354 research outputs found
Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil
Iron intakes calculated from one-day weighed records were compared with those from same day analyzed duplicate diet composites collected from 120 Malawian women living in two rural districts with contrasting soil mineralogy and where threshing may contaminate cereals with soil iron. Soils and diet composites from the two districts were then subjected to a simulated gastrointestinal digestion and iron availability in the digests measured using a Caco-2 cell model. Median analyzed iron intakes (mg/d) were higher (p < 0.001) than calculated intakes in both Zombwe (16.6 vs. 10.1 mg/d) and Mikalango (29.6 vs. 19.1 mg/d), attributed to some soil contaminant iron based on high Al and Ti concentrations in diet composites. A small portion of iron in acidic soil from Zombwe, but not Mikalango calcareous soil, was bioavailable, as it induced ferritin expression in the cells, and may have contributed to higher plasma ferritin and total body iron for the Zombwe women reported earlier, despite lower iron intakes. In conclusion, iron intakes calculated from food composition data were underestimated, highlighting the importance of analyzing duplicate diet composites where extraneous contaminant iron from soil is likely. Acidic contaminant soil may make a small but useful contribution to iron nutrition
Recommended from our members
Considerations for reducing food system energy demand while scaling up urban agriculture
There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from private gardens to sophisticated commercial operations. Much of this interest is in the spirit of environmental protection, with reduced waste and transportation energy highlighted as some of the proposed benefits of UA; however, explicit consideration of energy and resource requirements needs to be made in order to realize these anticipated environmental benefits. A literature review is undertaken here to provide new insight into the energy implications of scaling up UA in cities in high-income countries, considering UA classification, direct/indirect energy pressures, and
interactions with other components of the food–energy–water nexus. This is followed by an exploration of ways in which these cities can plan for the exploitation of waste flows for resource-efficient UA.
Given that it is estimated that the food system contributes nearly 15% of total US energy demand, optimization of resource use in food production, distribution, consumption, and waste systems may have a significant energy impact. There are limited data available that quantify resource demand implications directly associated with UA systems, highlighting that the literature is not yet sufficiently
robust to make universal claims on benefits. This letter explores energy demand from conventional resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging materials, and transportation/supply chains to shed light on UA-focused research needs.
By analyzing data and cases from the existing literature, we propose that gains in energy efficiency could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2, greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy demands relative to conventional approaches. This begs a number of energy-focused UA research questions that explore the opportunities for integrating the variety of UA structures and technologies, so that they are better able to exploit these urban waste flows and achieve whole-system reductions in energy demand. Any planning approach to implement these must, as always, assess how context will
influence the viability and value added from the promotion of UA
Soil type influences crop mineral composition in Malawi
Food supply and composition data can be combined to estimate micronutrient intakes and deficiency risks among populations. These estimates can be improved by using local crop composition data that can capture environmental influences including soil type. This study aimed to provide spatially resolved crop composition data for Malawi, where information is currently limited.
Six hundred and fifty-two plant samples, representing 97 edible food items, were sampled from N150 sites in Malawi between 2011 and 2013. Samples were analysed by ICP-MS for up to 58 elements, including the essential minerals calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), selenium (Se) and zinc (Zn).
Maize grain Ca, Cu, Fe, Mg, Se and Zn concentrations were greater from plants grown on calcareous soils than those from the more widespread low-pH soils. Leafy vegetables from calcareous soils had elevated leaf Ca, Cu, Fe and Se concentrations, but lower Zn concentrations. Several foods were found to accumulate high levels of Se, including the leaves of Moringa, a crop not previously been reported in East African food composition data sets.
New estimates of national dietary mineral supplies were obtained for non-calcareous and calcareous soils. High risks of Ca (100%), Se (100%) and Zn (57%) dietary deficiencies are likely on non-calcareous soils. Deficiency risks on calcareous soils are high for Ca (97%), but lower for Se (34%) and Zn (31%). Risks of Cu, Fe and Mg deficiencies appear to be low on the basis of dietary supply levels
Thinking outside the channel : modeling nitrogen cycling in networked river ecosystems
Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 9 (2011): 229–238, doi:10.1890/080211.Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify important components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial–aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.This research was supported by NSF (DEB-0111410).
Additional support was provided by NSF for BJP and
SMT (DEB-0614301), for WMW (OCE-9726921 and
DEB-0614282), for WHM and JDP (DEB-0620919), for
SKH (DEB-0423627), and by the Gordon and Betty
Moore Foundation for AMH, GCP, ESB, and JAS, and by
an EPA Star Fellowship for AMH
The Governance of Corporate Responses to Climate Change: An International Comparison
In response to pressures from governments, investors, non-governmental organisations and other stakeholders, many large corporations have adopted a variety of carbon and energy management practices, taken action to reduce their emissions and set targets to reduce their greenhouse gas emissions. Using the case of international retailers, this article examines whether, and under what conditions, non-state actors might be capable of assuming the governance roles that have historically been played by national governments. This article concludes that external governance pressures can, if they are aligned, robust and of sufficient duration, have a significant influence on internal governance processes and on corporate strategies and actions. However, the specific actions that are taken by companies – in particular those that require significant capital investments – are constrained by the ‘business case’. That is, companies will generally only invest capital in situations when there is a clear financial case (i.e. where the benefits outweigh the costs, when the rate of return meets or exceeds company targets) for action. That is, the extent to which external governance pressures can force companies to take action, in particular challenging or transformative actions that go beyond the boundaries of the business case, is not at all clear. This is particularly the case if the business case weakens, or if the opportunities for incremental change are exhausted. In that context, the power of non-state actors to force them to consider radical changes in their business processes and their use of energy therefore seems to be very limited
Patent characteristics and patent ownership change in agricultural biotechnology
We examine the effect of various patent characteristics on changes in patent ownership that occurred due to mergers, acquisitions, and spin-offs in the agricultural biotechnology industry in the 1980s and 1990s. Our goal is to shed light on the role that certain patent qualities may play in the transfer of knowledge and technology that takes place through merger and acquisition activity. Specifically, we empirically measure the effect of patent value, scope/breadth, strength, and the nationality of the patent owner on the occurrence and frequency of patent ownership change in the agricultural biotechnology sector during the 1980s and 1990s. We find that the greater is the patent breadth and the less valuable and 'weaker' is the patent, the greater is the likelihood and the frequency of patent ownership change. Also, the nature of patent ownership affects patent ownership change, with patents owned by multiple owners of different nationalities most likely to change hands
- …