34 research outputs found

    Massive envelopes and filaments in the NGC 3603 star forming region

    Full text link
    The formation of massive stars and their arrival on the zero-age main-sequence occurs hidden behind dense clouds of gas and dust. In the giant Hii region NGC 3603, the radiation of a young cluster of OB stars has dispersed dust and gas in its vicinity. At a projected distance of 2:5 pc from the cluster, a bright mid-infrared (mid-IR) source (IRS 9A) had been identified as a massive young stellar object (MYSO), located on the side of a molecular clump (MM2) of gas facing the cluster. We investigated the physical conditions in MM2, based on APEX sub-mm observations using the SABOCA and SHFI instruments, and archival ATCA 3 mm continuum and CS spectral line data. We resolved MM2 into several compact cores, one of them closely associated with IRS 9A. These are likely infrared dark clouds as they do not show the typical hot-core emission lines and are mostly opaque against the mid-IR background. The compact cores have masses of up to several hundred times the solar mass and gas temperatures of about 50 K, without evidence of internal ionizing sources. We speculate that IRS 9A is younger than the cluster stars, but is in an evolutionary state after that of the compact cores

    High Angular Resolution Observations of the Collimated Jet Source Associated with a Massive Protostar in IRAS 16547-4247

    Full text link
    A triple radio source recently detected in association with the luminous infrared source IRAS 16547-4247 has been studied with high angular resolution and high sensitivity with the Very Large Array at 3.6 and 2 cm. Our observations confirm the interpretation that the central object is a thermal radio jet, while the two outer lobes are most probably heavily obscured HH objects. The thermal radio jet is resolved angularly for the first time and found to align closely with the outer lobes. The opening angle of the thermal jet is estimated to be 25\sim 25^\circ, confirming that collimated outflows can also be present in massive protostars. The proper motions of the outer lobes should be measurable over timescales of a few years. Several fainter sources detected in the region are most probably associated with other stars in a young cluster.Comment: 9 pages, 2 figure

    Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds

    Full text link
    We present measurements of the mean dense core lifetimes in numerical simulations of magnetically supercritical, turbulent, isothermal molecular clouds, in order to compare with observational determinations. "Prestellar" lifetimes (given as a function of the mean density within the cores, which in turn is determined by the density threshold n_thr used to define them) are consistent with observationally reported values, ranging from a few to several free-fall times. We also present estimates of the fraction of cores in the "prestellar", "stellar'', and "failed" (those cores that redisperse back into the environment) stages as a function of n_thr. The number ratios are measured indirectly in the simulations due to their resolution limitations. Our approach contains one free parameter, the lifetime of a protostellar object t_yso (Class 0 + Class I stages), which is outside the realm of the simulations. Assuming a value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3, again in good agreement with observational determinations. We also find that the mass in the failed cores is comparable to that in stellar cores at n_thr = 1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in agreement with recent observational suggestions that at the latter densities the cores are in general gravitationally dominated. We conclude by noting that the timescale for core contraction and collapse is virtually the same in the subcritical, ambipolar diffusion-mediated model of star formation, in the model of star formation in turbulent supercritical clouds, and in a model intermediate between the previous two, for currently accepted values of the clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm

    Infall and Outflow around the HH 212 protostellar system

    Full text link
    HH 212 is a highly collimated jet discovered in H2 powered by a young Class 0 source, IRAS 05413-0104, in the L1630 cloud of Orion. We have mapped around it in 1.33 mm continuum, 12CO (J=21J=2-1), 13CO (J=21J=2-1), C18O (J=21J=2-1), and SO (JK=6554J_K = 6_5-5_4) emission at \sim \arcs{2.5} resolution with the Submillimeter Array. A dust core is seen in the continuum around the source. A flattened envelope is seen in C18O around the source in the equator perpendicular to the jet axis, with its inner part seen in 13CO. The structure and kinematics of the envelope can be roughly reproduced by a simple edge-on disk model with both infall and rotation. In this model, the density of the disk is assumed to have a power-law index of p=1.5p=-1.5 or -2, as found in other low-mass envelopes. The envelope seems dynamically infalling toward the source with slow rotation because the kinematics is found to be roughly consistent with a free fall toward the source plus a rotation of a constant specific angular momentum. A 12CO outflow is seen surrounding the H2 jet, with a narrow waist around the source. Jetlike structures are also seen in 12CO near the source aligned with the H2 jet at high velocities. The morphological relationship between the H2 jet and the 12CO outflow, and the kinematics of the 12CO outflow along the jet axis are both consistent with those seen in a jet-driven bow shock model. SO emission is seen around the source and the H2 knotty shocks in the south, tracing shocked emission around them.Comment: 17 pages, 11 figures, Accepted by the Ap

    Spitzer Observations of Bok Globule B335: Isolated Star Formation Efficiency and Cloud Structure

    Get PDF
    We present infrared and millimeter observations of Barnard 335, the prototypical isolated Bok globule with an embedded protostar. Using Spitzer data we measure the source luminosity accurately; we also constrain the density profile of the innermost globule material near the protostar using the observation of an 8.0 um shadow. HHT observations of 12CO 2 --> 1 confirm the detection of a flattened molecular core with diameter ~10000 AU and the same orientation as the circumstellar disk (~100 to 200 AU in diameter). This structure is probably the same as that generating the 8.0 um shadow and is expected from theoretical simulations of collapsing embedded protostars. We estimate the mass of the protostar to be only ~5% of the mass of the parent globule.Comment: 15 pages, 17 figures, emulateapj format, accepted for publication in Ap

    Core fragmentation and Toomre stability analysis of W3(H2O): A case study of the IRAM NOEMA large program CORE

    Get PDF
    The fragmentation mode of high-mass molecular clumps and the properties of the central rotating structures surrounding the most luminous objects have yet to be comprehensively characterised. Using the IRAM NOrthern Extended Millimeter Array (NOEMA) and the IRAM 30-m telescope, the CORE survey has obtained high-resolution observations of 20 well-known highly luminous star-forming regions in the 1.37 mm wavelength regime in both line and dust continuum emission. We present the spectral line setup of the CORE survey and a case study for W3(H2O). At ~0.35" (700 AU at 2 kpc) resolution, the W3(H2O) clump fragments into two cores (West and East), separated by ~2300 AU. Velocity shifts of a few km/s are observed in the dense-gas tracer, CH3CN, across both cores, consistent with rotation and perpendicular to the directions of two bipolar outflows, one emanating from each core. The kinematics of the rotating structure about W3(H2O) W shows signs of differential rotation of material, possibly in a disk-like object. The observed rotational signature around W3(H2O) E may be due to a disk-like object, an unresolved binary (or multiple) system, or a combination of both. We fit the emission of CH3CN (12-11) K = 4-6 and derive a gas temperature map with a median temperature of ~165 K across W3(H2O). We create a Toomre Q map to study the stability of the rotating structures against gravitational instability. The rotating structures appear to be Toomre unstable close to their outer boundaries, with a possibility of further fragmentation in the differentially-rotating core W3(H2O) W. Rapid cooling in the Toomre-unstable regions supports the fragmentation scenario. Combining millimeter dust continuum and spectral line data toward the famous high-mass star-forming region W3(H2O), we identify core fragmentation on large scales, and indications for possible disk fragmentation on smaller spatial scales

    Fragmentation and disk formation during high-mass star formation: The IRAM NOEMA (Northern Extended Millimeter Array) large program CORE

    Get PDF
    Aims: We aim to understand the fragmentation as well as the disk formation, outflow generation and chemical processes during high-mass star formation on spatial scales of individual cores. Methods: Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30m telescope, we have observed in the IRAM large program CORE the 1.37mm continuum and spectral line emission at high angular resolution (~0.4'') for a sample of 20 well-known high-mass star-forming regions with distances below 5.5kpc and luminosities larger than 10^4Lsun. Results: We present the overall survey scope, the selected sample, the observational setup and the main goals of CORE. Scientifically, we concentrate on the mm continuum emission on scales on the order of 1000AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented versus singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions: The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation

    An Overview of the 2014 ALMA Long Baseline Campaign

    Get PDF
    A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the Astrophysical Journal Letters; this version with small changes to affiliation

    IRAS 23385+6053: An embedded massive cluster in the making

    Get PDF
    This study is part of the project ``CORE'', an IRAM/NOEMA large program consisting of observations of the millimeter continuum and molecular line emission towards 20 selected high-mass star forming regions. We focus on IRAS23385+6053, which is believed to be the least evolved source of the CORE sample. The observations were performed at ~1.4 mm and employed three configurations of NOEMA and additional single-dish maps, merged with the interferometric data to recover the extended emission. Our correlator setup covered a number of lines from well-known hot core tracers and a few outflow tracers. The angular (~0.45"-0.9") and spectral (0.5 km/s) resolutions were sufficient to resolve the clump in IRAS23385+6053 and investigate the existence of large-scale motions due to rotation, infall, or expansion. We find that the clump splits into six distinct cores when observed at sub-arcsecond resolution. These are identified through their 1.4 mm continuum and molecular line emission. We produce maps of the velocity, line width, and rotational temperature from the methanol and methyl cyanide lines, which allow us to investigate the cores and reveal a velocity and temperature gradient in the most massive core. We also find evidence of a bipolar outflow, possibly powered by a low-mass star. We present the tentative detection of a circumstellar self-gravitating disk lying in the most massive core and powering a large-scale outflow previously known in the literature. In our scenario, the star powering the flow is responsible for most of the luminosity of IRAS23385+6053 (~3000 L3000~L_\odot). The other cores, albeit with masses below the corresponding virial masses, appear to be accreting material from their molecular surroundings and are possibly collapsing or on the verge of collapse. We conclude that we are observing a sample of star-forming cores that is bound to turn into a cluster of massive stars
    corecore