 Aql: The OPEA Model of Flares and DFT Models of Stellar Spots
Statistically analyzing Johnson UBVR observations of V1285 Aql during the
three observing seasons, both activity level and behavior of the star are
discussed in respect to obtained results. We also discuss the out-of-flare
variation due to rotational modulation. Eighty-three flares were detected in
the U-band observations of season 2006 . First, depending on statistical
analyses using the independent samples t-test, the flares were divided into two
classes as the fast and the slow flares. According to the results of the test,
there is a difference of about 73 s between the flare-equivalent durations of
slow and fast flares. The difference should be the difference mentioned in the
theoretical models. Second, using the one-phase exponential association
function, the distribution of the flare-equivalent durations versus the flare
total durations was modeled. Analyzing the model, some parameters such as
plateau, half-life values, mean average of the flare-equivalent durations,
maximum flare rise, and total duration times are derived. The plateau value,
which is an indicator of the saturation level of white-light flares, was
derived as 2.421{\pm}0.058 s in this model, while half-life is computed as 201
s. Analyses showed that observed maximum value of flare total duration is 4641
s, while observed maximum flare rise time is 1817 s. According to these
results, although computed energies of the flares occurring on the surface of
V1285 Aql are generally lower than those of other stars, the length of its
flaring loop can be higher than those of more active stars.Comment: 44 pages, 10 figures, 5 tables, 2011PASP..123..659
Correlation effects in single-particle overlap functions and one-nucleon removal reactions
Single-particle overlap functions and spectroscopic factors are calculated on
the basis of the one-body density matrices (ODM) obtained for the nucleus
employing different approaches to account for the effects of
correlations. The calculations use the relationship between the overlap
functions related to bound states of the (A-1)-particle system and the ODM for
the ground state of the A-particle system. The resulting bound-state overlap
functions are compared and tested in the description of the experimental data
from (p,d) reactions for which the shape of the overlap function is important.Comment: 11 pages, 4 figures include
Enzyme‐Triggered Assembly of Glycan Nanomaterials
A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well‐defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation‐assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme‐triggered assembly (ETA) for the on‐demand formation of well‐defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo‐electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non‐natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures
Fast transition of type-B QPO in the black hole transient XTE J1817-330
The evolution of different types of quasi-periodic oscillations (QPOs) and
the coupled radiative/physical changes in the accretion disk are still poorly
understood. In a few black hole binaries it was found that fast evolution of
QPOs is associated with spectral variations. Such studies in other black hole
binaries are important to understand the QPO phenomenon. For the black hole
transient XTE J1817-330, we study fast QPO transitions and accompanying
spectral variations to investigate what causes the spectral variation during
the QPO transition. Roy et al. (2011) found QPOs in ten RXTE observations of
XTE J1817-330. We found that, among the ten observations, only one observation
shows erratic dips in its X-ray light curve. The power density spectra and the
corresponding energy spectra were extracted and analyzed for the dip and
non-dip sections of the light curve. We found that type-B 6 Hz QPO
changes into type-A QPO in a few tens of seconds along with a flux decrease.
This transient evolution is accompanied with a significant spectral variation.
We report a transient QPO feature and accompanying spectral variation in XTE
J1817-330. Based on our findings, we discuss the origin of fast evolution of
QPOs and spectral variations.Comment: 8 pages, 3 figures, Accepted in A&
One Body Density Matrix, Natural Orbits and Quasi Hole States in 16O and 40Ca
The one body density matrix, momentum distribution, natural orbits and quasi
hole states of 16O and 40Ca are analyzed in the framework of the correlated
basis function theory using state dependent correlations with central and
tensor components. Fermi hypernetted chain integral equations and single
operator chain approximation are employed to sum cluster diagrams at all
orders. The optimal trial wave function is determined by means of the
variational principle and the realistic Argonne v8' two-nucleon and Urbana IX
three-nucleon interactions. The correlated momentum distributions are in good
agreement with the available variational Monte Carlo results and show the well
known enhancement at large momentum values with respect to the independent
particle model. Diagonalization of the density matrix provides the natural
orbits and their occupation numbers. Correlations deplete the occupation number
of the first natural orbitals by more than 10%. The first following ones result
instead occupied by a few percent. Jastrow correlations lower the spectroscopic
factors of the valence states by a few percent (~1-3%) and an additional ~8-12%
depletion is provided by tensor correlations. It is confirmed that short range
correlations do not explain the spectroscopic factors extracted from (e,e'p)
experiments. 2h-1p perturbative corrections in the correlated basis are
expected to provide most of the remaining strength, as in nuclear matter.Comment: 25 pages, 9 figures. Submitted to Phys.Rev.
- …