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Abstract

Throughout evolution, one of the most ancient forms of aggression between cells or organisms has been the production
of proteins or peptides affecting the permeability of the target cell membrane. This class of virulence factors includes the
largest family of bacterial toxins, the pore-forming toxins (PFTs). PFTs are bistable structures that can exist in a soluble and
a transmembrane state. It is unclear what drives biosynthetic folding towards the soluble state, a requirement that is
essential to protect the PFT-producing cell. Here we have investigated the folding of aerolysin, produced by the human
pathogen Aeromonas hydrophila, and more specifically the role of the C-terminal propeptide (CTP). By combining the
predictive power of computational techniques with experimental validation using both structural and functional
approaches, we show that the CTP prevents aggregation during biosynthetic folding. We identified specific residues that
mediate binding of the CTP to the toxin. We show that the CTP is crucial for the control of the aerolysin activity, since it
protects individual subunits from aggregation within the bacterium and later controls assembly of the quaternary pore-
forming complex at the surface of the target host cell. The CTP is the first example of a C-terminal chain-linked chaperone
with dual function.
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Introduction

Many organisms, as diverse as bacteria, parasites, sea anemones

or plants, produce membrane damaging proteins to protect

themselves or to modify the behavior of their host [1]. Amongst

these pore-forming proteins (PFPs), we find bacterial pore-forming

toxins (PFTs). These are produced as soluble proteins that diffuse

and bind to target cells via specific receptors. Many subsequently

assemble into ring-like structures [2], undergoing a conformational

change with consequent exposure of hydrophobic surfaces. This

drives spontaneous membrane insertion, leading to the formation

of water filled pores.

This peculiarity of PFTs, and PFPs in general, raises two

interesting questions. The first is: since PFPs can adopt two quite

different conformations, how is the folding reaction during

biogenesis directed towards obtaining the soluble fold? The

second question is: what mechanisms prevent pore-formation

from occurring in the producing cell? To address these related

questions, we have chosen the PFT aerolysin (for review see [2]).

Aerolysin is produced by the human pathogen Aeromonas hydrophila

as an inactive precursor called proaerolysin. Conversion of

proaerolysin to aerolysin involves proteolytic cleavage of a flexible

43-residue loop near the C-terminus (Figure 1A and Figure S1A).

Maturation occurs after secretion from the bacterium and

processing by gut enzymes or proteases present at the target cell

surface [3,4]. Since cleavage is essential for pore formation, it has

been proposed that the role of the 43-residue C-terminal peptide

(CTP) is to prevent premature oligomerization by steric hindrance,

particularly within the producing bacterium.

Our aim was to address the precise role of the CTP by

combining computational techniques, site-directed mutagenesis,

structural analysis, and functional assays. Our study reveals that

the CTP drives the protein into the soluble state during biogenesis,

protecting proaerolysin from aggregation possibly by promoting

folding, a quite unexpected observation considering the C-

terminal location of the peptide. Interestingly, mutagenesis of

specific residues in the CTP not only affected the efficiency of

proaerolysin folding both in vitro and in vivo, but also reduced the

capacity of the CTP to prevent premature assembly of the

heptamer, highlighting the dual role of the CTP in 1) preventing

aggregation of the newly synthesized protein possibly by assisting

folding, and 2) controlling the quaternary assembly of the active

complex.
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Results

Covalent bonding is not required for binding of the CTP
to aerolysin

The crystal structure of proaerolysin has been solved at 2.8 Å

resolution [5]. The protein is L-shaped, composed of a continuous

globular N-terminal domain (Figure 1A), Domain 1, and an

elongated region consisting of three discontinuous structural

domains (Figure 1A and Figure S1A). Domains 1 and 2 are

involved in binding to cell surface receptors [6]. Domain 3 is

involved in oligomerization and contains a loop that traverses the

membrane upon pore formation [7]. Domain 4 has no known

function but contains the CTP, which is folded as 2 anti-parallel b-

strands connected by a short a-helix (Figure 1A).

To characterize the molecular interactions between the CTP

and Domain 4, we performed classical molecular dynamics (MD)

simulations. MD aims at quantitatively describing structural and

thermodynamic properties of biomolecules within physiological-

like conditions [8]. The existing potential energy models used in

MD have been shown to provide accurate representation of

atomistic interactions, and they have been used to investigate the

biophysical properties of a broad variety of molecular systems,

including the PFTs a-hemolysin from S. aureus [9,10]. To remain

as close as possible to experimental/in vivo conditions, we

performed in MD simulations at room temperature (27uC) and

atmospheric pressure (1 atm), and the proteins were solvated by

water molecules at physiological salt concentration. MD simula-

tions reported here were all based on the X-ray structures of wild

type (WT) proaerolysin (for details about the structures used, see

Methods). The loop connecting the CTP to the rest of the

molecule is however not visible in any reported crystal structure of

proaerolysin, probably due to its flexibility. Thus proaerolysin was

de facto modeled in a situation mimicking a cleaved proaerolysin

state (here after termed aerolysin-CTP). During the 200 ns of MD,

the CTP remained firmly bound to the protein (Figure 1B). Native

hydrogen bonds and salt bridges were preserved along the entire

trajectory, as were secondary structure elements, both in the CTP

and in Domain 4 (Figure 1B). The mean conservation of

secondary structure in the system, i.e. the percentage of residues

in a b-sheet conformation along the MD simulation with respect to

the initial crystal structure, was 8665% over the last 100 ns.

Since the MD simulations were performed with the absence of a

covalent bond between the CTP and Domain 4, these observa-

tions pointed to a strong binding affinity of CTP for Domain 4. By

computing electrostatic, van der Waals and solvation contributions

to the binding of CTP to Domain 4, we estimated their binding

energy to be 115 kcal/mol. Our MD-based observations thus

suggest that the CTP remains bound to aerolysin upon proteolytic

activation of the protoxin. This was confirmed using two

independent experimental approaches. First, we determined the

structure of the proteolytically processed form of an aerolysin

mutant that is unable to form heptamers, namely H132N [11].

The crystal structure of the trypsin-processed H132N mutant was

solved by molecular replacement to 2.3 Å resolution (PDB entry

3G4O) ([12], Protocol S1). Not only was the observed structure

very similar to that of wild-type (WT) proaerolysin (root mean

square deviation RMSD of 0.74 Å for subunits A and 0.92 Å for

subunits B in the dimer), it also contained the CTP, in an

essentially identical conformation (Figure 1C).

As a second approach to investigate whether the CTP remains

bound to the mature toxin following proteolysis, we took

advantage of our E. coli expressed WT proaerolysin, which

harbors a six-histidine tag at the C-terminus, i.e. at the end of the

CTP. When proaerolysin was incubated with Nickel beads, it

remained attached to the beads as expected and could be eluted

with imidazole but not with urea (Figure 1DE). When trypsin-

processed toxin was incubated with Nickel beads, it also remained

bound to the beads showing that the CTP had not been released

upon proteolysis. Consistently with the non-covalent interaction

between the mature toxin and the CTP, aerolysin could be

released from the beads with urea (Figure 1D).

We had previously reported that processing of proaerolysin with

trypsin leads to the release of the CTP from aerolysin [13]. This

conclusion was based on the observation that fluorescence energy

transfer was lost between a fluorescent probe, IEADANS, attached

to an engineered cysteine on the CTP at position 445 and Trp-203

in Domain 4 [13]. Our current findings suggest that the previously

observed release of the CTP was artefactually induced by the

mutation and/or labeling of the cysteine at position 445. Indeed,

in wild-type proaerolysin, Ile-445 on the CTP is buried within a

hydrophobic pocket in Domain 4 and labeling of Cys-445 with the

bulky and polar IAEDANS fluorophore (mimicked in Figure S1B)

must have triggered a severe perturbation at the CTP-Domain 4

interface, leading to premature release of the CTP upon trypsin

cleavage.

Identification of key residues for CTP–aerolysin binding
Both X-ray structures of WT proaerolysin and H132N

aerolysin-CTP show the presence of a similar complex network

of interactions between the CTP and Domain 4 composed of H-

bonds (10 in subunit A, and 16 in subunit B), salt bridges (Asp-207

with Arg-442 and Lys-198 with Glu-451), and hydrophobic

interactions. To identify key residues responsible for binding of the

CTP to Domain 4, we performed in silico alanine scanning on most

of the CTP. In silico mutation of a given CTP residue to alanine

has the effect of removing most of the native non-bonded

interactions (i.e., electrostatic and van der Waals contributions)

with the local environment. By comparing the binding free energy

of the WT species and its alanine mutant, it is possible to estimate

the individual contribution of a given CTP residues to the binding

Author Summary

Many pathogenic bacteria produce proteins, called pore-
forming toxins, designed to perforate the plasma mem-
brane of target cells thus perturbing host cell integrity and
functionality. It is, however, important that these toxins do
not form pores in the producing bacterium. To prevent
this, bacteria initially produce them in a soluble state. After
being secreted by the bacterium, the toxin subsequently
acquires – often through a multimerization step– the
ability to insert into the membrane. Here we were
interested in the mechanisms ensuring that the toxin
initially folds into the soluble state. Using as an example
aerolysin from the human pathogen Aeromonas hydro-
phila, we show that the bacterium produces the toxin with
a C-terminal extension of about 45 amino acids that
promotes the folding of the protein into the soluble state.
We find that by mutating or removing this extension, the
protein folds poorly or not at all. Addition of the peptide in
trans however lead to partial recovery of activity suggest-
ing that this extension promotes folding, and being
intramolecular thus results in a very high effective
concentration. In addition to this chaperone role for
correctly folding the monomeric form of the toxin, the C-
terminal peptide is also crucial for controlling the folding
of the quaternary structure of the mature pore complex at
the surface of the target host cell.

Propeptide Driven Folding of Proaerolysin

PLoS Pathogens | www.plospathogens.org 2 July 2011 | Volume 7 | Issue 7 | e1002135



affinity with Domain 4. The greater the variation, the more the

residue has a relevant role in the steady binding of the CTP to

Domain 4. As expected, mutation of solvent exposed residues

showed little variation in the binding free energy (Figure 2A). A

low but significant variation was observed for certain polar

residues, such as Asn-458, which forms a hydrogen bond with Asp-

222, Asp-448, which forms a salt bridge with Lys-198, and

especially Arg-442, which forms a salt bridge with Asp-207. The

Figure 1. The CTP remains bound to aerolysin following trypsin cleavage. A: Structure of the proaerolysin monomer as seen in the dimeric
soluble form of the toxin (1PRE). Structural domains are color coded with Domain 1 (light blue) and the large lobe of the protein additionally divided
into three domains, Domain 2 (red), Domain 3 (green) and Domain 4 (yellow). The C-terminal peptide (CTP) is shown in dark blue and the different
residues examined in this study are represented in space- filled model. B: Snapshot of Domain 4 with CTP after 100 ns of MD simulation. The main
body of Domain 4 is shown in yellow and the CTP in blue. C: Close-up of the structure of the trypsinized H132N (pdb 3G4O) showing the Fobs-Fcalc

electron density map of Domain 4 (in green) obtained prior to the reconstruction of the CTP. The map colored in blue is calculated at 2.3 Å resolution
and contoured at a level of 2.0Å. The final model of the B subunit of the aerolysin mutant H132N is superimposed. D: Proaerolysin in 20 mM MES
buffer pH5, 150 mM NaCl was adjusted to pH 8 by addition of 1 M Tris buffer pH 8.7 to avoid oligomerization and subsequently was processed with
insoluble agarose trypsin beads. Unprocessed and processed toxins were incubated with His-bind resin preloaded with Nickel and incubated at 4uC
for 30 minutes to allow binding of the protein and then extensively washed. The bead sample (input) was then split in two: half was treated with 4 M
Urea (Urea) and the other half with 250 mM Imidazole (Imid.). After spinning down the beads, the supernatants were analyzed by SDS-PAGE followed
by Coomassie blue staining. E: Coomassie blue stained gels, as in C, were quantified for 3 independent experiments using ImageJ. Error bars
represent standard deviations.
doi:10.1371/journal.ppat.1002135.g001
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most dramatic variations in the binding free energy (,6 kcal/mol)

were observed for three hydrophobic residues: Leu-441, Phe-457

and Leu-462. All three residues point inside a hydrophobic pocket

in Domain 4 underlying the CTP (Figure 2B). More specifically,

Leu-441 interacts with Val-285, Ala-204, Pro-283 on Domain 4

and Leu-443 on the CTP, Leu-462 interacts with Val-217, Leu-

219, and Ile-296 on Domain 4 and Ile-414 and Leu-443 on the

CTP, and finally Phe-457 points straight into Domain 4, and is

blocked by steric hindrance with Val-197 and Leu-297 on the

Domain 4 and Ala-411 and Leu-452 on the CTP.

Mutation of Phe-457 to Gly affects both the CTP and
Domain 4

Since Phe-457 on the CTP points straight into Domain 4, we

investigated the effect of mutating this residue to glycine in silico

using an MD setup similar to the one adopted for the WT species

(Video S1). The mean conservation of the secondary structure of

the CTP drastically dropped from 76612% for the wild type to

1764% for the F457G mutant (Figure 3B). The CTP structure

remaining after the simulation was a portion of the a-helix

(Figure 3A), which we determined to be the most stable structural

element in an MD simulation of just the CTP in water (Figure

S2BC). Interestingly, the F457G mutation also affected the

underlying Domain 4 (Figure 3). Indeed, after 100 ns of MD,

the mean conservation of the secondary structure of Domain 4

(including CTP) was 8665% for the wild type and 6765% for the

F457G mutant. By computing electrostatic, van der Waals and

solvation contributions to the binding of the mutated CTP

(F457G) to domain 4, we estimated their binding free energy to be

75 kcal/mol. This represents a significant reduction with respect

to the 115 kcal/mol previously estimated from the aerolysin-CTP

MD simulation.

The effects produced by a mutated CTP on Domain 4

prompted us to compare the structural features of aerolysin with

and without its CTP. In silico, we removed the CTP from the

proaerolysin crystal structure, and 200 ns MD simulation was

performed (Video S2). Simulations performed in the presence and

absence of the CTP were subsequently compared. The structural

flexibility of each residue was quantified by calculating the root

mean square fluctuation (RMSF) of the residue along the MD

trajectory. Removing the CTP had no significant effect on the

structure of Domain 2 and 3 (Figure 4A, Domain 1 was omitted

from the simulation since it is known to act as an independent

folding unit [14]). In contrast, removal of the CTP led to an

average increase of 6.863.2 Å of the RMSF for a given residue in

Domain 4 (Figure 4A), suggesting that the CTP stabilizes the

structure of Domain 4. The CTP also had an influence on the

secondary structure of Domain 4. This was assessed by tracking

the percentage of secondary structure conservation along the two

simulations, i.e. the percentage of residues adopting a ß-sheet

conformation in the absence of CTP as compared to crystal

structure of proaerolysin. In the absence of the CTP, the

secondary structure conservation of Domain 4 was 67610%

(Figure 4B), compared to 8665% in the presence of CTP, and the

RMSD (root mean square fluctuation deviation) after 200 ns of

MD was 8.8 Å, compared to 3.6 Å in the presence of CTP.

In silico removal of the CTP led to the unfolding of the b-strand

encompassing residues Ser-272 to Ser-280 in Domain 4

(Figure 4C). Interestingly, a further sequence-based analysis using

order prediction algorithms identified the 268-282 segment as the

most disordered region of Domain 4 (for algorithms used see

Figure 2. Molecular dynamics analysis of CTP binding. A: Residue-specific binding free energy obtained by MM-PBSA alanine scanning of CTP
residues along a single 200 ns MD trajectory of the aerolysin-CTP system. Hydrophobic interactions are shown in blue, polar interactions in red and
solvent exposed residues in grey. Higher standard deviations on solvent exposed residues Arg-442, Asp-448 and Asn-458 are due to the unstable
nature of their binding and larger fluctuation during dynamics. B: Space-filled representation of a snapshot of Domain 4 showing the hydrophobic
pocket in grey and the CTP residues involved in the hydrophobic interactions in yellow.
doi:10.1371/journal.ppat.1002135.g002
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Protocol S1) (Figure S2A), raising the possibility that the ß-

structure observed for this segment in the proaerolysin crystal

structure is in fact imposed by the CTP. It is interesting to note

that induced folding of intrinsically unstructured elements often

involves hydrophobic, rather than polar, interactions [15] as

observed here for the CTP-Domain 4 interface.

Mutation or removal of the CTP prevents folding of
aerolysin in vivo and in vitro

The above MD analyses suggest that the structure of Domain 4

strongly depends on interactions with the CTP. This raised the

interesting possibility that the CTP acts as a stabilizer or an

intramolecular chaperone during biosynthetic folding of proaer-

olysin. A prediction from this hypothesis is that when synthesized

and translocated across the inner E. coli membrane, aerolysin, i.e.

lacking the CTP, should not be able to reach a soluble form in the

bacterial periplasm. To test this, we generated constructs encoding

only the N-terminal signal sequence and the mature protein

without the CTP. Constructs were generated to express the WT

version as well as H132N as to avoid potential oligomerization in

the periplasm. As mentioned earlier, residue His-132 is required

for heptamer formation [11]. When extracts from bacteria

harboring WT or H132N aerolysin-DCTP expression constructs

were analyzed by SDS-PAGE and Coomassie blue staining, a

band migrating at the expected <50 kDa molecular weight was

observed upon induction with IPTG, showing that bacteria were

able to produce aerolysin-DCTP and that the protein was not

degraded by periplasmic proteases (Figure 5 AD). When bacteria

were processed to generate periplasmic and spheroplast fractions,

proaerolysin, which migrates at <52 kDa, was recovered in the

periplasmic fraction. In contrast WT or H132N variants of

aerolysin-DCTP were only recovered in the spheroplast fraction

(Figure 5 AD). Care was taken to induce toxin expression with a

low IPTG concentration (0.25 mM) at a bacterial density of

OD600 nm = 0.6 for only 2 hrs at 18uC, to avoid jamming of the

translocation machinery across the inner membrane and impair

periplasmic folding. That periplasmic translocation of both

proaerolysin (Figure 5B upper panel) and aerolysin-DCTP

(Figure 5B lower panel) did occur under these conditions was

confirmed by Western blot analysis. A weak band corresponding

to pre-proaerolysin, i.e. protein for which signal sequence cleavage

had not yet taken place, could be observed in the spheroplast

fractions (Figure 5B). The bulk of both proaerolysin and aerolysin-

DCTP however underwent processing by signal peptidase

confirming that both forms of the toxin were properly translocated

across the inner membrane (Figure 5B).

Our in silico alanine scanning analysis (Figure 2A) predicted that

mutation of Leu-441, Phe-457 and Leu-462, and to a lesser extent

Arg-442, to alanine should affect binding of the CTP to Domain 4.

To test these MD-based predictions, we generated constructs to

express these mutants in the E. coli periplasm. We also sought a

mutation that would affect the secondary structure of the CTP but

not the binding. We chose to change Ser-453 to proline since this

residue localizes to the middle of the a-helix of the CTP (Figure 1A)

and does not make contacts with Domain 4. In agreement, in silico

mutation of Ser-453 to alanine did not lead to a significant variation

in the binding free energy (Figure 2A). Due to the folding of its side

chain back onto the protein backbone, proline imposes severe

constraints to the backbone geometry leading to helix breaking.

All proaerolysin mutants were detected in bacterial extracts

showing that they were synthesized and not degraded to any

significant extent (Figure 5B). Proaerolysins L441A, R442A and

L462A were recovered in significant amounts in the periplasmic

fraction (Figure 5D). Proaerolysin S453P was barely detectable in

the periplasmic fraction (Figs. 5CD), but following purification low

amounts of the protein could be obtained. Proaerolysins F457A/G

were essentially undetectable in the periplasmic fraction

(Figs. 5CD) and neither could be recovered following purification

on Nickel columns. These observations show that mutating Ser-

453 to proline or Phe-457 to glycine induced aggregation of

proareolysin in the bacterial periplasm, either due to the exposure

of a hydrophobic patch or improper folding of part of the protein.

Figure 3. Mutation of Phe-457 affects the structure of the CTP and Domain 4. A: Representative snapshot of Domain 4 and CTP interactions
in the F457G mutant system after 100 ns of MD simulations. Residue 457 is shown in ball-and-stick representation. B: The percentage of secondary
structure conservation for the CTP (solid lines) and for Domain 4 (dashed lines) is reported. Conservation is higher for WT system (black) than for the
F457G mutant (red).
doi:10.1371/journal.ppat.1002135.g003
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The small amounts of toxin that could be purified for all mutants

was however properly folded as indicated by the WT-like

hemolytic activity of the mutants following trypsin cleavage

(Figure 6AB).

We next investigated the in vitro folding of the mutant

proaerolysins. For this, proaerolysins, WT and mutants, were

unfolded in urea. We have previously shown that proaerolysin

unfolding in urea or GdnHCl occurs in two steps, corresponding

to the unfolding of Domains 2 to 4, followed by the unfolding of

the highly stable Domain 1 [14] (Figure S3AB). All four

proaerolysin mutants showed very similar urea unfolding curves

(Figure S3C). Following unfolding in 4 M urea, refolding of

proaerolysins was triggered by dilution in a urea-free buffer. The

efficiency of folding was indirectly monitored by measuring the

hemolytic activity of the refolded proaerolysins after proteolysis

with trypsin (trypsin was added 5 min after dilution in the urea

free medium). Hemolysis was followed as a function of time.

Under these conditions, refolded L441A and S453P systematically

showed a delayed hemolytic activity (Figure 6C). These experi-

ments reveal that in vitro folding into a soluble state of the L441A

and S453P proaerolysin mutants was impaired and the extent

correlated with the ability of the mutants to fold into a soluble state

in vivo (Figure 5).

Altogether, these computational analyses and experimental

observations indicate that the CTP is required for proper folding

of aerolysin and that both the structure of the CTP and its binding

affinity to Domain 4 are important for proaerolysin to reach a

soluble active state.

The aerolysin CTP promotes folding to a soluble state
both in cis and in trans

Since aerolysin without the CTP could not be purified from

bacteria, we studied the folding of aerolysin by cleavage of

proaerolysin with trypsin followed by unfolding in urea. Unfolding

transitions occurred at similar concentrations of chaotropic agents

whether proaerolysin was processed by trypsin or not, suggesting

proaerolysin and aerolysin-CTP have similar stabilities.

Refolding was initiated by dilution into a urea free buffer and

the tryptophan emission spectrum was measured at different times

for more than 24 hrs. The maximum emission wavelength of

proaerolysin rapidly shifted from 344 nm, corresponding to the

unfolded protein, to 336 nm, corresponding to that of native

proaerolysin. Under refolding conditions, the maximum emission

wavelength of aerolysin –which had presumably lost its CTP

during unfolding– however failed to reach that of native aerolysin-

CTP, indicating that refolding did not occur or was partial. This

Figure 4. Removal of the CTP results in partial unfolding of Domain 4. A: Structural fluctuation per residue (calculated as RMSF) during the
MD simulations of WT aerolysin with and without CTP. B: Comparison of the secondary structure conservation ratio for Domain 4 with (black) and
without (red) the CTP. C: Representative snapshot of Domain 4 in WT aerolysin in the absence of the CTP after 100 ns of MD simulation. The coloring
scale reports the degree of disorder as estimated using a set of disorder predictors (blue: mostly ordered; red: mostly disordered, see also Protocol
S1).
doi:10.1371/journal.ppat.1002135.g004

Propeptide Driven Folding of Proaerolysin
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Figure 5. Removal or single point mutations of the CTP affect the folding of aerolysin in vivo. A: WT and H132N aerolysin, with and
without the CTP, were expressed in the periplasm of E. coli upon induction with IPTG. Cell extracts were analyzed by SDS-PAGE and Coomassie blue
staining before and after induction, as were the periplasmic (perip.) and the remaining spheroplast (sphero.) fractions. B: WT toxin, with and without
the CTP, was expressed in the periplasm of E. coli upon induction with IPTG. Cell extracts, periplasmic and spheroplast fractions were analyzed by
western blotting against aerolysin, revealing the signal peptidase dependent processing of signal peptide harboring precursors. C: WT and mutant
proaerolysin were expressed in the periplasm of E. coli. Bacterial extracts and periplasmic fractions were analyzed by SDS-PAGE and Coomassie blue
staining as in A. D: The amount of toxin present in cell extracts after IPTG induction as well as in the periplasmic fraction were quantified for 3
independent experiments using ImageJ (n = 3). Error bars represent standard deviations. Periplasmic toxin was normalized to the amount of toxin in
the cell extracts. **: p,0.005.
doi:10.1371/journal.ppat.1002135.g005
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was confirmed by circular dichroı̈sm (CD) in the far UV, which

allows monitoring of secondary structure. As described previously,

proaerolysin and aerolysin-CTP have very similar far UV CD

spectra (Figure 7A) [16]. Upon unfolding and refolding, the

spectrum of proaerolysin was to a large extent recovered

(Figure 7A). In contrast, the spectrum of aerolysin under refolding

conditions showed typical features of a random coil, with a strong

negative ellipticity in the 200 nm spectral region possibly due to

protein aggregation (Figure 7A). Thus, aerolysin was unable to

reach a soluble state in vitro confirming the in vivo experiments

(Figure 5 AD). Interestingly, under refolding conditions, aerolysin

did not fold into a molten globule-like structure, which has native

like secondary structure (Figure 7A). That aerolysin failed to reach

a native conformation in vitro was confirmed by the lack of

hemolytic activity after refolding from .4 M urea, in contrast to

proaerolysin which refolded properly even from .6 M urea

(Figure 7B).

All of the above-described observations point towards a role of

the CTP in promoting the folding of proaerolysin into a soluble

protein during biosynthesis. We finally investigated whether the

CTP could also act when added in trans during in vitro refolding of

aerolysin. We found that addition of 5-fold molar excess of

synthetic CTP led to a significant and reproducible recovery in

hemolytic activity of aerolysin, whereas addition of an irrelevant

peptide did not (Figure 7C). The fact that rescue was only partial is

not surprising since having a covalently bound CTP, as in

proaerolysin, greatly increases the effective concentration of the

peptide, a situation that cannot be mimicked by ectopic addition of

excess CTP.

CTP prevents aerolysin oligomerization
It had previously been proposed for Clostridium a-toxin, a toxin

with 27% sequence identity and 72% similarity to aerolysin, that

the role of the CTP is to inhibit the oligomerization process [17].

We found that this role is also fulfilled by the aerolysin CTP.

Proaerolysin was cleaved in vitro with trypsin and oligomerization

was allowed to proceed in the absence or presence of a five-fold

excess of either synthetic CTP or a control peptide. Heptamer

formation was delayed by the presence of CTP (Figure 8AB). The

role of the CTP in oligomerization was confirmed by the following

observation. When proaerolysin was processed by trypsin in a

pH 8 buffer to avoid oligomerization [11] and subsequently

dialyzed against a neutral pH buffer to allow oligomerization,

heptamer formation was only observed with a dialysis cut off that

allowed the passage of the CTP (14 kDa) but not with a cut off that

retained the CTP (3.5 kDa) (Figure 8C). Thus the binding of the

CTP to Domain 4 inhibits oligomerization.

Weaker CTP binding promotes oligomerization
A corollary of the observation that the CTP inhibits

oligomerization is that the CTP must be displaced from the

mature protein for the process to occur and thus that weaker CTP

binding should promote oligomerization. We first tested whether

the S453P CTP would be released more readily than the WT

CTP. To address this issue, WT and S453P proaerolysins were

bound to Nickel charged NTA Surface plasmon resonance (SPR)

sensor chips –via the His-tag at the C-terminus of the CTP– and

cleavage of the CTP was induced by trypsin addition. After trypsin

addition, a strong loss of signal was observed (Figure 9A),

presumably corresponding to the release of the mature toxin from

the chip-bound CTP. From these curves, we estimated an

apparent Koff of 4.5.102360.6.1023 s21 for WT and

2.6.102260.4.1022 s21 for S453P, confirming that the off rate

of the S453P CTP was about 10 times higher than that of the WT

CTP. These Koff values should, however, only be considered in a

comparative and not an absolute manner. The structure of

Figure 6. Hemolytic activity of WT and mutant aerolysins. A. WT and mutant proaerolysins were processed with soluble trypsin, added to
erythrocytes at 20 mg/mL and the transmitted light at 600 nm of the sample was followed at room temperature as a function of time. Plots represent
the percentage of transmitted light as recorded by the SpectraMax ME as a function of time. This is a representative experiment out of 4 independent
experiments. B: WT and mutant proaerolysins (2 mg/mL) were processed with soluble trypsin, then subjected to a serial dilution (1/2) in a 96 well
plate and incubated with erythrocytes. The number of wells lysed after 60 min at room temperature was determined. Error bars represent standard
deviations (n = 3). C: WT and mutant proaerolysins (2 mg/mL) were unfolded in 4 M urea for 2 hrs, diluted 10 fold in a urea free medium. After 10 min,
samples were treated with trypsin for 10 min. Erythrocytes were added and the transmitted light at 600 nm of the samples was followed at room
temperature as a function of time. This is a representative experiment out of 5 independent experiments.
doi:10.1371/journal.ppat.1002135.g006
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aerolysin H132N and the experiments of binding WT aerolysin-

CTP to Nickel beads (Figure 1DE) indeed show that the WT CTP

does not come off over a period of several hours, which is

inconsistent with a Koff in the order of 1023 s21. Binding of the

CTP to the SPR chip therefore appears to have induced an

accelerated release.

That the S453P CTP has a lower affinity for the mature toxin

was confirmed by the observation that upon binding of S453P

aerolysin-CTP to Nickel beads, about 40% of the total aerolysin

was recovered in the unbound fraction (Figure 9BC), i.e. it was

released from the bead-bound CTP, whereas less than 10% of the

aerolysin was released when performing a similar experiment with

the WT toxin (Figure 1DE). Importantly, the CTP-free aerolysin

fraction recovered from the S453P-treated beads had the same

hemolytic activity as WT proaerolysin treated with trypsin (961

wells lysed in 60 min for CTP-free aerolysin (n = 3) and 860.5 for

trypsin treated WT proaerolysin, see methods). Three important

conclusions can be drawn from this observation: 1) the CTP is not

required for pore formation, confirming our previous findings

[13]; 2) CTP-free aerolysin does not unfold –but might change

conformation– since it retains its full activity; 3) CTP-free aerolysin

does not undergo unproductive aggregation, thus the role of the

CTP is not merely to prevent aggregation of monomers.

If CTP release is necessary for oligomerization, then oligomer-

ization should be accelerated when CTP binding is weaker. This is

indeed what we observed when comparing oligomerization of WT

and S453P: upon trypsin cleavage of S453P proaerolysin,

oligomerization occurred faster than for WT (Figure 10AB).

To our surprise, we found that S453P actually already showed

some hemolytic activity even in the absence of trypsin cleavage

(Figure 10C), which is never observed for WT proaerolysin. This

activity was some 15 fold lower than upon trypsin cleavage, yet

significant and reproducibly detectable. Hemolytic activity in the

proaerolysin form was also observed for the other CTP mutants

L441A, R442A and L462A, but to a lesser extent (Figure 10C).

These observations show that cleavage of the loop linking the CTP

to Domain 4 is not essential and that peptide displacement is

sufficient.

Discussion

Guided by a combination of molecular simulations and in silico

mutagenesis analysis and using a combination of structural and

functional assays on WT and mutant toxins, we show that the

CTP is essential for the folding of aerolysin into a soluble toxin.

Due to the fact that it promotes folding but is not part of the final

active conformation of the protein, i.e. the transmembrane

heptameric pore, the CTP qualifies as a chain-linked molecular

chaperone [18]. Chaperones comprise both proteins that favor the

folding reaction of substrate proteins and proteins that control the

quaternary assembly of multisubunit complexes. These two

distinct roles can also be found in chain-linked, or intramolecular,

chaperones and have been termed type I (folding) and type II

(assembly) intramolecular chaperones [18]. Chain-linked chaper-

ones can be short peptides (<40 residues) or independent folding

units. They are often found in secreted or transmembrane

proteins, a situation that requires the protein to be translocated

across the plasma membrane in prokaryotes (as for proaerolysin)

or the ER membrane in eukaryotes. As discussed below, due to the

directionality of membrane translocation coupled to protein

synthesis, type I intramolecular chaperones are found at the N-

terminus of proteins. However, exceptions, such as aerolysin, exist.

Indeed, an N-terminal chaperone prevents misfolding a priori,

while a C-terminal chaperone would act a posteriori. In contrast,

most documented type II intramolecular chaperones are C-

terminal. Irrespective of their localization, chain-linked chaper-

ones should not be part of the final structure, which implies that

they must be cleaved off at some point.

One of the earliest and best-characterized examples of a protein

with an N-terminal intramolecular chaperone is Bacillus subtilis

subtilisin, in which the 77 first amino acids fold into a well defined

domain promoting the folding of the next 275 residues, acting as a

type I chaperone, and is subsequently cleaved off by autoproteo-

lysis [19].

C-terminal intramolecular chaperones have also been de-

scribed. They are, however, generally of the type II, playing a

role in controlling the quaternary assembly of proteins such as tail

Figure 7. The CTP is required for refolding of aerolysin in vitro. A: Circular dichroı̈sm spectra were measured between 195 and 250 nm in
20 mM Hepes, 50 mM NaF pH 8 at 20uC. The spectra were acquired for proaerolysin before (blue) and after processing with trypsin (red, labeled
aerolysin-CTP). Proteins were unfolded in 4 M urea, refolded by 10 fold dilution in a urea free buffer and the spectra of Refolded proaerolysin (yellow)
and Refolded aerolysin (which has lost its peptide by unfolding) (green) were acquired after 1 hr at room temperature. B: Proaerolysin was subjected
to proteolysis (red) or not (blue), unfolded in between 0 M and 6.3 M urea for 2 hrs and allowed to refold in urea free buffer before the hemolytic
activity was assessed. Proaerolysin was processed with trypsin after refolding. The results are the mean of 3 independent experiments. Error bars
represent the standard deviation. C: Proaerolysin (0.5 mg/mL) was or not processed with trypsin agarose beads. Upon bead removal, the protein was
unfolded in 4 M urea at room temperature for 12 hours. Refolding was performed by dilution into a urea free buffer in the presence or absence of a
5-fold molar excess of CTP or control peptide. The hemolytic capacity was determined by serial dilution of the toxins and incubation with
erythrocytes for 24 hrs.
doi:10.1371/journal.ppat.1002135.g007
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spikes of bacteriophages or fiber forming collagen [18]. Examples

of type I C-terminal chaperones are rare and evidence is

circumstantial [20,21,22,23]. Aerolysin thus appears to be the

first example of a protein bearing a C-terminal chain-linked

chaperone promoting the formation of soluble monomeric

subunits and controlling assembly of the active complex, i.e. both

type I and type II. The present studies indeed show that the

aerolysin CTP acts as a type II chaperone in controlling the onset

of heptamerization, a role consistent with its C-terminal location.

More unexpectedly, we found that the CTP drives formation of

soluble proaerolysin. Mutations in the CTP that affects its

structure (S453P) or its binding to Domain 4 (L441A, F457G)

indeed lead to aggregation of proaerolysin both in vivo and in vitro.

Moreover aerolysin, devoid of CTP, also aggregated. Importantly,

addition in trans of a 5 fold molar excess of synthetic CTP allowed

partial recovery of activity. Upon CTP release, the trigger for

which remains to be established, aerolysin remains folded, possibly

with a somewhat different conformation, as illustrated by the full

hemolytic activity of CTP-free aerolysin obtained from the S453P

mutant. The unaltered activity of CTP-free aerolysin also indicates

that the CTP plays a role in the biogenesis of the toxin and does

not prevent unproductive aggregation of protein once folded.

Altogether, these observations thus classify the aerolysin CTP as a

chain-linked intramolecular chaperone.

Our observations clearly indicate that the CTP prevents

aggregation of proaerolysin during biosynthetic folding. As

mentioned above, and as supported by the ability of the CTP to

promote recovery of hemolytic activity upon in vitro folding of

Figure 8. Aerolysin oligomerization is controlled by the CTP. A: Proaerolysin was activated with trypsin agarose beads at 4uC in a Tris pH 8
buffer to inhibit oligomerization and the sample was diluted with 50 mM Hepes pH 7 to a concentration of 10 mM in order to favor oligomerization in
the presence or absence of a 5-fold molar excess (i.e. 50 mM) of synthetic CTP or control peptide. The sample was incubated at room temperature for
different times and subsequently analyzed by SDS-PAGE followed by Coomassie blue staining. B: The amount of oligomer was quantified for 3
independent experiments using ImageJ (n = 3). Error bars represent standard deviations. C: Proaerolysin at a concentration of 1 mg/mL in a buffer at
pH 8 (to inhibit oligomerization) was activated with trypsin agarose beads and subsequently dialyzed against 10 mM Hepes buffer pH 7.4, 10 mM
NaCl to initiate the oligomerization process. Two different dialysis molecular weight cut offs where used: 14 kDa, which allows the passage of the
CTPs and 3.5 kDa, which retains peptides the size of the CTP. After 2 hours of dialysis at RT, the samples were analyzed by SDS-PAGE followed by
Coomassie blue staining.
doi:10.1371/journal.ppat.1002135.g008
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aerolysin, the CTP appears to do more than merely preventing

aggregation as also suggested by the molecular dynamics studies.

Confirming that the CTP promotes the folding of aerolysin and

how it does so will require further investigation. Since

proaerolysin is translocated from N- to C-terminus when crossing

the inner Aeromonas membrane, the CTP appears last. In

particular, it appears some 250 residues later than some of the

residues it interacts with. What is also puzzling is that the CTP is

not an independent folding unit that could guide folding of the

rest of the protein, as is the case for most type I intramolecular

chaperones. Our MD simulations suggest that when released

from the protein, as mimicked by the F457G mutation, or when

free in solution, the CTP is largely unfolded (Figure S2BC).

Therefore the CTP might stabilize folding intermediates. It has

been proposed that, as a protein follows its folding landscape, the

chaperone domain binds to, stabilizes and increases the

population of molecules with native conformations. Thus, as

opposed to general chaperones, which are thought to lack any

structural information about the protein they fold, dedicated

chaperones and possibly the aerolysin CTP could promote

folding via conformational selection [24,25,26] and thus convey

steric information. This hypothesis is consistent with the

observation that one segment of Domain 4 with which the

CTP interacts in the final structure, residues 269–279, is

predicted to be unstructured. Even though largely unfolded,

such segments are likely to fluctuate between multiple folded

states during short times, one of which could be stabilized by the

CTP. A prediction from the conformational selection model for

CTP-mediated proaerolysin folding is that folding should be

affected by mutations in the CTP. This is indeed what we

observed for the mutants suggested by in silico alanine scanning

mutagenesis and in particular for the S453P and F457A/G

mutations.

As mentioned above, the CTP appears to force segment 268–

272 into a b-strand conformation. Importantly, this segment is

directly followed by the loop in Domain 3 that is to form one of

the amphipathic ß-hairpins of the heptameric transmembrane ß-

barrel pore (Figure S2A). The ability of the CTP to control the

folding state of the underlying b-strands (note that Domain 4

shares multiple b-strands with Domains 3 and 2) suggests that the

peptide also acts as a switch to control the pore formation

process. Our observations indeed show that CTP release

promotes oligomerization and that the CTP is not part of the

final pore. Future studies will address what triggers release of the

CTP. Our preliminary observations indicate that specific

detergents can displace the CTP, consistent with the importance

of hydrophobic interactions in CTP binding and suggesting that

the target cell membrane may play a role. Future studies will also

address whether CTP release triggers partial unfolding of

Domain 4 and whether these changes propagate to Domain 3

helping overcome the energy barrier that leads to formation of

the heptamer, the most thermodynamically stable conformation

[14].

Figure 9. The S453P mutation leads to premature release of
the CTP. A: Surface plasmon resonance analysis of mature toxin
release following binding of His-tagged WT and S453P proaerolysin to
Nickel charged sensor chip and trypsin addition. Release of the mature
protein was observed following the addition of trypsin. B: S453P

Proaerolysin in a 50 mM Tris 50 mM NaCL pH 8 buffer was processed
with insoluble agarose trypsin beads. Unprocessed and processed
toxins were incubated with His-bind resin preloaded with Nickel and
incubated at 4uC for 30 minutes to allow binding of the protein and
then extensively washed. The bead sample (input) was then split in two:
half was treated with 4 M Urea (Urea) and the other half with 250 mM
Imidazole (Imid.). After spinning down the beads, the supernatants
were analyzed by SDS-PAGE followed by Coomassie blue staining. C:
Coomassie blue stained gels, as in B, were quantified for 3 independent
experiments using ImageJ. Error bars represent standard deviations.
doi:10.1371/journal.ppat.1002135.g009
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Figure 10. Effect of the S453P mutation on oligomerization and activity. A: WT proaerolysin, kept in 20 mM Mes 150 NaCl pH 5, was diluted
2 fold with a 20 mM Tris 150 NaCl pH 8 buffer while S453P proaerolysin, kept in 20 mM Tris 150 NaCl pH 8, was diluted 2 fold with a 20 mM Mes 150
NaCl pH 5 buffer. Following dilution this dilution (final toxin concentration 0.4 mg/ml), the samples were processed on ice with trypsin and then
incubated at room temperature to allow oligomerization. Aliquots were removed at different times and the extent of oligomerization was monitored
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Methods

Proaerolysin production
Proaerolysin WT and mutants were expressed using a pET22b

vector (Novagen), which allows periplasmic expression of the toxin

with a His6 tag on the C-terminus, as described [7]. Mutagenesis

was carried out using the Quick Change Kit (Stratagene). Briefly,

BL21 [DE3] pLysS E. coli harboring the WT or mutant aerolysin

expression plasmid were grown at 37uC to an OD600 of 0.6. IPTG

(0.25 mM) was added and cultures were shifted to 16uC for

protein production. Cells were harvested after <2 hrs (reaching an

OD600 = 1.2). Periplasmic fractions were isolated by resuspending

cells in T Buffer (0.1 M Tris-HCl pH 8.0, 18% sucrose) containing

5 mM EDTA and 0.2 mg/mL lysozyme. After agitation for

30 min at 4uC, the periplasm and spheroplasts were separated by

centrifugation. For purification, the supernatant was further

ultracentrifuged (100 000 x g for 2 h at 4uC), filtered (0.45 mm)

and dialyzed against 20 mM sodium phosphate buffer pH 7.4,

0.5 M NaCl and loaded on a 1 mL HiTrap chelating column

(Amersham Pharmacia Biotech) running on an AKTATM prime

FPLC workstation. The protein was eluted in a 20 mM sodium

phosphate buffer pH 7.4, 0.5 M NaCl buffer with a linear

gradient of imidazole (0–0.5 M). Finally, fractions containing the

protein were dialyzed against 20 mM MES buffer pH5, 150 mM

NaCl before snap freezing and storing at 280uC. Protein

concentration was determined by O.D.280 measurements using

an estimated e<13.05?104 M21?cm21. The S453P single point

mutant was dialysed into 20 mM Tris 150 mM NaCl pH 8

following purification due to its tendancy to oligomerizes

unprocessed when dialyzed into the MES pH 5 buffer.

Trypsin cleavage of proaerolysin
Unless specified, processing of proaerolysin was performed by

addition of 1/100 (weight/weight) of soluble trypsin (Sigma) and

incubation for 10 min at room temperature. Where specified, the

proaerolysin containing solution of 20 mM MES buffer pH5,

150 mM NaCl was adjusted to pH 8 by addition of 1 M Tris

buffer pH 8.7 to avoid oligomerization [11]. Pre-washed trypsin

immobilized on agarose beads (Sigma) was added to the

proaerolysin sample at 4uC and incubation was allowed to

proceed on a rotary shaker for 2 hrs. The trypsin agarose beads

were removed by centrifugation at 7000 rpm in a tabletop

Eppendorf centrifuge. The degree of activation was assessed by

SDS-PAGE and Coomassie blue staining.

Hemolytic activity
Activity of aerolysin was defined by its ability to lyse red blood

cells. Serial dilutions of aerolysin starting at 20 mg/ml were

incubated with a 0.5% solution of red blood cells in a 96 well plate.

Activity was either recorded as number of wells fully lysed in

60 min at room temperature [7] or as the transmitted lightof the

erythrocyte suspension monitored at 600 nm as a function of time

in a given well using an automated 96 well plate reader at 37uC.

Peptide inhibition of oligomerization
Proaerolysin at a concentration of 0.4 mg/mL was submitted to

proteolysis with trypsin bound to agarose beads as described

above. A 5 fold mol/mol excess of synthetic propeptide

(EzBiolabs), control peptide, or an equal volume of buffer, was

added to the sample. To initiate the oligomerization process

(which requires a pH,8 and is promoted by low salt), the sample

was dialyzed at 4uC against 10 mM Hepes buffer pH 7, 10 mM

NaCl for 2–4 hours. The dialysis molecular weight cut off was 3.5

kDa, unless specified otherwise. Aliquots were removed at different

time points and subjected to SDS-PAGE.

Unfolding, circular dichroism and tryptophan
fluorescence measurements

Tryptophan fluorescence was measured as described [14] using

a SpectraMax M2e spectrofluorimeter. Circular dichroism (CD)

measurements were performed at 20uC using a Jasco J815

spectrometer using quartz cells of 0.01 cm path length [13].

Spectra between 190 and 250 nm were recorded in 20 mM Hepes

buffer pH 8, 50 mM NaF at protein concentrations between 0.1–

0.3 mg/mL.

For unfolding, proaerolysin WT or mutant or aerolysin was

incubated in 4 M urea (see Protocol S1). Refolding was triggered

by 1:10 dilution into urea free buffer. The refolding reaction was

assessed by circular dichroism or hemolytic activity. The buffer

blank solution was obtained by dilution of the respective buffers.

Structural models and molecular dynamics simulations
WT proaerolysin in its dimeric form has been crystallized with a

resolution of 2.8 Å (entry 1PRE in protein databank). In this

crystal structure, two loops located on top of Domain 4 proved too

flexible to be crystallized, namely residues 207 to 211 and 423 to

439. A crystal structure of dimeric proaerolysin mutant Y221G has

been obtained with a higher resolution of 2.2 Å (entry 3C0N in

protein databank). In this crystal, residues 207 to 211 could be

mapped in the crystal structure but loop 423 to 439 is still missing.

This loop connects the CTP to the rest of the protein, and contains

the site where cleavage takes place during aerolysin activation

(420–427).

A model of wild-type aerolysin with the propeptide bound

(labeled aerolysin-WT) to use in molecular dynamics simulations

was obtained by using 3C0N structure, and mutating residue 221

back to tyrosine using 1PRE as a structural template (wild-type

rebuilding did not caused any steric problem since 3C0N and

1PRE were virtually identical). We assumed that this model would

mimic the aerolysin structure after cleavage, i.e. C-terminal

propeptide no longer covalently connected to the protein, but still

bound to it. In fact, this model is structurally equivalent to the

cleaved aerolysin H132N X-ray structure showed in this work. We

modeled active aerolysin (labeled WT) by removing the propeptide

from the previous model. Mutation F457G has been performed by

removing the Phe-457 side-chain.

Aerolysin contains six histidines. Their protonation state at

physiological pH has been defined by the presence of proton

donors and acceptors in their neighborhood in the crystal

structure. We concluded that in H107, H121, H132, H186 and

H332 Ne atom is protonated, whereas in H341 Nd is protonated.

These model systems were solvated in a rectangular box of pre-

equilibrated TIP3P water molecules, and their total charge was

neutralized by the addition of Na+ and Cl2 counterions.

by SDS-PAGE and Coomassie blue staining. B: Coomassie blue stained gels, as in A, were quantified for 3 independent experiments using ImageJ.
Error bars represent standard deviations. C: WT and mutant proaerolysins, in the absence of any protease treatment, were added to erythrocytes at
2 mg/mL and the transmitted light at 600 nm of the sample was followed at room temperature as a function of time. Plots represent the percentage
of transmitted light as recorded by the SpectraMax ME as a function of time. This is a representative experiment out of 4 independent experiments.
doi:10.1371/journal.ppat.1002135.g010
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Molecular dynamics has been performed for aerolysin with CTP

(labeled Aero-CTP), without CTP (labeled Aero) and mutation

F457G using the Amber parm99sb force field [27] on NAMD

molecular dynamics engine [28], using the SHAKE algorithm on

all the bonds, and Particle-mesh Ewald for treating the

electrostatic interactions in periodic boundary conditions [29].

We used an integration time step of 2 fs. The systems were energy-

minimized by means of 1000 conjugate gradient steps, and

subsequently gradually heated from 0 to 300 K in 1 ns at 1 atm.

Simulations were run in the NPT ensemble at 1 atm and 300 K.

Temperature was controlled by means of Langevin forces, using a

damping constant of 1 ps-1.

Preliminary results confirmed that Domain 1 is bulky and, being

connected by a long random coil to the large lobe (Figure 1A),

extremely flexible with respect to the rest of the protein. Since this

resulted in no influence on the structure of the other domains, we

decided to remove it in order to reduce the system size and

therefore speed up the remaining computation. All simulations

were run for at least 200 ns. RMSD of MD simulations showed

that every system equilibrated in around 10 ns.

Alanine scanning was performed on the single 200 ns molecular

dynamics trajectory of CTP-WT system. A subset of 200

decorrelated frames (one every 10 ns) was extracted. On this

subset, we calculated binding free energies of Ala mutant species

using the MM-PBSA method, as implemented in the AMBER

molecular dynamics package (24). The Poisson-Boltzmann method

was used to compute the electrostatic contribution to the solvation

free energy. Ionic strength molarity was set to 0.1 M, the protein

dielectric constant to 1, and the solvent to 80. Every residue being

part of the CTP, excluding glycines and prolines, was scanned.

These residues play a major role in the determination of strand

flexibility, thus the alanine scanning is known to perform poorly.

The MM-PBSA method was also used to estimate the binding free

energy of WT and F457G mutated CTP to domain 4. For both

these measures, 200 decorrelated frames extracted from aero-CTP

and F547G MD simulations were used, respectively. Analysis of

MD trajectories, as well as rendering of protein structures, has

been performed using VMD [30].

Supporting Information

Figure S1 A: Sequence of the pre-pro-aerolysin used in this

study. The periplasmic secretion motif is colored black and the

different domains of the proteins are color-coded cyan (Domain 1),

red (Domain 2), green (Domain 3) and orange (Domain 4). The

CTP is shown in blue with the residues described in this study

shown in bold. The flexible linker connecting the CTP to the

Domain 4 of the protein is shown in bold. B: Two points of view of

proaerolysins with Ile-445 mutated to cysteine to which IEADANS

has been attached.

(TIF)

Figure S2 A: Disorder predictions performed using eight

different prediction algorithms on the proaerolysin sequence. In

red, the region spanning Gln-268 to Arg-282 was predicted by at

least six algorithms to be disordered. BC: Secondary structure

along a 195 ns MD simulation in explicit water of CTP (from

crystal structure 1PRE). B: Time vs CTP residues. A black area

indicates that a residue is part of an a-helix at a given time. On the

left side is a cartoon representation of the CTP structure with

arrows depicting beta-strands and rectangle representing alpha

helix. C: MD snapshots taken every 50 ns. Snapshot at time zero is

colored according to the percentage of time every residue spends

being part of an a-helix: red areas are mostly helical, blue areas

are not. Residues 449 to 454 (i.e. the alpha helix in the crystal

structure) spend ,70% of the time in a-helix, and appear to be the

only structured region of CTP.

(TIF)

Figure S3 AB: Pro (black) and activated (grey) aerolysin samples

(20 mM) were incubated with different concentrations of GdnHCl

(A) or urea (B) for 2 hrs. Activation was performed prior to

unfolding with trypsin agarose beads that were subsequently

removed. Fluorescence was measured with an excitation wave-

length of 280 nm and the fluorescence emission intensity ratio at

345/315 nm was determined and plotted as a function of urea

concentration. C: Urea unfolding curves of WT and different CTP

mutant proaerolysins described in this study (as in A).

(TIF)

Video S1 Molecular dynamics simulation of proaerolysin

F457G. Result of a molecular dynamics simulation of proaerolysin

F457G. The secondary structure of every frame, as calculated by

the DSSP algorithm, is represented in the cartoon with different

colors: yellow is beta sheet; white and cyan are random coil;

purple, blue, and red are alpha helix). Mutation F457G, located

on the CTP, has a destabilizing effect. Indeed, the CTP loses most

of its secondary structure and begins to disconnect from Domain

4. On Domain 4 an unfolding similar to the one observed in the

absence of CTP can be detected. The movie was rendered using

the VMD software.

(MP4)

Video S2 Molecular dynamics simulation of aerolysin WT

without the CTP. Result of a molecular dynamics simulation of

aerolysin WT with CTP manually removed. The secondary

structure of every frame, as calculated by the DSSP algorithm, is

represented in the cartoon with different colors: yellow is beta

sheet; white and cyan are random coil; purple and blue are alpha

helix. Two strands unfold from Domain 4 in the direction of the

loop region in Domain 3.

(MP4)

Protocol S1 Are described the protocols for Crystallization,

structure determination and refinement of the H132N aerolysin

mutant, Unfolding and refolding measurements, Disorder predic-

tion algorithms

(DOC)
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