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Abstract
There is an increasing global interest in scaling up urban agriculture (UA) in its various forms, from
private gardens to sophisticated commercial operations. Much of this interest is in the spirit of
environmental protection, with reduced waste and transportation energy highlighted as some of the
proposed benefits of UA; however, explicit consideration of energy and resource requirements needs
to be made in order to realize these anticipated environmental benefits. A literature review is
undertaken here to provide new insight into the energy implications of scaling up UA in cities in
high-income countries, considering UA classification, direct/indirect energy pressures, and
interactions with other components of the food–energy–water nexus. This is followed by an
exploration of ways in which these cities can plan for the exploitation of waste flows for
resource-efficient UA.

Given that it is estimated that the food system contributes nearly 15% of total US energy demand,
optimization of resource use in food production, distribution, consumption, and waste systems may
have a significant energy impact. There are limited data available that quantify resource demand
implications directly associated with UA systems, highlighting that the literature is not yet sufficiently
robust to make universal claims on benefits. This letter explores energy demand from conventional
resource inputs, various production systems, water/energy trade-offs, alternative irrigation, packaging
materials, and transportation/supply chains to shed light on UA-focused research needs.

By analyzing data and cases from the existing literature, we propose that gains in energy efficiency
could be realized through the co-location of UA operations with waste streams (e.g. heat, CO2,
greywater, wastewater, compost), potentially increasing yields and offsetting life cycle energy
demands relative to conventional approaches. This begs a number of energy-focused UA research
questions that explore the opportunities for integrating the variety of UA structures and technologies,
so that they are better able to exploit these urban waste flows and achieve whole-system reductions in
energy demand. Any planning approach to implement these must, as always, assess how context will
influence the viability and value added from the promotion of UA.

Introduction

Urban agriculture (UA) has been undergoing a global
resurgence in recent decades, with cities in both
advanced and emerging economies implementing

programs to encourage its use (Mok et al 2013,
Orsini et al 2013, Hamilton et al 2013, Vitiello and
Brinkley 2013). This renewed interest has led to the
exploration of the extent to which UA could be
expanded, including a number of investigations that
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estimate the potential for UA to meet local food
demand; for example, Grewal and Grewal (2012),
McClintock et al (2013) and Goldstein et al (2017),
suggest provision of total food demand (former) and
vegetable demand (latter two), of 4.2%−17.7%, 5%
and 32%, respectively. Expanding UA is expected to
improve local sustainability, includingbenefits to social
(addressing food deserts, building community cohe-
sion, or higher intake of fresh produce) and economic
(cash crop production, reduced food costs) facets of
cities. The environmental aspects associated with the
net direct and indirect energy implications of UA will
be the primary sustainability focus area of this research.

Part of the rationale for reconsidering UA has been
its potential environmental benefits, including reduc-
tions in energy demand throughout the food supply
chain. As a result, UA has been included in green-
house gas (GHG) mitigation strategies for cities (Arup
and C40 Cities 2014) and broader urban sustainability
agendas through multi-city agreements and partner-
ships, suchas theUK’sSustainableFoodCitiesNetwork
and the Milan Urban Food Policy Pact, the latter of
which includes 100 large cities around the world (Milan
2015, Andrews et al 2017). However, when consider-
ing the complex interplay between food production,
energy requirements, and water availability (i.e. the
food–energy–water nexus), the ability of UA to reduce
energy demand is unclear.

This review article examines energy use in the
food system, explores the opportunities that exist for
high-income cities to increase the energy/resource
efficiency of this overall system through UA, and
proposes changes that could be made in the plan-
ning of cities to enable greater reductions in energy
demand, with a focus on the United States. The scope
extends beyond the frequently-assessed topic of trans-
portation into topics such as embodied energy of
production inputs (i.e. water, nutrients, heating, CO2),
reduction in packaging, storage, and processing needs.
This review aims to provide a point of reference for
energy considerations that should be made if UA is
going to provide a greater share of the global food
supply.

Classifying urban agriculture

Estimating the current scale of UA is difficult and varies
based on how it is defined; for example, Thebo et al
(2014) estimate that there were 67 megahectares (Mha;
106 ha) of UA8 globally in 2000 (5% of global arable
land in that year; Food and Agriculture Organiza-
tion 2010, table A4), with roughly 1/3 of the UA area
being irrigated. Their quantification includes spatial

8 Thebo et al (2014) define urban agriculture as the spatial coinci-
dence of agricultural areas with urban extents with populations over
50 000.

data where agricultural areas and urban boundaries
with populations greater than 50 000 overlap, most of
which would be classified as peri-urban9 agriculture
and would not capture small-scale operations such as
residential gardens, vacant lots, or building-integrated
production (e.g. balcony gardens, rooftop gardens).
Inclusion of peri-urban agriculture would produce a
substantially higher estimate of UA than the area that
is currently used in these more commonly-perceived
forms of UA. Looking at the scale of some of these
types of UA, Taylor and Lovell (2012) examine the
total area of UA in the city of Chicago using 2010 aerial
photographs. They find that approximately 0.04%
of Chicago’s land area of 606 km2 was being used
for urban agriculture; of this, nearly half (45%) was
in residential gardens, while most of the remainder
was in vacant lots (27%) and community food gardens
(21%). To provide a sense of scale of the opportunity
to expand urban agriculture, a 2000 study of vacant
land in US cities finds that those in the Midwest had an
average of 12% vacant land, and a national average of
15% (Pagano and Bowman 2000)10.

As alluded to above, UA manifests itself in a num-
ber of different structures and locations within the
built environment. Attempts have been made in the
literature to classify UA; Mok et al (2013) identify
three distinct scales of agriculture in urban systems.
These are (in order of decreasing size): small com-
mercial farms and community-supported agriculture,
community gardens, and backyard gardens. All of these
UA scales differ in their structure, inputs, and pro-
ductivity; as a result, their net impact on life cycle
energy demand, and other resource inputs, also varies.
Goldstein et al (2016b) further classify UA to con-
sider structure and inputs in a taxonomic scheme,
based on the conditioning required for the growing
environment (temperature, light and CO2 control)
and integration within the surrounding urban system
(building integrated or ground based). They claim that
both features are important to UA energy regimes,
with space conditioning (particularly the need for heat-
ing in cold climates) being an essential consideration,
along with the potential for building integrated farms
to utilize dissipative heat and CO2 to offset production
inputs.

A broad classification of UA is provided in table
1, which is roughly ordered by scale and sophisti-
cation of production. It should be highlighted that
while the preservation of peri-urban agriculture can
be captured in assessments of UA, the focus of
this review is on approaches to scaling up UA that

9 Peri-urban agriculture refers to agricultural production that occurs
at the urban–rural interface.
10 Data include vacant land with and without abandoned buildings;
Chicago did not provide data for this study to allow a direct com-
parison, hence the average area for Midwest cities is provided here;
as well, it is not being suggested here that all vacant land be allocated
to, or are suitable for, UA.
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Table 1. Type of urban agriculture associated with structure/location of production, potential beneficial energy impacts relative to intensive
rural agriculture, and requirements for upscaling.

Type of urban

agriculture
Authors’ definition Potential direct energy

benefits
Considerations for successful

upscaling
Sources

Residential
gardens

Open air or protected11 food

production occurring within

the boundaries of a residential

property, primarily for

personal consumption

∙ Non-mechanized

inputs

∙Reduced cold

chain/retail

requirement (onsite

end-consumption)

∙ Knowledge dissemination

for production, preservation

∙ Regulations for application

of fertilizers, pesticides

∙ Appropriate crop selection

(Kulak et al 2013,

Altieri et al 1999)

Allotment and
community
gardens12

Open air or protected food

production occurring upon

community or municipally-

owned land, primarily for

personal consumption

∙ Non-mechanized

inputs

∙ Reduced cold

chain/retail

requirement

∙ Municipal allocation of

green space

∙ Expedited application

approval to facilitate utility

connection

∙ Mulch from municipal

greenspace maintenance

(Leach 1975)

Rooftop/balcony
agriculture

Open air or protected food

production occurring on

structures built for other

primary functions, for either

personal consumption or

commercial availability.

∙ Thermal transfer

from rooftop

∙ Improved yield

∙ Improved building

insulation

∙ Onsite waste

diversion

∙ Building code consideration

(structural, utilities)

(Sanyé-Mengual et al

2015, Saiz et al 2006,

Specht et al 2013,

Grard et al 2015,

Orsini et al 2014)

Industry/
residence-
integrated
greenhouse

Controlled-environment food

production with supplemental

heating, integrated into

structures built for other

primary functions that involve

purpose-built infrastructure

for yield improvement

towards commercial

availability.

∙ Waste heat/CO2
utilization

∙ Improved yield

∙ Inventory of urban resource

streams

∙ Zoning by-laws to enable

co-location of agriculture with

resources

(Zhang et al 2013)

Vertical farms Controlled-environment food

production with supplemental

heating, in multi-story

structures developed with the

primary function of crop

production for commercial

availability. Generally located

within urban boundaries

∙ Onsite waste

diversion (e.g.

waste-to-feed for

livestock operations)

∙ Potential for on-site

nutrient cycling

∙ Improved yield

∙ Building code changes

(structural, utilities)

∙ Innovations in lighting,

agriculture system integration

in built environment

∙ Low-carbon grid due to

expected substantial energy

requirements

(Despommier 2013,

Hamm 2015)

Peri-urban
agriculture

Open air, protected, or

supplemental heat

environment food production

at the urban-rural interface.

Generally for commercial

availability, but may include

subsistence agriculture in

developing-world contexts.

∙ Preservation of

high-yielding prime

agricultural land

∙ Legal protection of

peripheral farmlands from

incompatible urban

development

(Francis et al 2012,

Krannich 2006)

are integrated into the built environment, rather
than on maintaining existing agricultural land in the
urban periphery. Hence, large scale conventional peri-
urban agriculture is beyond the scope of inquiry
here.

11 Protected food production refers to enclosed environments
(e.g. with polyethylene or glass) that are not climate-controlled;
controlled-environment food production includes both protected
environments and those with supplemental heat.
12 Urban or peri-urban agricultural space designated and protected
by municipalities or community groups for non-commercial pur-
poses.

Energy consumption in the food system and
urban agriculture

The modern food system encompasses a broad collec-
tion of energy end-users. Starting from the agricultural
phase through transportation of food to retailers and
households, and culminating in waste handling, the
current predominantly linear structure of the food
system is highly dependent on energy inputs for its
operations of production, processing, distribution,
consumption and disposal of food products (Pimentel
et al 2008). Examining the US case, the USDA ERS
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Agriculture
13%

Processing
17%

Packaging
5%

Transportation
3%Wholesale / Retail

15%

Food Services
18%

Households
29%

Total = 14,760 PJ

Figure 1. Energy consumption in the US food system in 2002 (adapted from Pelletier et al 2011, from Canning et al 2010).

Table 2. Energy and water demand per unit yielded for various tomato production systems (modified from Goldstein et al 2016a).

Production system Irrigation water (m Mg−3) Direct and indirect energy demand (MJ Mg−1)

Ground-based non-conditioned (two cases) 50; 74 6500; 2600
Ground-based conditioned 65 33 000
Building-integrated non-conditioned 68 3300
Building-integrated conditioned 9 56 000
Conventional (conditioned) 2 10 000

(2010) estimates that nearly 14.4% of total national
energy consumption in2002was food-related.Abreak-
down of this consumption is provided in figure 1.

The majority of energy use in the food system
occurs beyond the farm gate; the United Nations
Food and Agriculture Organization (FAO) estimates
that over 75% of energy use in the food system of
high-income nations occurs after cultivation (Food
and Agriculture Organization 2013). This is consistent
with the 2002 US analysis in figure 1, which sug-
gests that the post-agricultural energy use share is over
87%. However, the potential for UA to impact energy
demand beyond production is substantial (e.g. packag-
ing, processing, transportation, waste management), as
discussed below. In addition, figure 1 excludes wastew-
ater and food waste treatment; therefore, a complete
consideration of energy use associated with the expan-
sion of UA will require an examination of not only
food productionbut also energy inputs across the entire
food system, including waste handling and treatment.
Changes in energy use relative to the status quo must
also investigate the food–energy–water nexus to vali-
date theenvironmental case for scalingupUAandavoid
any unintended shift of impacts from one resource
system (i.e. energy) to another (i.e. water).

Energy benefits of urban agriculture
Proponents suggest a number of energy-related ben-
efits are realized through the reintroduction of food
production within cities (Howe and Wheeler 1999,
Garnett 1997, Smit and Nasr 1992, Kulak et al
2013). Studies most commonly highlight savings in
transportation energy, reduced storage requirements

at the wholesale/resale level, and energy inputs of food
waste/loss along the supply chain, but also include
additional biomass provision from silviculture (i.e.
to offset energy imports; Smit and Nasr 1992), eas-
ier exploitation of resource use (Zhang et al 2013),
and lower resource-intensity of production (Kulak
et al 2013). Meanwhile, peri-urban agriculture
can preserve higher-yielding prime agricultural land
(Krannich 2006, Francis et al 2012), which has the
potential toprovide less resource-intensiveproduction.
Looking at more sophisticated integrated operations
(vertical farms, integrated greenhouses), exploited
waste streams (CO2, heat, macronutrients) could off-
set energy requirements that are required for providing
these inputs in conventional operations (Despommier
2013, Zhang et al 2013). Additionally, if the distributed
nature of UA can be supported by a similarly dis-
tributed energy infrastructure system, food/agriculture
waste can be digested locally to generate biogas for heat
or electricity production, further decreasing the energy
footprintofUA.Energy-relatedbenefitsassociatedwith
the various structures/locations of UA have also been
described in table 1 (excluding transportation).

Interactions with other components of the
urban food–energy–water nexus

Urban agriculture has the potential to affect energy-
related components of the food–energy–water system
within urban boundaries and beyond. Suggestions
of positive and negative impacts, both within and
beyond the urban boundary, are presented in table 2.
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It is important to note that energy demand for ser-
vices required in UA can differ from those provided
through open-field agriculture. An exploration of lit-
erature that can provide greater insight on how these
different UA approaches can influence energy needs
follows.

Energy demand for UA water systems
Energy demand in irrigation systems are a noteworthy
component of scaled-up UA that must be consid-
ered in order to avoid inadvertently increasing demand
relative to conventional open-field systems. Irrigation
systems in an open-field agricultural setting are rela-
tively low-energy when compared with potable urban
water systems that could be used in UA; in one study
open-field irrigationenergydemand is estimatedat 0.63
MJ m−3 water (Esengun et al 2007, used in the absence
of a similar US case study). However, in a UA system,
potable water may be used for irrigation and generally
requires substantially more energy for treatment, with
the Electric Power Research Institute (2002) suggesting
an estimate of 1.3 MJ m−3 and 1.7 MJ m−3 for pub-
lic utilities using surface and groundwater, respectively
(including distribution), for a hypothetical 10 million
gallon per day treatment plant. Meanwhile, Racov-
iceanu et al (2007) estimate energy demand at 2.3−2.5
MJ m−3 treated water used in the City of Toronto’s
water treatment. The Racoviceanu et al (2007) study
considers a surface water source, and includes chem-
ical fabrication/transportation, treatment, and onsite
pumping, though most of total energy intensity
(∼70%) is attributable to untreated and treated water
pumping. Data onMassachusetts’ 2007 energy demand
for water treatment and distribution suggests an aver-
age value of 1.4 MJ m−3 (US Environmental Protection
Agency 2008), whereas California’s 2005 report on
the energy-water relationship provides estimates of 1.4
MJ m−3 and 9.7 MJ m−3 for Northern and Southern
California, respectively (range attributable to differ-
ences in energy required for conveyance from source
to treatment facilities; Klein et al 2005). This latter
California report also suggests that when desalination
options are employed in water treatment, an additional
9.3−15.7 MJ m−3 and 3.7−9.3 MJ m−3 are required
for seawater and brackish groundwater, respectively.
It is worth noting that depth of groundwater source,
pumping requirements for surface/groundwater, and
on-farm treatment will influence the energy demand
and could bring this figure closer in line with that from
water utilities.

The types of secondary energy used can also vary
for different types of irrigation, influencing both cost,
overall energy efficiency, and GHG emissions. For
example, Ontario, Canada’s field crop irrigation is typ-
ically powered by diesel systems, while greenhouse
irrigation is generally powered by electricity (Carol
2010). Diesel has an emissions intensity of 74 kg
CO2e GJ−1, while electricity grid GHG intensity in

Ontario was 14 kg CO2e GJ−1 in 2014 (IPCC 2006,
chapter 3). For comparison, US electricity emissions
intensities ranged from 1 to 266 kg CO2e GJ−1 in 2012
(US EPA 2015).

Water/energy trade-offs for UA production methods
Water use can be mitigated through the use of more
water-efficient growing systems (such as hydroponic
systems), though these can result in increased energy
demand in pumping and lighting, and associated GHG
emissions. For example, hydroponic13 systems have
been shown to have lower water demand than soil-
based production, in addition to avoiding the need
for a solid growing medium and the associated energy
inputs of its provision (Albaho et al 2008). However,
Barbosa et al (2015) have modeled energy and water
demand for hydroponic and conventional production
systems for lettuce; while water demand was reduced by
92% (250 to 20 l kg−1 y−1), energy demand increased
by 8100% (1100 to 90 000 kJ kg−1 y−1), due primar-
ily to heating and cooling loads (74 000 kJ kg−1 y−1),
artificial lighting (15 000 kJ kg−1 y−1) and circulating
pumps (640 kJ kg−1 y−1).

Focusingonenergy, Shiina et al (2011) studyhydro-
ponic urban ‘plant factories’ (temperature controlled,
artificial lighting and humidity controlled) in Japan,
and show that the energy intensity of the production
resulted in estimated greenhouse emissions of 6.4 kg
CO2e kg−1 lettuce, despite the operation’s high yields.
Continuing to use GHG emissions as a proxy for energy
demand, this compares with estimates of 0.2 and 0.9
kg CO2e kg−1 for lettuce from Michigan hoop houses
and California open-field lettuce production (Plawecki
et al 2014), and ranges between 0.24−2.62 kg CO2e
kg−1 for lettuce from European open field and hot-
house production (Hospido et al 2009). Meanwhile,
Goldstein et al (2016a) compared cumulative energy
demand of rooftop hydroponic greenhouse tomatoes
and ‘conventional’ production and find the former to
be roughly ten times as energy intensive,with important
implications for carbon footprint. However, switching
energy source from the Massachusetts electricity grid
to hydroelectric or solar PV makes rooftop hydroponic
greenhouse production less carbon intensive than con-
ventional production.

These demonstrate that are potential for trade-offs
whenaddressingenvironmental footprints throughUA
if focusing on a single performance metric (i.e. water
alone). Though, as hydroponic growing systems can
be used in controlled, protected, and open-field grow-
ing systems and with a wide selection of hydroponic
technology options available, variation can be expected
in the yields and energy demand of hydroponic oper-
ations; this introduces uncertainty in applying these

13 Hydroponic systems are those that involve the culture of plants
in the absence of soil in a nutrient-supplemented water medium
(‘Hydroponics’, in Anonymous 2017).
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figures to specific contexts, but underscores the need
for careful consideration in designing for energy and
water demand reduction.

Alternative irrigation sources
Urban agricultural systems provide an application
for rainwater collection, as well as black/greywater14,
all of which could reduce wastewater volumes and
stormwater runoff, and potentially improve surface
water quality and decrease net energy use as a result (i.e.
due to theavoidanceofUAirrigationwithpotablewater
and downstream wastewater treatment). As examples,
wastewater treatment in California and Massachusetts
is estimated to require, on average, 1.7 and 2.4 MJ m−3,
respectively (US Environmental Protection Agency
2008, Klein et al 2005). This has the potential to be
reduced if conveyance and treatment requirements
are avoided through application of wastewater in UA.
Further, if stormwater can be diverted from treat-
ment plants to UA in jurisdictions using combined
sewer systems, energy demand, as well as pollutants
to receiving bodies, could be reduced. In an extreme
case, substantial diversion of rainwater for UA from
lakes and rivers that ordinarily receive it could con-
tribute to local/regional ecosystem decline or surface
water quality issues (Goldstein et al 2016a). Finally,
depending on how UA is managed, runoff from open
field urban farms could result in increased nutrient
loads being passed down to receiving bodies or down-
stream wastewater treatment plants (Pataki et al 2011).
Upscaling UA could result in this being an additional
source of non-point pollution for consideration by city
managers/planners.

Packaging materials
The use of packaging materials can also potentially be
avoided in UA operations, in instances of production
for personal consumption or within shorter distribu-
tion chains such as when food is sold directly by the
producer (Garnett 1999). For example, the climate
impacts of the embodied energyof polyethylene tereph-
thalate clamshells and polystyrene trays that are often
used in tomato packaging (again, using carbon as a
proxy for energy use) were estimated to be 25% and
100% greater, respectively, per unit mass of tomato
when compared to loose packaging (US Environmen-
tal Protection Agency 2010). Still, the authors noted
thatmodifiedatmospherepackagingusingplasticshave
been shown to increase shelf life by two or three times,
which may reduce waste and, consequently, GHGs
associated with tomato production and disposal. This
waste reduction could then offset the embodied energy
needed for the packaging material that provides this
added shelf life.

14 Blackwater refers to wastewater conveying faeces and urine, while
greywater includes other wastewater streams from human use that
do not (i.e. dishwater, shower water).

The use of packaging does not need to be an
all or nothing proposition; employing some packag-
ing for various meal components can result in a net
energy savings (relative to ‘typical’ packaging con-
figurations) when accounting for avoided waste and
marginal energy requirements; semi-prepared meals
examined by Hanssen et al (2017) were slightly more
energy efficient when compared with those prepared
from scratch. It is generally important to recog-
nize the embodied energy of the food products and
packaging materials being considered; higher embod-
ied energy food products (cheese, beef, bread) more
easily justifying the additional energy inputs asso-
ciated with packaging than unprocessed fruits and
vegetables (Williams and Wikstrom 2011). Similarly,
the application of plastic films and containers may
be more easily justified when compared with more
energy-intensive materials such as steel, aluminum, or
glass.

Transportation and supply chain considerations
While UA and other forms of localization are often
intuitively thought to reduce life cycle energy demand,
the reality is more complicated (Webb et al 2013).
Supply chains crossing a variety of artificial jurisdic-
tional boundaries may in fact be more direct than
those created by constraining agriculture within a
region/state, depending on the product, consump-
tion point, and regional characteristics (Nicholson
et al 2015). Broad-scale localization of agriculture
has the potential to increase transportation energy,
as well as associated GHG emissions, relative to the
conventional supply chain if definitions of local and
implications for modified supply networks, includ-
ing transport modes, are not carefully considered.
Indeed, a commonly cited reason to pursue UA is to
reduce energy-related impacts associated with trans-
portation. Estimates of transportation’s contribution
to the food system’s energy demand and GHG emis-
sions have been estimated at approximately 10% or
less (Weber and Matthews 2008, USDA ERS 2010,
Garnett 2011).

Numerous studies from the literature (Coley et al
2009, Edwards-Jones et al 2008, Pirog et al 2001) have
challenged the common assumption that ‘localizing’
food production results in reduced transport energy
use and GHG emissions, and effects on distribution
networks need to be evaluated on a case basis to justify
such a claim. For instance, transport-related impacts
for cheese shipped 20 000 km from New Zealand to
consumers inEnglandbyboatweredominatedby road-
freight and consumer automobile use, highlighting
the limitations of singular focus on transport distance
(Basset-Mens et al 2007). The GHG implications of
external energy inputs to support year-round urban
food production and their ability to overwhelm gains
achieved through reduced distribution distances must
be considered in the context of upscaling of urban food
production.
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Urban heat island mitigation
The predominance of dark (low-albedo) surfaces in
cities results in the absorptionof solar radiation andele-
vated temperatures in and around urban areas, raising
the demand for cooling energy (the urban heat island
effect; Oke 1973). Urban agriculture could play a role
in attenuating this phenomenon, by increasing surface
albedo and the cooling effect of plant evapotranspi-
ration (Ackerman et al 2014). Vegetation situated on
buildings has been shown to reduce individual build-
ing cooling demands in Toronto, Canada, Madrid,
SpainandLaRochelle, France (Bass andBaskaran2001,
Saiz et al 2006, Jaffal et al 2012). Ackermann and col-
leagues estimated that scaling up UA in New York City
could reduce the local urban heat island by 22%−44%
(∼1 ◦C), mitigating energy demands for cooling (Ack-
erman 2012). The importance of this ancillary benefit
of UA could become more important with the increas-
ing frequency and severity of heat waves under likely
climate change scenarios (Jansson 2013).

Impact of type of production system

Assuming UA may involve the use of protective struc-
tures or controlled environments, it is relevant to
consider the energy demand associated with such struc-
tures. Generally speaking, open-field and protected
agriculture (e.g. hoop houses with no supplemental
heating)havebeen found to require lower energy inputs
than heated systems (e.g. heated greenhouses). Studies
focusing on open-field conventional tomato produc-
tion in the US and the Mediterraneanhad energy inputs
for production of 140–280 MJ Mg−1 (Brodt et al 2013,
Tamburini et al 2015). An average of three Moroc-
can protected tomato operations had energy inputs
of diesel and electricity for fertigation and pesticide
application of 460 MJ Mg−1 (Payen et al 2015). With
hothouse operations, energy input can increase further,
with a selection of studies focusing on tomato cultiva-
tion showing energy inputs ranging from 425, 28 500,
76 000 MJ Mg−1 for case studies in Northern Italy,
France, and Iran, respectively (Heidari and Omid 2011,
Boulard et al 2011, Almeida et al 2014). In the French
case, heated operations required six times more energy
per unit of weight than the protected system (Boulard et
al 2011). Goldstein et al (2016a) found similar patterns
of variation for tomatoes depending on production
method, with resource requirements presented in
table 2 (modified here to present consistent units).

Nevertheless, studies that directly compare
controlled-environment growing with open-field agri-
culture for certain crop typespresent amixedpicture. In
one study, Martı́nez-Blanco et al (2011) found that life
cycle cumulative energy inputs per Mg of protective
structure greenhouse tomatoes produced in Catalo-
nia was 13% greater when compared with open-field
production (considering operations using mineral fer-
tilizer inputs only). The additional energy demand

in the greenhouse operations is dominated by the
greenhouse structure, in spite of some savings realized
through reduced cultivation-stage fertigation infras-
tructure, nursery plants and irrigation needs. However,
in an Indonsian case study, Kuswardhani et al (2013),
found that energy demand per unit mass was higher
for open-field tomato when compared to protective
structure greenhouses, but lower for lettuce; this is
attributed to higher fertilizer and pesticide/herbicide
needs for open-field tomatoes (predominantly the
latter), whereas open-field lettuce had lower energy
requirements in spite of this higher demand (and
higher labor inputs) due to the substantial electricity
requirements for the drip irrigation system used in the
greenhouse lettuce. Their study did not include the
embodied energy of the greenhouse structure.

Studies for tomato production in Antalya, Turkey
suggest that energy requirements per kg yielded for
protective structure greenhouse tomato production
were approximately 30% lower than that in open fields
(Esengun et al 2007, Hatirli et al 2006). The greater
yield coupled with lower labor, machinery, and irri-
gation energy provide a net energy saving relative to
open fields, in spite of greater fertilizer, electricity, and
pesticide inputs for these greenhouses. This study also
excludes embodied energy of greenhouse infrastruc-
ture. When taken together, these studies suggest that
inputs required for UA will be operation, crop, and
climate dependent, emphasizing the need for consider-
ation of these elements when making comparisons and
considering UA expansion.

With respect to soilless production systems, Albaho
et al (2008) state that aeroponic15 systems require an
uninterrupted electrical supply but it is unclear as to
whether this energy demand is offset by lower inputs
and higher yields relative to conventional controlled-
environment or hydroponic systems. A summary of the
energy implications of production methods is provided
in table 3, along with estimates of energy implications
from efforts to scale up UA in table 4.

Drivers of variability
Judging the pressures production systems have
on resource demands requires reflection on a
number of contextual factors. For example, local
climate/geography may reduce the need for energy-
intensive inputs (i.e.mild climate, plentiful surface/rain
water). As well, existing infrastructure (green and grey)
may or may not provide access to necessary inputs
(nutrients, water, energy, labor, and growing media).
This reflection may also include questions such as
whether there is an abundance of low-grade heat that
is accessible for exploitation and is the supplier (i.e.
a local utility) amenable to supporting its exploita-
tion, or perhaps if there is an existing agreement to

15 Aeroponic systems are those that involve the culture of plants in
the absence of soil or hydroponic media (Anonymous 2011).
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Table 3. Energy implications of different production methods.

Production method Energy benefits Energy costs

Open air—large scale Reliant on natural systems for photosynthesis,

growing environment, and, to some extent, water

supply

Centralized and seasonal production

systems that tend to require complex

distribution networks that necessitate

transportation and cold storage
Open air—small scale (e.g. balcony,
allotment, residential garden)

Reliant on natural systems for photosynthesis; avoids

conventional distribution network

Input practices dependent on skill of

UA practitioner (potential for

excessive use), system design (e.g.

moisture retention of planter boxes

compared with field)
Controlled environment—protected
agriculture

Higher yields; can be located close to consumption,

with an extended growing season; low material inputs

relative to other

Relatively high embodied energy

inputs of capital per production unit

when compared with open field
Controlled
environment—conventional
greenhouses

Higher yields; can be located close to consumption,

with an extended growing season

As above, but with energy inputs for

lighting, irrigation systems, or other

control systems, in addition to

growing medium
Controlled environment—advanced
soilless systems

Higher yields; can be located close to consumption,

with an extended growing season

As above, but with added operating

energy from soilless systems (e.g.

pumping, dosing equipment)

Table 4. Estimated energy impacts within and beyond urban boundaries from scaling up urban agriculture on the broader
food–energy–water system.

Within urban boundaries Beyond urban boundaries

Upward Pressure
∙ Heating (for some controlled environment agriculture)
∙ Water/wastewater treatment (conventional network usage)
∙ Labor (paid or unpaid)
∙ Transportation (in cases of inefficient local supply chain)

Upward Pressure

∙ Construction materials (e.g. steel framing, LDPE sheeting,

polycarbonate glazing)a ,b ,c

Downward Pressure
∙ Transportation (e.g. backyard gardens)
∙ Waste disposal (assuming less loss along supply chain)
∙ Water/wastewater (decentralized usage)
∙ Building energy demand (e.g. evapotranspiration, green roofs)

Downward Pressure

∙ Irrigation water (through controlled-environment agriculture)

∙ Inorganic inputs (wastewater reuse)

∙ Machinery/capital (human inputs)

∙ Packaging materials

∙ Cold-chain requirements

a Goldstein et al (2016a).
b Martı́nez-Blanco et al (2011).
c Kulak et al (2013).

supply nutrients from wastewater to peri-urban agri-
culture or further afield. Additionally, an abundance
of uncontaminated vacant land or a low population
density may make open-field or protected systems the
most plausible approach. Further considerations with
respect to publically-owned land might be whether
these local green spaces are compatible with UA inte-
gration, when safety, waste collection, accessibility, and
public demand are taken into account. Finally, Pelletier
et al (2011) suggest that scale of production systems
may also play a role in energy efficiency; though scale
in itself is not an indicator of energy efficient produc-
tion, smaller operations have been observed to have
lower energy intensities in the examples of tomatoes
and swine. It is clear that further research is needed to
parse out the roles that scale, climate, existing infras-
tructure, waste resource availability can have on the
overall energy picture of UA operations. Moreover,
an assessment of the local context is necessary before
promoting any particular UA approach, along with the
accompanying resource demands these systems require
in a given context.

Exploiting urban resources for local
agriculture

Numerous opportunities exist to scale up UA in an
energy-efficient manner, both within present urban
systems and carefully-planned future developments.
If, however, an industrial ecology lens were applied
for future planning, a paradigm shift in food systems
integration could be achieved with respect to the urban
food–energy–water system, includingopportunities for
utilizing food waste, wastewater, and waste heat/CO2
recovery. In industrial ecology, efforts are made to
mimic natural ecosystems through more efficient use of
resources through the exploitation of waste streams by
other production systems (Clift and Druckman 2016).

The urban form can be re-imagined to facilitate
the incorporation of UA in a truly integrated way. The
concept of co-locating agriculture would imply more
than preserving peri-urban agriculture and household
gardens; it would focus on identifying spaces within
built-up areas that are amenable to agriculture and that
are also within close proximity to agricultural inputs
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(waste heat, compost, wastewater and flue CO2 from
compatible sources). One example of such an eco-
industrial system in a rural setting is described by Zhang
et al (2013), where yields can be improved from CO2
fertilization through the integration of manure man-
agement and greenhouse operations. Biogas generated
from the manure disposal system is used in place of nat-
ural gas to heat the greenhouses and fertilize with CO2,
while reducing emissions of GHGs and air pollutants.
Metson et al (2012) demonstrate that the co-location
of agriculture near urban areas can enable improved
resource efficiency. In their Arizona study, they found
that the increasing dairy demand from a growing city
was accompanied by an expansion of dairies and alfalfa
farms (for feed) in its hinterlands; the alfalfa farms uti-
lized cow manure from the dairies, as well as biosolids
from urban wastewater, as a source of phosphorous,
increasing the local nutrient cycling in the city-region. If
planners are able to identify or (ideally) inventory pro-
jected/current UA-related resource streams, the overall
embodied or direct energy demand associated with
these UA systems can be reduced more deliberately
and, presumably, more effectively.

A summary of key resource streams that are valu-
able in agriculture is provided in table 5, along with
their conventional energy inputs as stated in a variety
of literature sources. The extent to which these energy
demands will be offset will differ depending on the
agriculture operation.

With the increasing frequency of extreme weather
events and uncertainty of future water availability,
agriculture production in the US has the poten-
tial to be negatively affected by climate change (US
Global Change Research Program 2014). Urban agri-
culture could increase resilience against these (as it
historically has done during resource shocks through
the centuries, per Barthel and Isendahl 2013), while
reducing environmental impacts within the current
infrastructural construct; these benefits could be even
greater if an industrial ecology approach is taken.
Indeed, controlled-environment production systems
can potentially protect crops from the climate vari-
ability and extremes that would otherwise disturb
open-field production systems. These more secure,
and higher yielding (Martı́nez-Blanco et al 2011)
operations would bring greater certainty in yields as
well as improved resilience, relative to the uncer-
tainty of the broader food supply chain. In addition,
controlled-environment agriculture systems can be
planned for integration into new and existing build-
ings and industries, to make better use of inputs that
are predominantly from urban waste streams (e.g. flue
gas, waste heat, wastewater, biosolids). The following
sections provide a discussion of strategies to deploy
controlled-environment agriculture within the current
infrastructural context and within an interconnected
UA ecosystem that is designed for resource recovery
from waste streams.

Energy production from food waste
Food waste has the potential to be converted to a
useful energy resource in the form of biogas, with
many cities already collecting source-separated organ-
ics for processing in local anaerobic digesters (Uçkun
Kiran et al 2014, Sanscartier et al 2012, Mohareb
et al 2011, Bernstad and la Cour Jansen 2011). Fol-
lowing the potential for circular resource use suggested
by Metson et al (2012), the proximity of increased
urban food waste from both production as well as
further down the food supply chain could provide a
greater feedstock for co-located urban anaerobic diges-
tion (AD) systems. In addition, digestate produced
from these facilities could find local end-uses in UA
operations, facilitating a circular material flow. Gov-
ernments are currently promoting UA to reduce the
carbon footprint of cities (Arup and C40 Cities 2014).
Keeping this objective in mind, it is important to con-
sider how food waste (a major component of GHG
emissions from landfills; US EPA 2017) can be better
utilized within a more cyclical UA system.

Using foodwaste for energy generation throughAD
provides an opportunity for distributed energy gener-
ation while decreasing the impact of food waste on
downstream systems (landfills, wastewater treatment
plants). Levis and Barlaz (2011) assessed the environ-
mental performance of food waste disposal in nine
common waste management systems and found that
AD performed best with respect to GHG emissions,
NOx, SO2 and net energy demand. Further, consid-
ering the proximity to potential end users, the use
of biogas from AD facilities for both heat and elec-
tricity production could become more economically
attractive in an urban context, especially with local UA
consumers of waste CO2 (from biogas production) and
AD digestate. It is estimated that the US cities produce
130 Mt of food waste annually16. Using estimates of 184
kWh of electricity and 810 MJ heat Mg−1 of wet waste
(from Møller et al 2009), this quantity of food waste
has the potential to provide electricity for 7.2 million
Nissan Leaf all-electric vehicles17 and the equivalent
heatingdemand forover1.5millionMichiganhomes18 ,
respectively.

Cities are currently operating AD facilities that are
providing energy to the broader community. Barcelona
is treating 192 000 t yr−1 of its organic fraction of
municipal solid waste (OFMSW) through AD, having a
positive energy balance of around 2.2 MJ produced/MJ
consumed at the facility from pre-treatments and
digester pumping/stirring (Romero-Guiza et al 2014).

16 Uses an estimate of 500 kg of food discarded per capita in 2010
from retail and consumers (USDA ERS 2013) and a US urban
population of 261 427 500 (US Census Bureau 2015).
17 Assuming 11 500 miles per year (Heller and Keoleian 2015), Leaf
mileage of 29 kWh/100 miles (www.fueleconomy.gov/).
18 The average Michigan home consumes 123 million BTU, 55%
for heating (www.eia.gov/consumption/residential/reports/2009/
state_briefs/pdf/mi.pdf).
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Table 5. Key agricultural resource streams, potential urban sources, and energy requirement for resource stream use in conventional urban
agricultural systems.

Urban resource stream Potential alternative urban
sources

Energy requirement−
conventional sources

Source of energy requirement
data

Treated water ∙ Decentralized wastewater

treatment

∙ Rain barrels

∙ Grey water

1.33−1.40 MJ m−3 (surface

water)

∼1.73 MJ m−3 (groundwater)

Electric Power Research

Institute (2002)

Heat and carbon
dioxidea

∙ Electricity generation

∙ Residential furnaces, boilers,

hot water heaters

∙ Industrial/commercial waste

heat

∙ Anaerobic digesters

∙ Heat transferred from

conditions buildings

∙ Sewage networks

∼2500 kWh m−2-year (mild

climate; e.g. HDD18 = 2800

Abbotsford, BCe , greenhouse

heated with natural gas)

Calculated from British

Columbia case study (Zhang

et al 2013)

Nitrogen 13.8 MJ kg−1 (34.5%

NH4NO3)

14.5 MJ kg−1 (NH4SO4)

15.1 MJ kg−1 (27.5%

NH4NO3)

32.58 MJ kg−1 (CH4N2O)c

EU average−35.28 MJ kg−1

(urea); best−1.84 MJ kg−1

57.46 MJ kg−1 (US)

Feedstock−25.52−27.65 MJ

kg−1 (UK) indirect and direct

energy—8.4−19.6 MJ kg−1

(UK)

Audsley et al (1997), Danish

and UK data

Smith et al (2001)

West and Marland (2002)

Mortimer et al

(2003)—NH4NO3;

appendix C

Phosphorus ∙ Digestate from anaerobic

digestion

∙ Human biosolids

∙ Animal manure

∙ Compost (i.e. using wastes from

gardens, green roofs, and UA)

∙ Industrial waste streams

3.82 MJ kg−1

9.72−18.72 MJ kg−1 (EU)

EU average−36.22 MJ kg−1 ;

best−1.82 MJ kg−1 (P2O5)

7.02 MJ kg−1 (P2O5) (US)

15.80 MJ kg−1 (P2O5) (EU)

Hansen (2006)b

Audsley et al (1997)

Smith et al (2001)

West and Marland (2002)

Elsayed et al (2003)

Potassium 0.54 MJ kg−1

5.00 MJ kg−1d

EU average−11.20 MJ kg−1 ;

best−0.58 MJ kg−1 (K2O)

6.84 MJ kg−1 (K2O) (US)

9.29 MJ kg−1 (K2O) (EU)

Hansen (2006)b

Audsley et al (1997)

Smith et al (2001)

West and Marland (2002)

Elsayed et al (2003)

Calcium 1.73 MJ kg−1 (CaCO3) (US)

2.09 MJ kg−1 (CaO) (EU)

West and Marland (2002)

Elsayed et al (2003)

Structural materials ∙ Municipal solid waste for

construction materials (e.g.

hoop houses)

0.11 MJ kg−1 steel (for hoop

house or greenhouse

structures)

Althaus (2003) - EcoInvent 3,

Life Cycle Inventories of

Metals 2009

a to be diverted to boost yields of greenhouse operations.
b excludes ‘inherent’ (embodied) energy of CH4, 30.5 MJ kg−1 N.
c including mining energy demand, as reported in Bøckman et al 1990.
d sum of natural gas, electricity and coke used in manufacture of chromium steel.
e five-year average (2012–16) from www.degreedays.net.

Additionally, anaerobic co-digestion with sewage
sludge could enhance biogas production and deals with
the seasonality that food waste from UA can present
(Fonoll et al 2015, Shrestha et al 2017). Policy inter-
ventions will likely be necessary to encourage broader
investment in AD (Binkley et al 2013). For example, in
the north of Italy, 26 000–28 000 of OFMSW are treated
each year in AD plant; while the facility has obtained
a positive cash flow of e2.5 million yr−1, an incentive

for the use/generation of renewable energy was needed
to enable this to occur (Riva et al 2014).

Beyond energy production, AD offers additional
benefits. Situating anaerobic digesters near UA oper-
ations could facilitate the reuse of digestate (such as
in Garfı́ et al 2011), saving on fertilizer requirements
and reducing transportation costs for waste diversion.
The coupling of AD with pyrolysis has the potential to
produce biochar, which could be used to improve soil
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fertility (Monlau et al 2016). Excess heat from AD or
pyrolysis can also be applied to the digester to or to
district heating systems and can be used to heat houses
or aquaculture operations.

The barriers associated with the reintroduction of
livestock into relatively dense areas are formidable;
these include local regulations, public health concerns,
and logistic difficulties of feed provision (Food and
Agriculture Organization 2001, Butler 2011). If sur-
mounted, these operations, as well as primary and
secondary food processing industries (e.g. breweries,
ethanol production, harvest-related waste from agri-
cultural operations) can provide substantial feedstocks
for AD.

Finally, in cases where AD is impractical, UA
provides a local end user for composted residues.
Hence, onsite compost facilities could be a compo-
nent of future UA operations. This would reduce
GHG emissions from waste that would have been
disposed of in a landfill, and avoids the need for
transportation of waste to a location offsite. Accord-
ing to the US EPA WARM model19, composting food
waste and avoiding its addition to landfill results in
a net reduction of 0.96 Mg CO2e per Mg of food
waste.

Wastewater reuse in urban agriculture
Both solid and liquid streams of wastewater are an
underutilized resource, with their current perception
as a municipal liability requiring resource-intensive
treatment and disposal. It has been estimated that
approximately 2% of the total US electricity use is
for municipal wastewater treatment (Electric Power
Research Institute 2002). The aeration step of treat-
ment, which promotes biodegradation of pollutants,
accounts for approximately 50% of this energy use
(Curtis 2010, Mamais et al 2015). This approach also
results in the release of GHG emissions to the atmo-
sphere; in 2000, US wastewater treatment resulted in
∼33.3 Mt CO2e from energy use and sludge degrada-
tion (Center for Sustainable Systems 2014). A system
that diverts wastewater from treatment, reduces the
level of treatment, or eliminates the need for aeration
(through diversion from receiving water bodies to UA)
could help reduce these emissions.

Wastewater reuse could be a practical source of
water and nutrients in UA. Previous studies have
noted heavy metal and pathogen contamination of
wastewater-irrigated produce (Amoah et al 2007,
Khan et al 2008), underscoring the need to ensure
regulatory requirements for irrigation water qual-
ity are met (World Health Organization 2006). If
cities/neighborhoods were to reorient their wastew-
ater treatment goals from a focus on disposal to
one of reuse, the treatment reduction could result

19 Using national average landfill characteristics and default waste
hauling distances of 20 miles (www3.epa.gov/warm/).

in substantial energy savings—directly at the point
of treatment, as well as upstream from crop pro-
duction. For example, crops grown using water
and nutrients recovered from wastewater could off-
set the embodied energy demand of crops that
are grown elsewhere using more energy-intensive
irrigation water and inorganic fertilizers. Anaero-
bic membrane bioreactors are one technology that
has been proposed to accomplish these goals (Smith
et al 2012, 2014), recovering energy, generating an
effluent rich in nutrients and low in suspended solids
and organics, and eliminating energy requirements
related to aerobic treatment (Smith et al 2014). Regard-
less of the technology used, further research is necessary
to evaluate the removal potential of trace contaminants
and viral pathogens prior to reuse for UA (Smith
et al 2012, McCurry et al 2014). By taking an indus-
trial ecology approach, residential waste streams and
industrial waste streams that are relatively benign and
with a low pathogen load (e.g. brewery waste) could
be used in subsurface irrigation of UA crops, avoiding
conventional treatment and reclaiming nutrients for
food production.

Waste heat or CO2 use for urban agriculture
Finally, a further industrial ecological approach would
see conventional infrastructure systems integrated with
agriculture to increase productivity. Many sources
of waste heat and CO2 exist within the urban
boundary, from residences to industrial operations to
electrical utilities. Where natural gas is employed in
these applications, greenhouse operations can utilize
the relatively clean exhausted low-grade energy as
a heat source, as well as CO2 for crop fertilization
(Kimball 1983, Mortensen 1987). If greenhouses and
households could be integrated, there is a potential
efficiency gain in the combined system over its dis-
crete components, including through the provision of
CO2 for crop fertilization and utilization of waste heat.
A number of studies have suggested that building-
integrated agriculture has the potential to improve
overall energy performance of the system (Specht
et al 2013). Decentralized residential heating systems in
single-family homes make utilization challenging, but
specialized building-integrated systems, like the exam-
ple developed by Seawater Greenhouses, could be a
model for smaller-scale units that utilize waste heat
and CO2 on site (Delor 2011). Nevertheless, the model
presented by Cerón-Palma et al (2012) of a rooftop
greenhouse in Barcelona highlights the challenges of
building-integratedUA,asgreenhouseheating require-
ments were not temporally aligned with the times of
excessheatwithin thebuilding; instead, this typeof pro-
duction system may be better suited to colder climates
where exhaust CO2 and heat from boilers/furnaces are
more available during winter months. This highlights
the need for additional research on how to overcome
these types of management issues to support greater
resource efficiency.
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Planningandhumancapital considerations forurban
agriculture
Historically, UA was a natural part of urban develop-
ment and, eventually, an essential component of the
plans of early urban planning practitioners (Vitiello
and Brinkley 2013). However, UA was not a primary
objective for planning developed-world public spaces
in industrialized food system of 20th century cities.
Calls to reconsider the value of UA have been made
for decades (e.g. in the pattern language proposed
by Alexander et al 1977) and planning for UA, as a
result, has returned. The success of UA re-adoption
in urban design is demonstrated by the Carrot City
Initiative (Gorgolewski et al 2017) which facilitates dis-
cussions on urban design for food production. These
and other resources can help to increase the sophis-
tication of food planning in a more cyclical urban
ecosystem.

Planners can open up or create space to enable
the upscaling of UA in either building-integrated sys-
tems or new/existing green space. For example, parks
could be redeveloped from being merely aesthetically-
pleasing recreational landscapes to be more functional,
with edible productivity through the incorporation of
fruit trees and community gardens. Inventories of suit-
able public and private vacant land could be identified
for UA use through geomatic methods (McClintock
et al 2013). Municipal support for training in the
harvest and processing of crops could increase the
public’s awareness of the resources embodied within
the food they consume and minimize and potentially
minimize crop waste. Processing infrastructure, such
as fruit presses or preserving facilities, could be situ-
ated within the park’s borders. By-laws could be put in
place to incentivize rooftop UA, as has been done with
green roofs in some cities (e.g. Toronto and Chicago;
Loder 2014)

As mentioned previously, UA expansion could
lead to local increases in polluted run-off. This may
require the implementation of by-laws restricting
fertilizer or pesticide application, storm water reme-
diation/mitigation measures, and out-reach to inform
citizens of health and environmental implications of
agriculture. As well, inventories of UA and surveys
of practices coupled with geographic information sys-
tems could help planners identify potential hotspots for
runoff, odors, or other impacts.

Human labor is an abundant urban resource that is
anticipated to become more available in cities as trends
of urbanization and automation progress. Smaller-
scale agricultural systems have the potential to utilize
this labor, as they tend to be more labor intensive
than conventional mechanized open-field agriculture.
As well, the integration of UA in buildings and the
application of advanced production approaches (i.e.
soilless operations) require specialized training during
design, construction and operation, creating high-
skilled employment opportunities. The impacts on
food prices by shifting to small-scale UA systems is

unclear; the 2012 US agricultural census suggests that
hired and contract farm labor contributed to only
10.2% of total farm production expenses, though it
is suggested that this would vary substantially by crop
raised and potentially less mechanized/automated sys-
tems (US Department of Agriculture 2014, USDA ERS
2014). The recreational utility realized by those pur-
suing UA as a leisure activity could reduce the net
increase in costs (i.e. people providing free labor in pur-
suit of UA as a hobby); further, multiple non-monetary
benefits (civic engagement, social cohesion, food secu-
rity) have been recognized, enabling a scenario where
broad public benefits of UA can be realized, coupled
with an understanding of its effects on health and the
environment (Chen 2012, Horst et al 2017).

Avoiding unintended consequences in scaling up
urban agriculture
A number of issues may inhibit efforts to scale up
UA, including land scarcity (Martellozzo et al 2014),
UA’s uncertain contribution to food security (Ward
2015), environmental impacts of decentralized pro-
duction (Nicholson et al 2015, Coley et al 2009), and
management of new sources of food waste (Levis and
Barlaz 2011, Forkes 2007, Smil 2004). Avoiding unin-
tended consequences and continued inefficiency in the
food system through urban production requires a plan-
ning approach that coordinates input streams, reduces
potential for waste and enables co-location to mitigate
growth in transportation demand. Foley et al (2011)
suggest that efforts to meet the food needs of the rising
global (urban) population face substantial challenges to
environmental protection. Further, resource demands
of all urban food consumption far exceeds the resources
that can be provided within city boundaries and mov-
ing towards this goal could create new local resource
stresses; for example, Ramaswami et al (2017) demon-
strate this situation for New Delhi’s water demand,
where water used for food production represented 72%
of urban-related withdrawals (in turn, only 14% of
these water withdrawals was provided within the city’s
boundary).

We argue that an industrial ecological approach
to UA has the potential to slow land use change
(through the intensification of production), increase
crops yields (by increasing management intensity),
increase resource efficiency (through co-location of
inputs from waste streams), and encourage low-carbon
diets (through increasedaccess to freshproduce;Wake-
field et al 2007, Schafft et al 2009). However, proximity
alone are not a guarantee for success of eco-industrial
UA;Gibbs andDeutz (2007) reviewanumberof unsuc-
cessful industrial ecological case studies and interview
participants in these and find that results often do not
match objectives. However, with an incremental plan-
ning approach, improved networking to develop trust
and cooperation, and targeted policy interventions by
municipalities could improve the success of industrial
ecological approaches.

12



Environ. Res. Lett. 12 (2017) 125004

Implications of UA on production inputs, food
waste and transportation (of both labor and food prod-
ucts) are dependent on UA approaches taken. As an
illustration, this will be influenced by the production
practices of UA practitioners, efficiency of distribution
systems, public and active transportation options for
accessing UA sites, producer and retail practices for
food disposal, and local attitudes towards food waste.
All of these require further study within each local
context.

Conclusions

This review has examined UA through a novel lens,
considering the energy implications of promoting the
expansion of food production in various forms within
cities in advanced economies. Scaling up UA has impli-
cations for thebroader energy system,with thepotential
to affect direct and upstream energy demand, and
enable the utilization of resources to a greater degree.
This review underscores the need to pursue further
case study research to understand the implications
of human and physical geographies on net energy
demands and other environmental impacts of UA in
its many iterations. Different combinations of crop
type, climate, production method/scale, availability of
‘waste’ resources, co-locationapproaches, and intensity
ofproductionallneed tobeexplored toobtainabroader
understanding of the life cycle energy implications of
scaling up urban agriculture.

We have proposed and provide supporting infor-
mation for a resource-efficient path to pursuing the
expansion of UA—through the exploitation of crop
and other food wastes, reuse of municipal wastewater
and biosolids for crop fertilization and irrigation, and
employing the plentiful sources of waste heat and CO2.
Integrating agriculture with urban planning is not a
new concept, but deep consideration of energy use in
the broader food system and the availability of rele-
vant resources within cities (often as underexploited
waste streams) can help realize substantial efficiency
improvements in future urbanized food system.
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Hospido A, Milà I Canals L, McLaren S, Truninger M,
Edwards-Jones G and Clift R 2009 The role of seasonality in
lettuce consumption: a case study of environmental and social
aspects Int. J. Life Cycle Assess. 14 381–91

Howe J and Wheeler P 1999 Urban food growing: the experience of
two UK cities Sustain. Dev. 7 13–24

IPCC 2006 2006 IPCC Guidelines for National Greenhouse Gas
Inventories (www.ipcc-nggip.iges.or.jp/public/2006gl/)

Jaffal I, Ouldboukhitine S-E and Belarbi R 2012 A comprehensive
study of the impact of green roofs on building energy
performance Renew. Energy 43 157–64

Jansson Å 2013 Reaching for a sustainable, resilient urban future
using the lens of ecosystem services Ecol. Econ. 86 285–91

Khan S, Cao Q, Zheng Y M, Huang Y Z and Zhu Y G 2008 Health
risks of heavy metals in contaminated soils and food crops
irrigated with wastewater in Beijing, China Environ. Pollut.
152 686–92

Kimball B A 1983 Carbon dioxide and agricultural yield: an
assemblage and analysis of 430 prior observations Agron. J. 75
779–88

Klein G, Krebs M, Hall V, O’Brien T and Blevins B B 2005
California’s water–energy relationship California Energy
Commission Report CEC-700-2005-011-SF (www.
energy.ca.gov/2005publications/CEC-700-2005-011/
CEC-700-2005-011-SF.PDF)

Krannich J M 2006 A modern disaster: agricultural land, urban
growth, and the need for a federally organized comprehensive
land use planning model Cornell J. Law Public Policy 16 56–99

Kulak M, Graves A and Chatterton J 2013 Reducing greenhouse gas
emissions with urban agriculture: a life cycle assessment
perspective Landsc. Urban Plan. 111 68–78

Kuswardhani N, Soni P and Shivakoti G P 2013 Comparative
energy input-output and financial analyses of greenhouse and
open field vegetables production in West Java, Indonesia
Energy 53 83–92

Leach G 1975 Energy and food production Food Policy 1 62–73
Levis J W and Barlaz M a 2011 What is the most environmentally

beneficial way to treat commercial food waste? Environ. Sci.
Technol. 45 7438–44

Loder A 2014 There’s a meadow outside my workplace: a
phenomenological exploration of aesthetics and green roofs in
Chicago and Toronto Landsc. Urban Plan. 126 94–106

Mamais D, Noutsopoulos C, Dimopoulou A, Stasinakis A and
Lekkas T D 2015 Wastewater treatment process impact on
energy savings and greenhouse gas emissions Water Sci.
Technol. 71 303–8

Martellozzo F, Landry J-S, Plouffe D, Seufert V, Rowhani P and
Ramankutty N 2014 Urban agriculture: a global analysis of the
space constraint to meet urban vegetable demand Environ.
Res. Lett. 9 064025
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