52 research outputs found
A comparative study of the antiangiogenic activity of hydroxytyrosyl alkyl ethers
Versión preprint del manuscrito de los autores, publicado finalmente en: Food Chemistry 333 (2020) 127476 con DOI: 10.1016/j.foodchem.2020.127476The phenolic compound hydroxytyrosol and its derivatives are responsible for some of the health benefits of the
intake of virgin olive oil, having shown antiangiogenic properties. In this study, we explored the antiangiogenic
potential of six synthetic hydroxytyrosyl alkyl ethers (HT C1, C2, C4, C6, C8 and C12). Our results showed that
all compounds affected endothelial cell viability in vitro at low micromolar doses. In addition, compounds HT C1,
C2, C4 and C6 inhibited endothelial cell migration and formation of tubular-like structures. In these assays,
hydroxytyrosyl hexyl ether (HT C6) exhibited the most potent inhibitory activity in vitro, activating as well
apoptosis in endothelial cells. Furthermore, the antiangiogenic activity of HT C6 was confirmed in vivo in the
chick chorioallantoic membrane assay. Hence, we present hydroxytyrosol synthetic derivative HT C6 as a new
antiangiogenic compound and as a good candidate for an antiangiogenic drug in the treatment of angiogenesisdependent
diseases.This work was supported by the Spanish Ministry of Science,
Innovation and Universities (grants AGL2007-66373 and PID2019-
105010RB-I00), Andalusian Government and FEDER (P12-CTS-1507,
UMA18-FEDERJA-220 and funds from group BIO 267), as well as funds
from the University of Málaga (“Plan Propio de Investigación y
Transferencia”). The “CIBER de Enfermedades Raras” and “CIBER de
Enfermedades Cardiovasculares” are initiatives from the ISCIII (Spain).
The funders had no role in the study design, data collection and analysis,
decision to publish or preparation of the manuscript
Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin β7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19
Phase III Trial of Adjuvant Capecitabine After Standard Neo-/Adjuvant Chemotherapy in Patients With Early Triple-Negative Breast Cancer (GEICAM/2003-11_CIBOMA/2004-01)
Altres ajuts: Agustí Barnadas: Honoraria: Pfizer. Consulting or Advisory Role: Pfizer, Novartis, Eli Lilly. Speakers'Bureau: Roche, Pfizer, Novartis, Genomic Health International. Travel, Accommodations, Expenses: Roche, Pfizer; Miguel A. Seguí: Consulting or Advisory Role: Roche, Pfizer, Novartis, Amgen, Eisai, Eli Lilly. Speakers' Bureau: Roche, Pfizer, Amgen. Research Funding: Roche (Inst), Novartis (Inst). Travel, Accommodations, Expenses: Roche, Pfizer, Novartis, Amgen.Operable triple-negative breast cancers (TNBCs) have a higher risk of relapse than non-TNBCs with standard therapy. The GEICAM/2003-11_CIBOMA/2004-01 trial explored extended adjuvant capecitabine after completion of standard chemotherapy in patients with early TNBC. Eligible patients were those with operable, node-positive-or node negative with tumor 1 cm or greater-TNBC, with prior anthracycline- and/or taxane-containing chemotherapy. After central confirmation of TNBC status by immunohistochemistry, patients were randomly assigned to either capecitabine or observation. Stratification factors included institution, prior taxane-based therapy, involved axillary lymph nodes, and centrally determined phenotype (basal v nonbasal, according to cytokeratins 5/6 and/or epidermal growth factor receptor positivity by immunohistochemistry). The primary objective was to compare disease-free survival (DFS) between both arms. Eight hundred seventy-six patients were randomly assigned to capecitabine (n = 448) or observation (n = 428). Median age was 49 years, 55.9% were lymph node negative, 73.9% had a basal phenotype, and 67.5% received previous anthracyclines plus taxanes. Median length of follow-up was 7.3 years. DFS was not significantly prolonged with capecitabine versus observation [hazard ratio (HR), 0.82; 95% CI, 0.63 to 1.06; P =.136]. In a preplanned subgroup analysis, nonbasal patients seemed to derive benefit from the addition of capecitabine with a DFS HR of 0.53 versus 0.94 in those with basal phenotype (interaction test P =.0694) and an HR for overall survival of 0.42 versus 1.23 in basal phenotype (interaction test P =.0052). Tolerance of capecitabine was as expected, with 75.2% of patients completing the planned 8 cycles. This study failed to show a statistically significant increase in DFS by adding extended capecitabine to standard chemotherapy in patients with early TNBC. In a preplanned subset analysis, patients with nonbasal phenotype seemed to obtain benefit with capecitabine, although this will require additional validation
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Diseño para el desarrollo sustentable y la habitabilidad segura e incluyente
Este libro se divide en dos partes que permiten permear en el campo de la enseñanza del diseño; la primera se enfoca en temáticas que se desprenden del diseño en la educación para la sustentabilidad; en la segunda, se identifican las tendencias del diseño como un modo de verlo y sentirlo: va desde el diseño emocional hacia uno de conservación, reúso y reparación de objetos para reducir el consumo de recursos materiales
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Colombian consensus recommendations for diagnosis, management and treatment of the infection by SARS-COV-2/ COVID-19 in health care facilities - Recommendations from expert´s group based and informed on evidence
La Asociación Colombiana de Infectología (ACIN) y el Instituto de Evaluación de Nuevas Tecnologías de la Salud (IETS) conformó un grupo de trabajo para desarrollar
recomendaciones informadas y basadas en evidencia, por consenso de expertos para la atención, diagnóstico y manejo de casos de Covid 19. Estas guías son
dirigidas al personal de salud y buscar dar recomendaciones en los ámbitos de la atención en salud de los casos de Covid-19, en el contexto nacional de Colombia
Anales del III Congreso Internacional de Vivienda y Ciudad "Debate en torno a la nueva agenda urbana"
Acta de congresoEl III Congreso Internacional de Vivienda y Ciudad “Debates en torno a la NUEVa Agenda Urbana”, ha sido una apuesta de alto compromiso por acercar los debates centrales y urgentes que tensionan el pleno ejercicio del derecho a la ciudad. Para ello las instituciones organizadoras (INVIHAB –Instituto de Investigación de Vivienda y Hábitat y MGyDH-Maestría en Gestión y Desarrollo Habitacional-1), hemos convidado un espacio que se concretó con potencia en un debate transdisciplinario. Convocó a intelectuales de prestigio internacional, investigadores, académicos y gestores estatales, y en una metodología de innovación articuló las voces académicas con las de las organizaciones sociales y/o barriales en el Foro de las Organizaciones Sociales que tuvo su espacio propio para dar voz a quienes están trabajando en los desafíos para garantizar los derechos a la vivienda y los bienes urbanos en nuestras ciudades del Siglo XXI
Fungal Planet description sheets: 1182-1283
Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Comoclathris antarctica from soil. Australia, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggii in fruit of Citrus australis, Microdochium ratticaudae from stem of Sporobolus natalensis, Neocelosporium corymbiae on stems of Corymbia variegata, Phytophthora kelmanii from rhizosphere soil of Ptilotus pyramidatus, Pseudosydowia backhousiae on living leaves of Backhousia citriodora, Pseudosydowia indoor oopillyensis, Pseudosydowia louisecottisiae and Pseudosydowia queenslandica on living leaves of Eucalyptus sp. Brazil, Absidia montepascoalis from soil. Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filicis from an unidentified fern. Croatia, Mollisia endogranulata on deteriorated hardwood. Czech Republic, Arcopilus navicularis from tea bag with fruit tea, Neosetophoma buxi as endophyte from Buxus sempervirens, Xerochrysium bohemicum on surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyaneobasale on basic to calcareous soil, Fusarium aconidiale from Triticum aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetraploa endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kanadii on soil under Castanopsis sp., Penicillium uttarakhandense from soil. Italy, Penicillium ferraniaense from compost. Namibia, Bezerromyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidicola on leaves of Stipagrostis sp., Cymostachys euphorbiae on leaves of Euphorbia sp., Deniquelata hypolithi from hypolith under a rock, Hysterobrevium walvisbayicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbayicola from hypolith under a rock, Lapidomyces stipagrostidicola on leaves of Stipagrostis sp., Nothophaeotheca mirabibensis (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Blepharis obmitrata, Paramyrothecium salvadorae on twigs of Salvadora persica, Preussia procaviicola on dung of Procavia sp., Sordaria equicola on zebra dung, Volutella salvadorae on stems of Salvadora persica. Netherlands, Entoloma ammophilum on sandy soil, Entoloma pseudocruentatum on nutrient poor(acid)soil, Entoloma pudens on plant debris, amongst grasses. [...]Leslie W.S. de Freitas and colleagues express their
gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) for scholarships provided to Leslie Freitas and for the research grant
provided to André Luiz Santiago; their contribution was financed by the
projects ‘Diversity of Mucoromycotina in the different ecosystems of the
Atlantic Rainforest of Pernambuco’ (FACEPE–First Projects Program PPP/
FACEPE/CNPq–APQ–0842-2.12/14) and ‘Biology of conservation of fungi
s.l. in areas of Atlantic Forest of Northeast Brazil’ (CNPq/ICMBio 421241/
2017-9) H.B. Lee was supported by the Graduate Program for the Undiscovered
Taxa of Korea (NIBR202130202). The study of O.V. Morozova, E.F.
Malysheva, V.F. Malysheva, I.V. Zmitrovich, and L.B. Kalinina was carried
out within the framework of a research project of the Komarov Botanical
Institute RAS (АААА-А19-119020890079-6) using equipment of its Core
Facility Centre ‘Cell and Molecular Technologies in Plant Science’. The work
of O. V. Morozova, L.B. Kalinina, T. Yu. Svetasheva, and E.A. Zvyagina was
financially supported by Russian Foundation for Basic Research project no.
20-04-00349. E.A. Zvyagina and T.Yu. Svetasheva are grateful to A.V. Alexandrova,
A.E. Kovalenko, A.S. Baykalova for the loan of specimens, T.Y.
James, E.F. Malysheva and V.F. Malysheva for sequencing. J.D. Reyes
acknowledges B. Dima for comparing the holotype sequence of Cortinarius
bonachei with the sequences in his database. A. Mateos and J.D. Reyes
acknowledge L. Quijada for reviewing the phylogeny and S. de la Peña-
Lastra and P. Alvarado for their support and help. Vladimir I. Kapitonov and
colleagues are grateful to Brigitta Kiss for help with their molecular studies.
This study was conducted under research projects of the Tobolsk Complex
Scientific Station of the Ural Branch of the Russian Academy of Sciences
(N АААА-А19-119011190112-5). E. Larsson acknowledges the Swedish
Taxonomy Initiative, SLU Artdatabanken, Uppsala (dha.2019.4.3-13). The
study of D.B. Raudabaugh and colleagues was supported by the Schmidt
Science Fellows, in partnership with the Rhodes Trust. Gregorio Delgado is
grateful to Michael Manning and Kamash Pillai (Eurofins EMLab P&K) for
provision of laboratory facilities. Jose G. Maciá-Vicente acknowledges support
from the German Research Foundation under grant MA7171/1-1, and
from the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer
Exzellenz (LOEWE) of the state of Hesse within the framework of the Cluster
for Integrative Fungal Research (IPF). Thanks are also due to the authorities
of the Cabañeros National Park and Los Alcornocales Natural Park
for granting the collection permit and for support during field work. The study
of Alina V. Alexandrova was carried out as part of the Scientific Project of
the State Order of the Government of Russian Federation to Lomonosov
Moscow State University No. 121032300081-7. Michał Gorczak was
financially supported by the Ministry of Science and Higher Education through
the Faculty of Biology, University of Warsaw intramural grant DSM 0117600-
13. M. Gorczak acknowledges M. Klemens for sharing a photo of the
Białowieża Forest logging site and M. Senderowicz for help with preparing
the illustration. Ivona Kautmanová and D. Szabóová were funded by the
Operational Program of Research and Development and co-financed with
the European Fund for Regional Development (EFRD). ITMS 26230120004:
‘Building of research and development infrastructure for investigation of
genetic biodiversity of organisms and joining IBOL initiative’. Ishika Bera,
Aniket Ghosh, Jorinde Nuytinck and Annemieke Verbeken are grateful to the
Director, Botanical Survey of India (Kolkata), Head of the Department of
Botany & Microbiology & USIC Dept. HNB Garhwal University, Srinagar,
Garhwal for providing research facilities. Ishika Bera and Aniket Ghosh acknowledge
the staff of the forest department of Arunachal Pradesh for facilitating
the macrofungal surveys to the restricted areas. Sergey Volobuev
was supported by the Russian Science Foundation (RSF project N 19-77-
00085). Aleksey V. Kachalkin and colleagues were supported by the Russian
Science Foundation (grant No. 19-74-10002). The study of Anna M.
Glushakova was carried out as part of the Scientific Project of the State
Order of the Government of Russian Federation to Lomonosov Moscow
State University No. 121040800174-6. Tracey V. Steinrucken and colleagues
were supported by AgriFutures Australia (Rural Industries Research and
Development Corporation), through funding from the Australian Government
Department of Agriculture, Water and the Environment, as part of its Rural
Research and Development for Profit program (PRJ-010527). Neven Matočec
and colleagues thank the Croatian Science Foundation for their financial
support under the project grant HRZZ-IP-2018-01-1736 (ForFungiDNA). Ana
Pošta thanks the Croatian Science Foundation for their support under the
grant HRZZ-2018-09-7081. The research of Milan Spetik and co-authors
was supported by Internal Grant of Mendel University in Brno No. IGAZF/
2021-SI1003. K.C. Rajeshkumar thanks SERB, the Department of Science
and Technology, Government of India for providing financial support
under the project CRG/2020/000668 and the Director, Agharkar Research
Institute for providing research facilities. Nikhil Ashtekar thanks CSIR-HRDG,
INDIA, for financial support under the SRF fellowship (09/670(0090)/2020-EMRI),
and acknowledges the support of the DIC Microscopy Facility, established
by Dr Karthick Balasubramanian, B&P (Plants) Group, ARI, Pune. The research
of Alla Eddine Mahamedi and co-authors was supported by project
No. CZ.02.1.01/0.0/0.0/16_017/0002334, Czech Republic. Tereza Tejklová
is thanked for providing useful literature. A. Polhorský and colleagues were
supported by the Operational Program of Research and Development and
co-financed with the European fund for Regional Development (EFRD), ITMS
26230120004: Building of research and development infrastructure for investigation
of genetic biodiversity of organisms and joining IBOL initiative.
Yu Pei Tan and colleagues thank R. Chen for her technical support. Ernest
Lacey thanks the Cooperative Research Centres Projects scheme (CRCPFIVE000119)
for its support. Suchada Mongkolsamrit and colleagues were
financially supported by the Platform Technology Management Section,
National Center for Genetic Engineering and Biotechnology (BIOTEC),
Project Grant No. P19-50231. Dilnora Gouliamova and colleagues were
supported by a grant from the Bulgarian Science Fund (KP-06-H31/19). The
research of Timofey A. Pankratov was supported by the Russian Foundation
for Basic Research (grant No. 19-04-00297a). Gabriel Moreno and colleagues
wish to express their gratitude to L. Monje and A. Pueblas of the Department
of Drawing and Scientific Photography at the University of Alcalá for their
help in the digital preparation of the photographs, and to J. Rejos, curator of
the AH herbarium, for his assistance with the specimens examined in the
present study. Vit Hubka was supported by the Charles University Research
Centre program No. 204069. Alena Kubátová was supported by The National
Programme on Conservation and Utilization of Microbial Genetic
Resources Important for Agriculture (Ministry of Agriculture of the Czech
Republic). The Kits van Waveren Foundation (Rijksherbariumfonds Dr E. Kits
van Waveren, Leiden, Netherlands) contributed substantially to the costs of
sequencing and travelling expenses for M. Noordeloos. The work of B. Dima
was supported by the ÚNKP-20-4 New National Excellence Program of the
Ministry for Innovation and Technology from the source of the National Research,
Development and Innovation Fund, and by the ELTE Thematic Excellence
Programme 2020 supported by the National Research, Development
and Innovation Office of Hungary (TKP2020-IKA-05). The Norwegian Entoloma
studies received funding from the Norwegian Biodiversity Information
Centre (NBIC), and the material was partly sequenced through NorBOL.
Gunnhild Marthinsen and Katriina Bendiksen (Natural History Museum,
University of Oslo, Norway) are acknowledged for performing the main parts
of the Entoloma barcoding work. Asunción Morte is grateful to AEI/FEDER,
UE (CGL2016-78946-R) and Fundación Séneca - Agencia de Ciencia y
Tecnología de la Región de Murcia (20866/PI/18) for financial support.
Vladimír Ostrý was supported by the Ministry of Health, Czech Republic -
conceptual development of research organization (National Institute of
Public Health – NIPH, IN 75010330). Konstanze Bensch (Westerdijk Fungal
Biodiversity Institute, Utrecht) is thanked for correcting the spelling of various
Latin epithets.Peer reviewe
- …